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Esophageal cancer (EC) is recognized as one of themost commonmalignant

tumors in the word. Based on the biological process of EC occurrence and

development, exploring molecular biomarkers can provide a good guidance

for predicting the risk, prognosis and treatment response of EC. Proteomics

has been widely used as a technology that identifies, analyzes and

quantitatively acquires the composition of all proteins in the target

tissues. Proteomics characterization applied to construct a prognostic

signature will help to explore effective biomarkers and discover new

therapeutic targets for EC. This study showed that we established a

8 proteins risk model composed of ASNS, b-Catenin_pT41_S45,

ARAF_pS299, SFRP1, Vinculin, MERIT40, BAK and Atg4B via multivariate

Cox regression analysis of the proteome data in the Cancer Genome

Atlas (TCGA) to predict the prognosis power of EC patients. The risk

model had the best discrimination ability and could distinguish patients in

the high- and low-risk groups by principal component analysis (PCA)

analysis, and the high-risk patients had a poor survival status compared

with the low-risk patients. It was confirmed as one independent and superior

prognostic predictor by the receiver operating characteristic (ROC) curve

and nomogram. K-M survival analysis was performed to investigate the

relationship between the 8 proteins expressions and the overall survival.

GSEA analysis showed KEGG and GO pathways enriched in the risk model,

such as metabolic and cancer-related pathways. The high-risk group

presented upregulation of dendritic cells resting, macrophages M2 and

NK cells activated, downregulation of plasma cells, and multiple activated

immune checkpoints. Most of the potential therapeutic drugs were more

appropriate treatment for the low-risk patients. Through adequate analysis

and verification, this 8 proteins risk model could act as a great prognostic

evaluation for EC patients and provide new insight into the diagnosis and

treatment of EC.
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Introduction

International Agency for Research on Cancer (IARC)

global statistical report showed that in 2020, the number of

new cases of esophageal cancer (EC) was 604,000, ranking 8th

in the world. There were 544,000 new deaths from EC, ranking

6th in the death spectrum of malignant tumors worldwide.

The incidence of EC showed obvious regional differences,

which is mainly distributed in Asia and Africa, and higher in

male population than that in female population (Sung et al.,

2021). Most EC patients with unobvious early symptoms are

diagnosed with advanced stage or distant metastases and have

a poor prognosis. According to relevant studies, the 5-year

survival rate of early patients can be reached 70% after

effective treatment, and the 5-year survival rate of

advanced patients is only 10%–30% (Kelly, 2019; Han et al.,

2022). Therefore, the research of EC has great social value and

profound practical significance.

Proteomic studies, an important part of the post-gene era,

can analyze protein expression levels, post-translational

modifications and protein-protein interactions in tissues

and cells on a large scale. By comparing the proteome

between normal and pathological individuals, some

“disease-specific protein molecules” could be explored,

which can provide molecular markers for early diagnosis or

become molecular targets for new drug design of disease

(Vogel and Marcotte, 2012; Suhre et al., 2021). In-depth

understanding of the causes and mechanisms of tumors

and finding tumor markers for early diagnosis have become

the key to realize early diagnosis and treatment of tumors, and

also been a hot spot in basic and clinical research of tumors.

High-throughput proteomic analysis is used as the research

technique to deeply explore the changes of protein expression

during tumorigenesis and progression, which provides new

ideas and new methods for the screening of tumor protein

markers, the identification of clinical drug targets and the

exploration of the molecular mechanism of tumors (Hanash

et al., 2008; Tan et al., 2012). With the continuous

accumulation of clinical information of EC, the data of EC

is constantly improved. The effective use of EC medical data

can help improve the diagnosis and therapy of EC patients,

which plays an important role in promoting the development

of intelligent medical treatment of EC (Triantafyllou and

Wijnhoven, 2020). In this study, we aimed to construct a

protein prediction risk model and evaluate its prognostic

power for EC patients in this study, which could be helpful

to discover new molecular biomarkers and select effective

treatments for patients.

Materials and methods

Data collection

The proteome profiling containing 126 EC cases detected by

Reverse Phase Protein Array (RPPA), and clinical data from

185 EC patients were obtained from the Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/repository) on

13 August 2022. After matching the proteome data and clinical

data, we finally obtained 126 intersecting cases for further study.

