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Background: Glioma is the most common primary tumor of the central nervous
system. The conventional glioma treatment strategies include surgical excision and
chemo- and radiation-therapy. Interferon Gamma (IFN-γ) is a soluble dimer cytokine
involved in immune escape of gliomas. In this study, we sought to identify IFN-γ-
related genes to construct a glioma prognostic model to guide its clinical treatment.

Methods: RNA sequences and clinicopathological data were downloaded from The
Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA). Using
univariate Cox analysis and the Least Absolute Shrinkage and Selection Operator
(LASSO) regression algorithm, IFN-γ-related prognostic genes were selected to
construct a risk scoring model, and analyze its correlation with the clinical
features. A high-precision nomogram was drawn to predict prognosis, and its
performance was evaluated using calibration curve. Finally, immune cell
infiltration and immune checkpoint molecule expression were analyzed to
explore the tumor microenvironment characteristics associated with the risk
scoring model.

Results: Four out of 198 IFN-γ-related genes were selected to construct a risk score
model with good predictive performance. The expression of four IFN-γ-related
genes in glioma tissues was significantly increased compared to normal brain tissue
(p < 0.001). Based on ROC analysis, the risk score model accurately predicted the
overall survival rate of glioma patients at 1 year (AUC: The Cancer Genome Atlas 0.89,
CGGA 0.59), 3 years (AUC: TCGA 0.89, CGGA 0.68), and 5 years (AUC: TCGA 0.88,
CGGA 0.70). Kaplan-Meier analysis showed that the overall survival rate of the high-
risk group was significantly lower than that of the low-risk group (p < 0.0001).
Moreover, high-risk scores were associated with wild-type IDH1, wild-type ATRX,
and 1P/19Q non-co-deletion. The nomogram predicted the survival rate of glioma
patients based on the risk score and multiple clinicopathological factors such as age,
sex, pathological grade, and IDH Status, among others. Risk score and infiltrating
immune cells including CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell
(Tregs), M2macrophages, resting NK cells, activatedmast cells, and neutrophils were
positively correlated (p < 0.05). In addition, risk scores closely associated with
expression of immune checkpoint molecules such as PD-1, PD-L1, CTLA-4, LAG-
3, TIM-3, TIGIT, CD48, CD226, and CD96.
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Conclusion: Our risk score model reveals that IFN-γ -associated genes are an
independent prognostic factor for predicting overall survival in glioma, which is
closely associated with immune cell infiltration and immune checkpoint molecule
expression. This model will be helpful in predicting the effectiveness of
immunotherapy and survival rate in patients with glioma.

KEYWORDS

interferon gamma, glioma, tumor microenvironment, immune signature, prognosis

Introduction

Glioma is the most common primary tumor of the central nervous
system, accounting for approximately 75% malignant primary brain
tumors in adults (Ostrom et al., 2017). Gliomas usually originate from
glial cells or other progenitor cells and are accordingly termed as
astrocytoma, oligodendroglioma, oligodendroglioma, and
ependymoma (Zhang et al., 2012). According to the new
classification of central nervous system tumors by the World
Health Organization (WHO) in 2016, gliomas can be classified into
grade I to IV (Villa et al., 2018). Higher grade gliomas (grade IV) are
the most lethal glioma (also called as glioblastoma, GBM) that have
poor prognosis, with a median OS of only 15 months (Bleeker et al.,
2012). Conventional treatment for gliomas includes surgical resection
combined with radiation and/or chemotherapy. Although
immunotherapy, targeted therapy, and combination therapy have
been developed, the immune regulation and immune escape
mechanisms used by glioblastoma pose considerable challenges to
immunotherapy (Gieryng et al., 2017).

Interferons are highly species-specific glycoproteins that exert
antiviral, anti-proliferative, anti-tumor, and immunoregulatory
effects, and play pivotal role in coordinating immune response
(Gresser, 1990). IFN-γ is a member of the type II IFN family. The
mouse and human IFN-γ proteins are encoded by a 6 kb gene
consisting of four exons and three introns located on exons 10 and
12, respectively (Trent et al., 1982). IFN-γ protein is a homodimer
formed by non-covalent binding of two 17 kDa polypeptide subunits
(Ealick et al., 1991). IFN-γ is secreted primarily by lymphocytes (CD4+

T helper type 1 (Th1) cells and CD8+ cytotoxic T-cell) (Kasahara et al.,
1983; Corthay et al., 2005), gamma delta T-cell (Gao et al., 2003), and
natural killer (NK) cells (Keppel et al., 2015) and plays an important
role in coordinating innate and adaptive immune responses against
viruses, bacteria, and tumors. IFN-γ can also promote pathological
inflammatory process (Ni and Lu, 2018), and its involvement is
positively associated with survival in cancer patients. Therefore, it
is necessary to study the immunoregulatory effects of IFN-γ in tumor
microenvironment (TME) (Castro et al., 2018).

