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Cornelia de Lange syndrome (CdLS) is an autosomal dominant or X-linked

genetic disease with significant genetic heterogeneity. Variants of the NIPBL

gene are responsible for CdLS in 60% of patients. Herein, we report the case

of a patient with CdLS showing distinctive facial features, microcephaly,

developmental delay, and growth retardation. Whole exome sequencing

was performed for the patient, and a novel de novo heterozygous

synonymous variant was identified in the deep region of exon 40 in the

NIPBL gene (NM_133433.4: c. 6819G > T, p. Gly2273 = ). The clinical

significance of the variant was uncertain according to the ACMG/AMP

guidelines; however, based on in silico analysis, it was predicted to alter

mRNA splicing. To validate the prediction, a reverse transcriptase-

polymerase chain reaction was conducted. The variant activated a cryptic

splice donor, generating a short transcript of NIPBL. A loss of 137 bp at the 3′
end of NIPBL exon 40 was detected, which potentially altered the open

reading frame by inserting multiple premature termination codons.

Quantitative real-time PCR analysis showed that the ratio of the

transcription level of the full-length transcript to that of the altered short

transcript in the patient was 5:1, instead of 1:1. These findingsmay explain the

relatively mild phenotype of the patient, regardless of the loss of function of

the truncated protein due to a frameshift in the mRNA. To the best of our

knowledge, this study is the first to report a synonymous variant in the deep

exon regions of the NIPBL gene responsible for CdLS. The identified variant

expands the mutational spectrum of the NIPBL gene. Furthermore,
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synonymous variations may be pathogenic, which should not be ignored in

the clinical and genetic diagnosis of the disease.

KEYWORDS

NIPBL, synonymous variant, non-canonical splice donor, whole-exome sequencing,
cornelia de lange syndrome

Introduction

Cornelia de Lange syndrome (CdLS; OMIM #122470,

300590, 610759, 300882, and 614701) is a genetically

heterogeneous autosomal dominant or X-linked dominant

congenital multisystem disorder (Liu and Krantz, 2009; Boyle

et al., 2015). Typical clinical manifestations of CdLS include

distinctive craniofacial features (long philtrum, micrognathia,

low-set ears, synophrys, myopia, long curly eyelashes, ptosis,

anteverted nostrils, thin upper lip, high arched palate, widely

spaced teeth, and short neck), growth retardation, behavioral

abnormalities, and upper extremity defects (Boyle et al., 2015).

International guidelines with scoring criteria have been

published for the clinical diagnosis of CdLS (Kline et al.,

2018). Hence, classic CdLS is easily recognized by experienced

pediatricians and clinical geneticists because of the unique

craniofacial appearance and growth pattern, as well as limb

deformities observed in these patients. However, accumulating

evidence shows a remarkable phenotypic heterogeneity among

CdLS patients (Yuan et al., 2015; Kline et al., 2018). Hence, the

genetic method remains an important diagnostic modality of

CdLS. The prevalence of CdLS is estimated to be between 1:10

000 and 1:50 000 in live births (Mannini et al., 2013). However,

the actual number of cases is expected to be higher, because some

patients with atypical symptoms may not have been clinically

diagnosed.