Screening prognosis-related proteins

Volcano plot of differentially expressed prognosis-related

proteins (p < 0.05) between EC and normal tissues in the

TCGA database was constructed via “dplyr”, “ggplot2”,

“ggrepel” R packages. For univariate Cox regression analysis,

forest plot was applied to screen prognosis-related proteins based

on the survival state of EC patients (p < 0.05) via “survival”,

“caret” and “glmnet” R packages. The least absolute shrinkage

and selection operator (Lasso) regression analysis was used to

further screen significant proteins by “survival”, “caret” and

“glmnet” R packages (10-fold cross-validation, 1,000 cycles,

p = 0.05).

Construction and verification of the
protein prognostic risk model

We randomized intersecting cases (group number = 1) into

train and test groups with a 1:1 ratio. The protein prognostic risk

model was constructed via multivariate Cox regression analysis

in the train group via “survival”, “caret”, “glmnet”, “survminer”

and “timeROC” R packages. The model formula was as follows:

risk score = (Coeffcient Protein1 × Protein1 expression) +

(Coeffcient Protein2 × Protein2 expression) +. . .+ (Coeffcient

Proteinn × Proteinn expression), Where Coefcient represented

the regression coefficient of multivariate Cox regression analysis

for each protein. Based on the median risk score, all EC patients

in the train and test groups were divided into the high- and low-

risk groups. The overall survival, progression free survival, risk

score and survival status of the high- and low-risk patients were

analyzed via “survminer” and “survival” R packages. The heat

maps of protein expressions were created by “pheatmap” R

package. Principal component analysis (PCA) was used to

distinguish the high-risk patients and low-risk patients by the

“scatterplot3d” R package.
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Evaluation of the protein prognostic risk
model

To evaluate the prognostic levels of EC patients grouped by the

risk model and clinical features, univariate and multivariate Cox

regression analyses and the receiver operating characteristic (ROC)

curves in the train, test and entirety groups were performed by

“survival”, “survminer” and “timeROC” R packages. The overall

survival of high- and low-risk EC patients separated into different

groups according to clinical characteristics were analyzed by

“survival”, “survminer” R packages. The method of overall survival

analysis according to protein expressions was the same as above.

Nomogram and calibration

The data of age, gender, tumor grade, tumor stage, T stage, M

stage, N stage and risk model were employed to construct a

nomogram for the 1-, 2-, 3-year overall survival. According to the

status of each EC patient, the point corresponding to each factor

was added up, and the survival rates of 1-, 2- and 3- year could be

predicted by the total points. Correction curves statistically

analyzed by Hosmer-Lemeshow test were performed to verify

the accuracy and consistency of the nomogram by “survival”,

“regplot” and “rms” R packages.

Gene set enrichment analyses analysis and
protein interaction network

Through “limma”, “org.Hs.eg.db”, “cluster Profiler” and

“enrichplot” R packages, the significantly enriched KEGG and GO

pathways in the risk groups were explored by screening the gene set

(c2. cp.kegg.symbols.gmt; c5. go.symbols) in gene set enrichment

analyses (GSEA) 4.2.3 software (NOM p value < 0.05 and |NES| >
1.5). A circos plot was made to show the network of interactions

among the proteins in the risk model by “corrplot” and “circlize”

packages. Sankey diagram created by “survminer” and “survival” R

packages visualized the mutually regulating relationship between the

protein prognostic risk model and other proteins.

Tumor immunology and exploration of
potential therapeutic agents

To investigate the relationship between the risk model and

tumor immune microenvironment, we calculated the infiltration

values of EC dataset in TCGA through CIBERSORT (Chen et al.,

2018). Immune cell infiltration status and immune checkpoints

activation in the risk groups were analyzed by “limma”, “ggpubr”,

“ggpubr” and “ggplot2” R packages, and radar plot was

constructed by “fmsb” R package. According to Genomics of

Drug Sensitivity in Cancer (GDSC, https://www.cancerrxgene.

org/), the “pRRophetic”, “limma”, “ggpubr” and “ggplot2” R

packages were applied to predict therapeutic compounds

depending on half-maximal inhibitory concentration (IC50) of

each EC patient.