In this study, we analyzed gene expression and clinical data of
glioma samples obtained from The Cancer Genome Atlas (TCGA)
database. Next, a risk score model based on IFN-γ genes was
constructed using minimum absolute contraction and selection
operator (LASSO) regression analysis and Cox regression analysis
and validated in the Chinese Glioma Genome Atlas (CGGA) dataset.
The potential relationship between the risk scoring model and
clinicopathological features was analyzed using a nomogram. In
addition, we analyzed the risk scoring model in predicting glioma
prognosis based on immune status of TME, its relationship with
immune checkpoint molecule expression, and its potential role in
predicting immunotherapy outcomes. Considering the close

correlation between IFN-γ and clinical treatment outcomes, we
believe that our predictive model will be a useful reference for the
future research studies in this field.

Materials and methods

Data collection

We collected transcriptome data and clinical prognosis
information of 689 glioma patients from TCGA portal (https://
portal.gdc.cancer.gov/); data of 212 normal patients were used as
control. Only samples for which information related to complete time
of life, status of life, and clinicopathological type including patient age,
gender, glioma grade, IDH state, and pathological type were available,
included in analysis. In addition, transcriptome data and clinical data
of 367 glioma patients were downloaded from the CGGA portal
(http://www.cgga.org.cn/) (Liu et al., 2018) for verifying results. We
collected 30 primary glioma samples and 10 normal brain tissue
samples from the Jiangxi Cancer Hospital (2020ky074).

Gene set enrichment analysis

GSEA is performed to determine whether a set of pre-defined
genes shows statistically significant and consistent differences between
two biological states. Data of glioma and normal samples were
subjected to GSEA (Subramanian et al., 2005) (https://www.gsea-
msigdb.org/gsea/index.jsp). Significant differences in GSEA were
verified by normalized enrichment score (NES) and error detection
rate (FDR). Furthermore, we subjected our data to the Annotation, the
Visualization, and Integrated the Discovery (DAVID) (Huang et al.,
2009) (https://david.ncifcrf.gov/), Gene ontology (GO), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The
pathway enrichment criteria were p < 0.05 and FDR< 0.05.

Construction and validation of IFN-γ -related
gene signature

First, we used “survival” and “glmnet” R software packages
(Friedman et al., 2010) and performed univariate Cox regression
analysis and the LASSO regression analysis to screen survival-
related genes in glioma patients. Multivariate Cox regression
analysis was performed to screen genes that could be used as
independent prognostic factors for OS, and their regression
coefficients were calculated. The risk score for each glioma patient
was calculated as follows: Risk score = [Expression of Gene 1×
coefficient]+[Expression of Gene 2× Coefficient]++... [Expression of
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Gene n× coefficient] Patients were further divided into high - and low-
risk groups based on the median risk score. Kaplan-Meier method was
used to compare survival differences between high- and low-risk
groups. Finally, the “survival ROC” R software package (Heagerty
et al., 2000) was used to establish time-dependent receiver operating
characteristic (ROC) curve analysis (including 1-, 3-, and 5-year
survival rate) to evaluate the sensitivity and accuracy of risk
score. In addition, we used CGGA data set to verify the risk
scoring model and generate Kaplan-Meier survival curve and
survival ROC curve.

RNA extraction and quantitative real-time
PCR (RT-qPCR)

RNA was extracted from tissues using TRIzol reagent (TaKaRa,
Shiga, Japan). cDNA synthesis was performed using PrimeScript RT
kit (RR047A, TaKaRa). Real-time quantitative PCR was performed
using a standard SYBR Green PCR kit (Takara, RR820A). We used the
2−ΔΔCT method for calculations. The primers for the mRNA TNFAIP6
were 5′-TGCTACAACCCACACGCAAA-3’ (forward) and 5′-CTC
AGGTGAATACGCTGACCA-3’ (reverse). The primers for the
mRNA PSMB2 were 5′- ATCCTCGACCGATACTACACAC-3’
(forward) and 5′-GAACACTGAAGGTTGGCAGAT -3" (reverse).
The primers for mRNA IRF4 were 5′-GCGGTGCGCTTTGAA
CAAG-3’ (forward) and 5′- ACACTTTGTACGGGTCTGAGA-3’
(reverse). The primers for mRNA IFNAR2 were 5′-TCATGGTGT
ATATCAGCCTCGT-3’ (forward) and 5′-AGTTGGTACAATGGA
GTGGTTTT -3" (reverse). The primers for GAPDH, 5′-CCCATC
ACCATCTTCCAGGAG-3’ (forward) and 5′-GTTGTCATGGAT
GACCTTGGC-3’ (reverse).