The cohesins are important regulators, which mainly maintain

genomic stability, separate chromosomes and chromatin structure,

and regulate gene expression (Kamada and Barilla, 2018; Gao et al.,

2019). CdLS ismainly attributable to the pathogenic variations of the

genes encoding cohesin complexes, altering the levels and patterns of

gene expression during development (Liu et al., 2020). The core

components of cohesin RAD21, SMC1A and SMC3 proteins are

considered to form a tripartite ringwrapped chromatids. TheNIPBL

protein is essential to mediate the loading of cohesin onto

chromosomes (Muto et al., 2014). The chromatin associated

protein BRD4 can enhance the load of NIPBL protein by

binding with acetylated histone H3 Lys27 and targeting the

enhancer clusters (Hnisz et al., 2013). The HDAC8 protein

regulates the release of cohesin complexes from chromatin by

deacetylating SMC3 protein (Kline et al., 2018). At present, six

causing genes of CdLS have been reported, and approximately 60%

of CdLS patients have pathogenic variants in the NIPBL (OMIM

#608667) gene (Kline et al., 2018), The NIPBL gene contains

47 exons located at 5p13.2, encoding two delangin subtypes A

and B (Nipped-B-like protein) with 2804 and 2697 amino acids

(Krantz et al., 2004). About 10%of cases are caused by variants in the

five other genes belonging to the cohesin pathway, including

SMC1A, SMC3, HDAC8, RAD21, and BRD4 (Boyle et al., 2015;

Olley et al., 2018). However, the underlying genetic causes for the

remaining 30% of cases are still unknown (Mannini et al., 2013;

Boyle et al., 2015; Watrin et al., 2016).

To date, the professional Human Gene Mutation Database

(HGMD) has reported more than 500 diverse variations in the

NIPBL gene in CdLS patients, most of which are missense,

nonsense, frameshift, or classical splicing variants. The

genotype-phenotype correlations between these NIPBL

variants and CdLS are relatively clear. However, little is

known about these rare disease-causing variations,

especially synonymous variants. To date, only one

synonymous NIPBL variant has been reported in a fetal

case (Qiao et al., 2021). Few recognizable features were

observed during the prenatal stage in the patient carrying a

synonymous variant, and only skeletal dysplasia of the

bilateral upper extremity and congenital heart defects were

observed in the fetus (Qiao et al., 2021). Thus, synonymous

variants in NIPBL and their genotype-phenotype correlation

with CdLS remain unelucidated.

Here, we report a case of CdLS with distinctive facial features,

microcephaly, developmental delay, and growth retardation. A

novel de novo heterozygous synonymous variant c.6819G>T p

(Gly2273 = ) deep in the exon 40 of theNIPBL gene was identified

by whole exome sequencing (WES). Further validation studies

showed that this synonymous variant altered the splicing mode

of NIPBL, thereby producing an abnormally shorter transcript.

Consequently, our study elucidated the genetic etiology of the

patient and provided a theoretical basis and guidance for

reproductive genetic counseling and prenatal diagnosis for the

family. Furthermore, the mutational spectrum of the NIPBL gene

was enriched, deepening our understanding of the disease and its

diverse genetic causes.

Materials and methods

Ethics statement

This study was approved by the Ethics Committee of the

Second Affiliated Hospital of Guangxi Medical University (No.

2019-106) and complied with the principles of the Declaration of

Helsinki. Samples and information were collected after obtaining

written informed consent from parents.
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Case report

The patient was a full-term female infant who showed patent

foramen ovale after birth with a weight of 3.97 kg and length of

43 cm, no history of neonatal asphyxia, and no difficulties during

breastfeeding. The patient’s parents were healthy and

nonconsanguineous (Figure 1A). Prenatal ultrasound

examination conducted at week 24 of gestation suggested

intrauterine growth retardation (approximately 2–4 weeks of

delay). She raised her head at 3 months, sat without help at

FIGURE 1
Clinical features of the patient and Sanger sequencing results of her family members. (A) Pedigree of the family. The arrow indicates the patient.
(B) The patient presented with typical facial features of Cornelia de Lange syndrome (CdLS). (C) The results of Sanger sequencing for the patient and
her parents. A heterozygous synonymous variant of NIPBL (NM_133433.4): c.6819G>T (p.Gly2273 = ) was detected in the patient while her parents
showed the wild-type variant.

TABLE 1 Diagnostic algorithm as suggested by the Consensus Statement.