Results

Screening prognostic-related proteins and constructing the

risk model Schematic diagram of the research process was

presented in Figure 1. The proteome profiling containing

126 EC cases (Supplementary Table S1) and clinical data from

185 EC patients (Supplementary Table S2) were received from

TCGA database. After matching the two databases, we finally

obtained 126 intersecting cases (Supplementary Table S3).

Univariate Cox regression analysis showed 20 proteins (p < 0.

05) significantly associated with survival time of EC patients

(Figure 2A), all the significantly expressed proteins were

displayed in a volcano plot, including 10 high risk proteins

(Hazard ratio > 1) and 10 low risk proteins (Hazard ratio < 1,

Figure 2B; Supplementary Table S4). 14 proteins related to

survival time and survival state of EC patients were extracted

through Lasso regression analysis on these 20 proteins (Figures

2C,D; Supplementary Table S5). To improve the accuracy of the

protein prognostic risk model, we randomized 126 intersection

cases (entire group, n = 126) into train group (n = 63) and test

group (n = 63) with a 1:1 ratio. Subsequently, we constructed the

prognostic risk model composed of 8 proteins (ASNS,

b-Catenin_pT41_S45, ARAF_pS299, SFRP1, Vinculin,

MERIT40, BAK and Atg4B) by multivariate Cox analysis in

the train group (Table 1). The risk score = ASNS × (0.872) +

b-Catenin_pT41_S45 × (-1.282) + ARAF_pS299 × (5.935) +

SFRP1 × (2.947) + Vinculin × (0.809) + MERIT40 × (−2.095) +

BAK × (0.748) + Atg4B × (2.625). The high-risk group and low-

risk group were established depending on the median risk score.

Evaluation of the protein prognostic risk
model based on the clinical characteristics

In 2 expression profiles (whole protein expression profile and

the protein prognostic risk model), PCA was applied to examine

the differences between the high- and low-risk groups

(Figure 3A). The result showed that the risk model had the

best discrimination ability and could perfectly distinguish

patients in the high- and low-risk groups. Next, the overall

survival (Figure 3B) and progression free survival (Figure 3C)

analyses in the train, test and entire groups indicated the high-

risk EC patients had a worse prognosis than the low-risk EC

patients. The relevant expressions of 8 proteins showed that

ASNS, ARAF_pS299, SFRP1, Vinculin, BAK and Atg4B were

highly expressed in the high-risk group, while

b-Catenin_pT41_S45 and MERIT40 were highly expressed in

Frontiers in Genetics frontiersin.org03

Liu et al. 10.3389/fgene.2022.1055202

https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/repository?filters=%7B
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1055202


the low-risk group (Figure 4A). The distribution of risk score and

survival time of EC patients in the train, test and entire groups

were compared between the high- and low-risk groups, all results

demonstrated the patients with high risk had worse prognosis

(Figures 4B,C).

Whether this protein risk model is an independent and efficient

prognostic predictor for EC patients needs further in-depth

verification. Compared with clinical features, univariate Cox

analysis showed the hazard ratios of the risk score were 1.249,

1.029 and 1.016 respectively in the train, test and entire groups (all

p < 0.05, Figure 5A), and 1.247, 1.021 and 1.015 respectively in

multivariate Cox analysis (all p < 0.05, Figure 5B). The ROC curve,

which of the outcome need to be explained by the area under the

ROC curve (AUC), was used to assess survival rates of EC patients.

At the 1-year ROC, the riskmodel in the train, test and entire groups

were 0.783, 0.644 and 0.728, respectively, superior to other clinical

factors (Figure 5C). The 1-, 2-, 3-year AUC were 0.783, 0.848 and

0.853 in the train group, 0.644, 0.684 and 0.759 in the test group, and

0.728, 0.764, and 0.805 in the entire group, respectively (Figure 5D).

Next, based on clinical features and the risk model, a nomogram

predicted the 1-, 2-, 3-year survival rates of EC patients (0.897,

0.455 and 0.234 respectively, Figure 6A). The calibration plot proved

the accuracy of the nomogram for the survival prediction

(Figure 6B).

Further more, stratifcation analysis investigated the prognostic

signifcance of the risk model in subgroups. We analyzed the overall

survival of EC patients classified by clinical characteristics (age,

gender, tumor grade and tumor stage) between the high- and low-

risk groups. It revealed that the high-risk patients presented a shorter

overall survival than the low-risk patients (p < 0.05) except for the

classification of Female probably due to the small number of EC

patients (Figure 7). All of the above results confirmed that the

8 proteins risk model could be one independent and superior

biomarker for prognosis prediction of EC patients.

Overall survival analysis of esophageal
cancer patients grouped by different
expressions of 8 proteins

K-M survival analysis was performed to research the

correlation between the expressions of the 8 proteins and

FIGURE 1
Schematic diagram of the research process.
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overall survival of EC patients. All samples were divided into

the high-expression and low-expression groups according to

the medium value of protein expression. As shown in

Figure 8, the EC patients with high expressions of

ARAF_pS299, ASNS, Atg4B, BAK, Vinculin and

SFRP1 proteins had poorer survival time (all p < 0.05),

while the overall survival of EC patients was better with

the high expressions of MERIT40 (p < 0.05) and

b-Catenin_pT41_S45 (although p = 0.062).

Gene set enrichment analyses analysis and
protein interaction network

To investigate the biological functions of the protein

prognostic risk model, the significantly enriched KEGG

pathways in the risk groups were explored by screening the

gene set (c2.cp.kegg.symbols.gmt) in gene set enrichment

analyses (GSEA) 4.2.3 software. The top 5 KEGG pathways

mainly enriched in the high-risk group were Hedgehog

FIGURE 2
Screening prognostic-related proteins in EC from TCGA database. (A) Study of the correlation between 20 prognostic-related proteins and
overall survival of EC patients by univariate Cox regression analysis. (B) The upregulated and downregulated prognostic-related proteins in volcano
plot. (C,D) The Lasso regression analysis of these 20 proteins.
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signaling pathway, ECM receptor interaction, Regulation of actin

cytoskeleton, Focal adhesion and Pathways in cancer, while

Retinol metabolism, Linoleic acid metabolism, Complement

and coagulation cascades, Arginine and proline metabolism,

Arachidonic acid metabolism were the top 5 KEGG pathways

mainly enriched in the low-risk group (all p < 0.05, |NES| > 1.5,

Figure 9A; Supplementary Table S6). The top 5 GO pathways

mainly enriched in the high-risk group were Axon development,

Cell morphogenesis involved in neuron differentiation,

Morphogenesis of an epithelium, Regulation of neuron

projection development and Skeletal system development,

while Digestion, Triglyceride metabolic process, Apical part of

cell, Apical plasma membrane and Brush border were the top

5 GO pathways mainly enriched in the low-risk group (all p <
0.05, |NES| > 1.5, Figure 9B; Supplementary Table S7). The

interaction relationships among 8 prognostic proteins in the risk

model were shown in Figure 9C. The mutually regulated

connection between those prognostic proteins and other

proteins expressed in the EC was visualized in Sankey

diagram (Figure 9D).

Tumor immunology and exploration of
potential therapeutic agents

Immune cells can recognize tumorigenesis factors secreted by

tumor cells and infiltrate into the tumor microenvironment to

cooperatively regulate tumor growth, immune escape, invasion

and metastasis (Sabado et al., 2017; Galluzzi et al., 2020). As

shown as Figures 10A,B, through comparing with the low-risk

group, the high-risk group presented upregulation of dendritic

cells resting, macrophages M2 and NK cells activated, and

downregulation of plasma cells via GSEA analysis

(Supplementary Table S8). Blocking immune checkpoints has

become one of many effective strategies to activate antitumor

immunity. Our analysis indicated that most of immune

checkpoints (TNFRSF4, TNFSF4, CD200R1, CD86, CD276,

NRP1) were activated in the high-risk group, while LGALS9,

HHLA2 and TNFRSF14 presented high activity in the low-risk

group (Figure 11A). It implied that appropriate checkpoint

inhibitors could be chosen as a treatment for EC patients

depending on the risk model. Further more, the prediction of

potential therapeutic drugs showed that AMG.706, AZD.2281,

AP.24534, Midostaurin, A.770041, Vorinostat, Gemcitabine and

CMK recommended in clinical guidelines were more appropriate

treatment for the low-risk patients based on the IC50 values of

different risk groups (Figure 11B). These studies could provide an

effective and excellent strategy for clinical therapy of EC patients

and promoted the development of cancer immunotherapies.