Clinical features of CdLS Score Qiao et al. (2021) This study

Synophrys (HP:0000664) and/or thick eyebrows (HP:0000574) 2 - 2

Short nose (HP:0003196), concave nasal ridge (HP:0011120) and/or upturned nasal tip (HP:0000463) 2 - -

Long (HP:0000343) and/or smooth philtrum (HP:0000319) 2 - 2

Thin upper lip vermilion (HP:0000219) and/or downturned corners of mouth (HP:0002714) 2 - -

Hand oligodactyly (HP:0001180) and/or adactyly (HP:0009776) 2 - -

Congenital diaphragmatic hernia (HP:0000776) 2 - -

Suggestive Features -

Global developmental delay (HP:0001263) and/or intellectual disability (HP:0001249) 1 - 1

Prenatal growth retardation (<2 SD) (HP:0001511) 1 1 -

Postnatal growth retardation (<2 SD) (HP:0008897) 1 - 1

Microcephaly (prenatally and/or postnatally) (HP:0000252) 1 - 1

Small hands (HP:0200055) and/or feet (HP:0001773) 1 - -

Short fifth finger (HP:0009237) 1 - 1

Hirsutism (HP:0001007) 1 - -

Total score 1 8

Classic CdLS: Total Score ≥11 points, of which at least 3 are cardinal features; Non-classic CdLS: Total Score between 9 or 10 points, of which at least 2 are cardinal features; molecular

testing for CdLS, indicated; Total Score between four to eight points, of which at least 1 is cardinal feature; insufficient to indicate molecular testing for CdLS: Score <4 points.
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7 months, and walked without aid at 1 year and 8 months,

indicating developmental retardation. When the patient was

3 years and 7 months old, she showed an apparent short

stature with height of 85.5 cm (−3.8SD) and weight of 8 kg.

Other clinical symptoms included microcephaly (head

circumference: 43 cm), language and intelligence retardation,

short fifth finger, and dysmorphic facial features (inverted

triangular face, long black eyelashes, synophrys, low nose

bridge, wide eye distance, micrognathia, and long philtrum)

(Figure 1B; Table 1).

Whole exome sequencing and validation

Genomic DNA (gDNA) was extracted from peripheral blood

leukocytes of the patient and her parents according to standard

methods (QIAGEN, Germany).WES was performed with patient

samples, followed by data filtration and analysis as previously

described (Yu et al., 2021). The pathogenicity of the variants was

analyzed according to ACMG/AMP variant interpretation

standards and guidelines (Richards et al., 2015). SpliceAI

(Jaganathan et al., 2019) (https://github. com/Illumina/

SpliceAI), an in silico tool, was used to predict the effect of a

candidate variant on splicing. The identified heterozygous

synonymous variant of the NIPBL gene was validated in the

patient and her parents by Sanger bidirectional sequencing using

the forward primer 5′-ccattgagccagaacactagc-3′ and reverse

primer 5′- ttgcagtaatcataacccaagaga-3′. The NIPBL genomic

reference sequence was downloaded from the UCSC Genome

Browser (http://genome.ucsc.edu/, GRCh37/hg19, NM_

133433.4).

RNA transcript analysis by reverse
transcriptase-polymerase chain reaction
(RT-PCR) and quantitative real-time PCR
(qPCR)

Total RNA was extracted from the leukocytes of the patient

and her parents using the standard TRIzol method (Rio et al.,

2010). cDNA was synthesized from RNA using the RevertAid

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific,

United States). Two pairs of specific primers (A and B)

targeting exon 40 and nearby exons of the NIPBL gene were

designed to amplify the cDNA library (forward primer A:5′-tgc
ctttattcagcatccaagt-3′ and reverse primer A:5′-cttgttccgcatagcagg
ttct-3′; forward primer B:5′-ttgcctttattcagcatccaag-3′ and reverse

primer B:5′-ggactcgtcttgtctgaaaccc-3′) to obtain the target PCR

fragments. The RT-PCR products were separated by 1.5%

agarose gel electrophoresis to detect potentially altered

transcripts and were further analyzed by Sanger sequencing

via band separation on an agarose gel to determine the exact

sequence. To investigate the levels of full-length normal

transcripts and altered short transcripts in the patient,

different specific primers targeting these two transcripts were

designed for qPCR analysis. Primer WT could only amplify

normal transcripts (forward primer: 5′-ccatcatgcagctttatctcaa-
3′ and reverse primer: 5′-cttgttccgcatagcaggttct-3′), and primer