Discussion

Compared with genomics and transcriptomics,

proteomics is more efficient in identifying proteins and

pathways that are dysregulated in cells under physiological

and pathological conditions, helping to discover disease-

specific mutations and epigenetic changes (Duarte and

Spencer, 2016). Proteomic analysis of human cells, tissues

and blood can provide a valuable strategy for exploring the

complex biological processes of human beings, which is

helpful for understanding how genetic and non-genetic

factors affect the outcome of diseases, so as to reveal

biological pathways and biomarkers related to diseases and

discover new drug targets for diseases (Suhre et al., 2021).

Genomic analysis has broadened our understanding of the

molecular pathology in EC (Hanash et al., 2008; Tan et al.,

2012; Vogel and Marcotte, 2012; Song et al., 2014; Cancer

Genome Atlas Research Network et al., 2017; Suhre et al.,

2021). Nevertheless, proteomic analysis provides new insights

into the biology of this malignancy. So far, only two studies

have used proteomic data to establish prognostic risk models

for stomach adenocarcinoma and breast cancer (Huang et al.,

2022; Zheng et al., 2022). In this study, construction of a

protein risk signature proposes a new method to evaluate its

prognostic power for EC.

TABLE 1 The protein prognostic risk model.

Protein Coeffcient HR HR.95L HR.95H p value

ASNS 0.872 1.929 1.115 3.332 0.021

b-Catenin_pT41_S45 −1.282 0.326 0.113 0.940 0.038

ARAF_pS299 5.935 23.396 1.168 468.693 0.039

SFRP1 2.947 11.376 1.013 127.779 0.049

Vinculin 0.809 1.883 1.053 3.369 0.033

MERIT40 −2.095 0.152 0.037 0.615 0.008

BAK 0.748 2.249 1.092 4.630 0.028

Atg4B 2.625 13.093 1.949 87.987 0.008

HR, hazard ratio; L, low; H, high.
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We obtained 20 proteins differentially expressed between EC

and normal tissues, in which 8 proteins (ASNS,

b-Catenin_pT41_S45, ARAF_pS299, SFRP1, Vinculin,

MERIT40, BAK, Atg4B) were screened out to construct the

protein prognostic risk model via univariate, multivariate Cox

and Lasso regression analyses. Combined with the clinical

information, we further comprehensively assess the reliability

of the protein prognostic risk model via PCA, univariate,

multivariate Cox regression analyses, ROC curves and the

constructed nomogram, which proved the risk model as an

independent and superior biomarker for prognosis prediction

of EC patients.

Asparagine synthetases (ASNS) is a catalytic enzyme

encoding aspartic acid biosynthesis (Richards and Schuster,

1998), which of the transcription is highly regulated by the

cellular trophic state. Early studies have shown that

upregulated expression of ASNS could be related to the

resistance of leukemia cells to L-aspartase, which is widely

used as an active component in the treatment of pediatric

acute lymphocytic leukaemia and some types of acute myeloid

leukaemia (Zwaan et al., 2002). Similarly, ASNS has been

considered as potent biomarker for predicting L-aspartase

activity in ovarian cancer cells (Zhang et al., 2013). In

addition, it has been shown that ASNS could promote the

FIGURE 3
Survival analysis of the risk model. (A) PCA analysis for whole protein expression profile and the risk model. The overall survival (B) and
progression free survival (C) analyses between the high- and low-risk groups in the train (n = 63), test (n = 63) and entire (n = 126) sets.
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proliferation and migration abilities of EC cells in the absence

of glucose, and clinical data show that EC tissues from the

patients with advanced stage or distant metastasis exhibit high

level of ASNS expression, which is suggested that ASNS may

be a potential target for EC treatment (Fang et al., 2020).

b-Catenin_pT41_S45 (β-catenin/CTNNB1) is one

member of the catenin family. CTNNB1, as a key

component of E-cadherin/catenin complex, mainly acts as

the adhesion effect between cells and cytoplasm.