MUT could only amplify altered short transcripts (forward

primer: 5′-aaaacctccagacctacctacaaga-3′ and reverse primer:

5′-atatggcacacactgaggaaaca-3′). GAPDH was used as the

internal reference gene (forward primer: 5′-agccacatcgctcagaca
c-3′ and reverse primer: 5′-gcccaatacgaccaaatcc-3′).

Results

The patient showed synophrys and thick eyebrows, long and

smooth philtrum, global developmental delay, intellectual

disability, microcephaly, short fifth finger, and postnatal

growth retardation (<2 SD) (Figure 1B; Table 1). The patient

was clinically diagnosed with CdLS (total clinical score: eight

points, Table 1) following the guidelines of international scoring

criteria for CdLS (Kline et al., 2018). However, specific molecular

tests are required.

During the filtering and analysis of candidate disease-causing

variants performed using WES, including all those identified in

known CdLS genes, no pathogenic or likely pathogenic variants

that could explain the phenotype of the patient were identified.

However, we noticed a heterozygous synonymous variation

located in a deep region of exon 40 in the NIPBL gene (chr5:

37049268; c.6819G>T; p. Gly2273 = ), which has not been

previously reported. Validation using Sanger sequencing

indicated that the variation occurred de novo in the patient

(Figure 1C). In addition, the variation was not found in the

1000 Genomes, ExAC, genomAD, and dbSNP databases. And we

found a synonymous variant at the same genomic position, but

with a different nucleotide change (G>A) is reported on

gnomAD (allele frequency 0.000003979) (https://gnomad.

broadinstitute.org/variant/5-37049268-G-A?dataset=gnomad_

r2_1). According to the ACMG/AMP variant interpretation

standards and guidelines (Richards et al., 2015), this variant

was characterized as that of uncertain significance based on the

above evidence (PM2 and PM6).

The c.6819G>T synonymous variant was further predicted to

influence the NIPBL gene splicing by activating a new donor site,

according to SpliceAI analysis. Subsequently, RT-PCR analysis

confirmed the presence of two types of NIPBL transcripts in the

patient: one was the normal longer transcript (418 bp) and the

other was the altered shorter transcript (281 bp). In contrast, only

the normal longer transcript (418 bp) was present in the parents

(Figure 2A). To investigate the exact sequences of the different

transcripts, RT-PCR products of the patient and her parents were

analyzed by Sanger sequencing. As expected, the shorter

transcript (281 bp) in the patient was derived from the

mutated allele, whereas the longer sequence (418 bp) in the
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patient and her parents represented the wild-type transcript.

Sequence analysis confirmed that the c.6819G>T variation in the

deep region of exon 40 generated a non-canonical splice donor,

resulting in a 137 bp deletion at the 3’ end of exon 40 (Figures

2C,D). The partial loss of exon 40 presumably altered the

downstream open reading frame of NIPBL, further generating

multiple preterm termination codons. In addition, according to

the ExAC database, the probability of loss-of-function

intolerance (pLI) is 1, indicating that NIPBL is highly

intolerant to loss-of-function variations of heterozygosity.

These findings provide additional crucial evidence (PVS1) to

support the interpretation of the identified variant as pathogenic

according to the ACMG/AMP variant interpretation standards

and guidelines. This variant was submitted to ClinVar (ID:

SCV002586369).

The patient is heterozygous for a synonymous c.6819G>T
variant. Unexpectedly, as shown by agarose gel electrophoresis,

the ratio of the transcription levels of the wild-type longer

transcript to the altered shorter transcript was not exactly 1:1

(Figure 2A). Further qPCR analysis targeting these two

transcripts showed that the transcription ratio of normal full-

length transcripts to altered shorter transcripts was

approximately 5:1 (Figure 2B).

Discussion

Cornelia de Lange syndrome (CdLS) is a rare congenital

developmental disorder with multi-organ system involvement

and genetic heterogeneity. The primary symptoms include facial

dysmorphisms, such as long and thick eyelashes, synophrys and

hypertrichosis of the brows, thin lips with downturned corners, a

depressed nasal bridge with anteverted nares, widely spaced teeth

and micrognathia, hirsutism, cutis marmorata, growth

retardation, retarded psychomotor development, hand

oligodactyly and/or hand foot, and other major deformities

FIGURE 2
RNA transcript analysis performed using RT-PCR, qPCR, and Sanger sequencing. (A) Agarose gel electrophoresis showing RT-PCR results using
primer pairs A and B targeting the exonic regions flanking the position of the NIBPL de novo synonymous variant (c.6819G>T (p.Gly2273 = ) in exon
40. Green arrows point to normal transcripts (wild-type transcript), and red arrows point to altered short transcripts (variant transcript). “C” represents
the patient, “F” represents the father of the patient, “M” represents the mother of the patient, “N” represents the negative control derived using
the gDNA of the patient as an amplification template, “A” represents the pair A, and “B” represents the pair B amplification primer (B) The transcription
level of wild-type full-length transcript to alteredmutant short transcript inNIPBL. WT represents the unique sequence of wild-type transcript, which
can only specifically amplify the wild-type transcript; MUT represents the unique sequence of the altered short mutant transcript, which can only
specifically amplify the abnormal transcript attributed to the c.6819G>T variant. (C) Patterns and sequences of wild-type transcript and altered short
transcript attributed to variation. The upper left represents the splicing pattern of wild-type cDNA, and the upper right represents the exact sequence
of wild-type cDNA splicing. The blue horizontal line represents the omitted wild-type sequence. The lower left represents the altered splicing pattern
of cDNA attributed to variation (The blue dashed box indicates 137 bp deletion at the 3′ end of exon 40 in NIPBL), and the lower right represents the
exact sequence obtained after altered splicing of cDNA attributed to variation. The vertical black dotted line indicates the sequence position of
abnormal splicing deletion (D) The exact sequence of cDNA amplified by primer Pair A. The blue underlined sequence indicates the deletion of a
137 bp sequence. The black font represents the partial base sequence of exon 40, the blue font represents the base sequence of exon 40, and the
green font represents the partial base sequence of exon 41. The red base G represents the mutation site.
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(Kline et al., 2018; Li et al., 2020). Herein, we report a patient with

microcephaly, long black eyelashes, synophrys, low nose bridge,

wide eye distance, micrognathia, long philtrum, growth

retardation, and intellectual impairment. The clinical

symptoms of the patient (clinical score: 8 points) partially

overlapped with those of patients with typical CdLS (clinical

score: ≥11 points) (Table 1) (Kline et al., 2018). Genetic analysis
of genes related to CdLS, such as NIPBL, is essential for disease

diagnosis. Truncating variants of NIPBL primarily lead to typical

CdLS with more severe clinical symptoms, such as typical facial

features, severe developmental and cognitive retardation, severe

growth retardation, and structural abnormalities of the limb and

other organs (Yan et al., 2006; Ansari et al., 2014). Missense

mutations are mainly associated with milder phenotypes,

characterized by the absence of limb abnormalities and

involvement of mild developmental and growth retardation

(Bhuiyan et al., 2006; Selicorni et al., 2007).

Few studies have focused on the pathogenic mechanisms of

these unusual variations, particularly synonymous variants. This

is mainly because synonymous variants are often considered

benign and filtered out in routine clinical analysis, or they cannot

be characterized as pathogenic or by a pathogenic grade

according to the ACMG/AMP guidelines (Richards et al.,

2015), which is of little significance for clinical diagnosis.