CTNNB1 also plays an important role in Wnt signaling

pathway. As the key point of classical Wnt signaling

pathway, CTNNB1 gene can bind with transcription factors

TCF/LEF, thus forming a complex to promote the up-

regulation of target genes, which finally causes a series of

biological changes in cells and tissues (Nabais et al., 2003; Wu

et al., 2016a). Through activation of Wnt signaling pathway,

CTNNB1 involves in the early process of malignant tumors

(Spitzner et al., 2021; Yu et al., 2021), including liver cancer,

gastric cancer and EC with high incidence, which are all

present in ectopic expression of CTNNB1.

ARAF located on human chromosome band

Xp11.3 belongs to the serine/threonine protein kinase gene

family (Rauch et al., 2010). Similar to other RAF family

members, ARAF transduces mitogen-activated protein

kinase (MAPK) signaling, thus promoting cell proliferation,

differentiation, migration and survival. The RAS-RAF-MEK-

ERK cascade has been identified as a therapeutic target in

various cancers (Lee and States, 2000; Miura et al., 2014).

Early studies on the RAF family focus on B-Raf and C-Raf

kinases, resulting in little understanding of the biological

function of ARAF. Recent studies have indicated that

ARAF required for MAPK activation enhances the

migration and invasive ability of various cancer types, such

as colon cancer, pancreatic cancer and breast cancers (Lee

et al., 2010; Mooz et al., 2014). In addition, ARAF mutation

has been discovered in lung cancer, and sorafenib, the RAF-

targeted kinase inhibitor, improves the prognosis of advanced

lung cancer patients (Imielinski et al., 2014). These findings

suggest that ARAF may be a therapeutic target in numerous

cancers.

Secreted frizzled-related protein 1 (SFRP1), a member of the

SFRP family that contains a cysteine-rich domain, acts as a

soluble modulator of Wnt signaling by directly interacting

with Wnt (Nakajima et al., 2009), and plays a role in

FIGURE 4
Prognosis evaluation of the established protein prognostic risk model. Heat maps of 8 prognostic-related proteins expressions (A), the
distribution of risk scores (B) and the survival time (C) between the high- and low-risk groups in the three sets.
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FIGURE 5
In-depth assessment of the protein prognostic risk model. (A,B) Univariate and multivariate Cox regression analyses of clinical features and the
risk model with overall survival in the three sets. ROC analysis for 1 year survival rate of the risk model, age, gender, grade and stage (C), and the risk
model at 1-, 2-, 3-year survival time (D).
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regulating the growth and differentiation of specific tumor cells.

Compared with normal tissues, the SFRP1 promoter is found to

be highly methylated in EC tissues, resulting in greatly reduced

expression level of SFRP1. The detection of circulating

methylated SFRP1 in the serum may be a useful biomarker

for EC patients (Meng et al., 2011).

Vinculin is an abundant, prominent and well-characterised

F-actin binding protein localised in focal adhesions as well as in

cell-adherence junctions (Goldmann et al., 2013). The change of

Vinculin protein expression has an important effect on the

physiological function of the body (Chen et al., 2002; Mierke

et al., 2008; Möhl et al., 2009). Vinculin is a major player in cell-

matrix adhesion and intercellular adhesion, regulates the migration

and invasion of tumor cells (Liu et al., 2007). It is reported that

Vinculin presents low expression in non-small cell lung cancer,

prostate cancer and colon cancer, and is closely related to prognosis.

The Vinculin gene acts as a tumor suppressor gene and affects the

occurrence, development, metastasis and invasion of tumors

(Gkretsi and Stylianopoulos, 2018).

MERIT40 (BABAM1), as a RAP80-associated protein, is

named as an important component of BRISC

(Brcc36 isopeptidase complex) and BRCA1 (BReast-CAncer

susceptibility gene 1) DNA damage repair complex A. When

DNA damage occurs, BABAM1 helps to locate the repair

complex to the site of damage, stabilizes the structure of the

complex to cause ubiquitination at the site of damage, and trigger

cell cycle G2 arrest (Feng et al., 2009; Nikkilä et al., 2009; Shao

et al., 2009). Based on the genetic screening of clinical cases and

the results of high-throughput gene sequencing, the single

nucleotide polymorphisms caused by the nucleotide sequence

mutation of BABAM1 on the chromosome had a great

correlation with the incidence of breast cancer. It implies

BABAM1 plays a role in the occurrence and progression of

breast cancer (Caswell et al., 2015).