However, accumulating evidence has shown that some specific

synonymous variations can lead to diseases by influencing the

mRNA stability and alternative splicing of exons (Nackley et al.,

2006; Sauna and Kimchi-Sarfaty, 2011), which should garner

more interest. To date, only one fetal case with a NIPBL

synonymous variant has been reported, providing limited

phenotypic information related to a specific variant (Qiao

et al., 2021). This is presumably a result of the difficulty in

recognizing fetal features in utero or the late onset of clinical

manifestations, which do not appear during the early

developmental stage. The case we report here provides more

comprehensive phenotypic information for CdLS patients

(Table 1) with synonymous variants of the NIPBL gene,

facilitating further studies on the relationship between

synonymous variants and clinical phenotypes.

Alternative splicing mediated by synonymous variations is

primarily observed several bases upstream or downstream of the

exon-intron junction. These boundary sequences of exon-introns

are the main recognition sites of the spliceosome (Krawczak et al.,

2007), providing canonical splicing donors and receptors, which are

typically highly conserved (Anna and Monika, 2018). Most variants

in these typical loci can change the splicing of exons and introns,

resulting in specific diseases. Hence, to a large extent, they are

unlikely to be ignored in routine analysis, as in the previously

reported CdLS case with a synonymous variant at the last base of

exon 27 in the NIPBL gene (Qiao et al., 2021). Diseases caused by

synonymous variations in deep exonic or introns are uncommon.

The patient with CdLS reported here carries a novel heterozygous

synonymous variant of NIPBL (chr5:37049268; c.6819G>T;

p. Gly2273 = ) located in the middle region of exon 40. The

results of RT-PCR analysis implied that the variation activated a

cryptic donor splice site in NIPBL, resulting in a 137 bp deletion at

the 3’ end of exon 40 (Figures 2C,D), which is consistent with the

findings of a previous study (Olinger et al., 2021). This deletion may

alter the downstream open reading frame of NIPBL, further

generating multiple preterm termination codons. Interestingly,

agarose gel electrophoresis indicated different transcription levels

of the wild-type and altered short transcripts (Figure 2A). This was

further confirmed by qPCR analysis, which showed an approximate

5:1 ratio for the two transcripts (Figure 2B). The decreased levels of

the mutant transcript may be attributed to nonsense-mutation

mediated decay. Decreased expression or activity of the NIPBL

protein largely contributes to CdLS (Tonkin et al., 2004; Hulinsky

et al., 2005; Zuin et al., 2017), suggesting that haploinsufficiency of

NIPBL may be the pathogenic mechanism underlying CdLS.

However, more functional studies are required to further explore

the specific mechanism.

The patient in this study showed relatively milder symptoms

than typical CdLS features, which may be explained by the

relatively lower transcription level of the altered short

transcript (less than 20%) (Figure 2B). This is consistent with

previous findings showing that patients with more severe

phenotypes have low levels of wild-type NIPBL, while those

with milder symptoms have high levels of wild-type NIPBL

(Kaur et al., 2016).

The accurate molecular genetic diagnosis of patients with CdLS

is of great significance. However, 30% of patients with CdLS are not

clearly diagnosed (Mannini et al., 2013; Boyle et al., 2015). Currently,

the clinical practice of sequence variation interpretation mainly

focuses on missense, nonsense, or typical splice variants

(Richards et al., 2015). However, synonymous variations are

usually considered “silent” in most cases because they do not

alter the translated protein sequence (Gaither et al., 2021) to

some extent, contributing to a missed diagnosis in some

conditions. This may explain the negative findings in the WES

analysis for the patient we reported when she was referred to other

clinics, where the synonymous variation in NIPBL was likely to be

ignored. To the best of our knowledge, this is the first report of a

CdLS case with a synonymous variant in the deep exon region of the

NIPBL gene. Furthermore, the identified variant enriched the

mutational spectrum of NIPBL and deepened our understanding

of the roles of synonymous variations in CdLS. The effects of

synonymous variations on diseases should be examined in detail,

and more caution is required when annotating these variants in

routine genetic analysis.
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