FIGURE 6
Construction of a nomogram. (A,B)Nomogram and calibration plot for predicting 1-, 2-, 3-year survival rate of EC patients. OS, overall survival.
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FIGURE 7
The overall survival of EC patients grouped according to clinical characteristics between the high- and low-risk groups.
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Bak (Bcl-2 homologous antagonist/killer), is a newly

cloned pro-apoptotic member of the Bcl-2 (B-cell

lymphoma-2) family. BAK protein binds to Bcl-XL, another

member of the Bcl-2 family, through its BH3 domain, which

induces the release of Ced-4 homolog proteins and caspase

precursors, and Cytochrome C escape from mitochondria,

FIGURE 8
The overall survival analysis of the 8 proteins expressions in EC patients.
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FIGURE 9
Pathway enrichment analysis and protein interaction network. (A,B) The top 5 KEGG and GO pathways enriched in the high- and low-risk
groups. (C) The interaction relationships among 8 prognostic proteins in circos plot. (D) Analysis of co-expressed proteins in EC in sankey diagram.
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eventually leads to caspase-3 activation and cleavage of

specific protein substrates to induce apoptosis (Luna-

Vargas and Chipuk, 2016). Studies have found that the Bak

gene is expressed in all normal cells, but its expression is out of

control in most cancer cells (Luo et al., 2015; Liu et al., 2021).

For the mechanism of cancer drug therapy, Bak gene

FIGURE 10
The correlation between immune cells and the risk groups. (A) Activated immune cells in the high- and low-risk groups. (B)Radar plot. *p < 0.05;
**p < 0.01.
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expression is significantly increased in the apoptosis induced

by Sulinade, Perillyl alcohol, Butyric acid, interferon and

many other drugs (Anis et al., 2020; Li et al., 2020).

Therefore, BAK may become an important effector gene in

tumor gene therapy.

Atg4B, as a member of Atg4 family, exerts a vital role in

autophagosome production and maturation. Compared

with other family members, Atg4B has stronger enzyme

activity and a wider range of substrate recognition, which

is the most important enzyme in regulating autophagy (Li

et al., 2011). Numerous studies have shown that regulation

of Atg4B expression can affect the occurrence and

development of cancer. For example, ATG4B is highly

expressed in lung cancer tissues (Wu et al., 2016b);

targeting Atg4B inhibits autophagy and reduces tumor

cell survival in chronic myeloid leukemia (Rothe et al.,

2014); overexpression of the dominant negative mutant

Atg4BC74A in prostate cancer inhibits cell proliferation and

enhances chemotherapeutic drug sensitivity (Tran et al.,

2013).

Based on previous studies, all of the prognosis-related

proteins play a role in various tumors to a certain extent. Our

study reveals the prognostic role of these proteins as a risk

model in EC. To further explore the effective potential

FIGURE 11
Investigation of tumor immunotherapy. (A) The analysis of immune checkpoints in the risk model. (B) The prediction of potential therapeutic
drugs. *p < 0.05; **p < 0.01; ***p < 0.001.
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therapies of EC, we found three types of immune cells

(Dendritic cells resting, macrophages M2 and NK cells

activated) were highly expressed in the high-risk group,

and only one type of immune cell (plasma cells) was

highly expressed in the low-risk group. Our data also

showed that multiple immune checkpoints, such as

TNFRSF4, TNFSF4, CD200R1, CD86, CD276, NRP1,

presented strong activity in the high-risk group, while

TNFSF4, HHLA2 and TNFRSF14 were activated in the

low-risk group. It implied that we could choose

appropriate immune cell therapy drugs and checkpoint

inhibitors as a treatment for EC patients depending on the

risk mode. Further more, the prediction of potential

therapeutic drugs showed that AMG.706, AZD.2281,

AP.24534, Midostaurin, A.770041, Vorinostat,

Gemcitabine and CMK recommended in clinical

guidelines were more appropriate treatment for the low-

risk patients.

In summary, we used the proteome profiling and clinical

information of EC patients in TCGA database to construct

and assess a novel 8 proteins risk model for prognosis

prediction in EC. Through various analysis and verification,

this prognostic model could act as a good prognostic

evaluation for EC patients and provide new insight into the

diagnosis and treatment of EC.
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