Analysis of infiltrating immune cells

To investigate the correlation between the risk model based on
IFN-γ associated genes and TME, we used ESTIMATE R package
(Yoshihara et al., 2013) and CIBERSORT (https://cibersort.stanford.
edu/) (Newman et al., 2015) to determine the TME score and the
proportion of 22 kinds of infiltrating immune cells. Furthermore, we
applied the Wilcox test to compare the differentially infiltrating
immune cells between the high-rated and low-rated groups.

Construction of prognostic nomogram

A nomogram can be used to combine multiple variables to
diagnose or predict the probability of disease onset or progression.
Using the “rms” R software package and the prognostic and
clinicopathological features of the IFN-γ -associated gene risk score
model, we developed a nomogram to predict the prognosis of glioma
patients. Simultaneously, calibration plots were generated to compare
the predicted values with actual survival rates to evaluate the accuracy
of the nomogram.

Statistical analysis

Kaplan-Meier method was used for survival analysis, and log-rank
test was used to evaluate OS differences between groups. Univariate
and multivariate analyses were performed using Cox proportional risk
model to determine whether the risk scoring model could accurately
predict prognosis of glioma patients. The violin diagram was drawn
using the “violot” R software package. In addition, we performed an

FIGURE 1
Identification of IFN-γ related genes. (A) GSEA analysis of glioma and normal samples from TCGA database. Enrichment analysis of 198 IFN-γ - related
genes: (B) Enriched GO terms. (C) Kyoto Encyclopedia of Genes and Genomes Pathway. (D, E) Establishment and evaluation of risk scoring model based on
IFN-γ-associated genes.
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independent t-test to assess the relationship between IFN-γ
-associated genes and various clinicopathological factors. SPSS
(Version 26.0) and R software (Version 4.1.0) were used for all
statistical analysis and generating charts. Results with p <
0.05 were considered statistically significant.

Results

Identification of IFN-γ related genes

By performing GSEA of glioma and normal samples, specific gene
sets were obtained. Twenty-six gene sets related to complement
system, inflammatory response, interferon gamma response, mitotic
spindle, Kras signaling, E2f targets, allograft rejection, IL2/
Stat5 signaling, mTORC1 signaling, and MYC target v1, among
others were enriched. (Figure 1A; Table 1). We selected 198 genes
(p = 0.029) to further analyze the relationship between the function of
the IFN-γ response-related genes and glioma patients prognosis.
Functional enrichment analysis showed that the signaling pathway
associated with the IFN-γ related gene was “Influenza A" (Figure 1C).
Moreover, GO analysis revealed that in biological process (BP),
molecular function (MF), and cellular component (CC), the gene
was mainly involved in “immune response” and “regulatory region”
among others. (Figure 1B).

Establishment and evaluation of risk scoring
model based on IFN-γ-associated genes

Based on the IFN-γ gene set in MSigDB, 198 IFN-γ -associated
genes were selected. First, we performed LASSO regression analysis to
identify the following 19 IFN-γ -associated genes, CASP4, PSMA2,
SERPING1, KLRK1, SLC25A28, IFIT2, LY6E, TNFAIP6, ISG20,
PSMB2, ITGB7, BANK1, IRF4, NFKBIA, IFNAR2, PIM1, TXNIP,
IFITM3 and METTL7B (Figures 1D,E). Subsequently, univariate Cox
analysis was performed on these 19 genes to search for genes
associated with patient OS and prognosis. Eighteen IFN-γ related
genes were selected (p < 0.05) (Figure 2A). Finally, multivariate Cox
analysis revealed the four genes significantly associated with patient
prognosis (p < 0.05), namely IFNAR2, IRF4, PSMB2 and TNFAIP6
(Figure 2B), that were subsequently used to establish a risk assessment
model. In order to determine the expression of these four genes in
glioma. We performed qRT-PCR analysis and found that the
expressions of TNFAIP6 (Figure 2C), PSMB2 (Figure 2D), IRF4
(Figure 2E) and IFNAR2 (Figure 2F) were significantly upregulated
in glioma tissues (n = 30) compared to normal brain tissues (n = 10).
The equation used for calculating risk assessment was as follows: Risk
score = (0.4007 * IFNAR2 expression value) + (−0.0693 *
IRF4 expression value) + (0.8667 * PSMB2 expression value) +
(0.3424 * TNFAIP6 expression value). We considered the median
score as the critical value and divided the samples into the high- and

TABLE 1 Gene sets enriched in normal and glioma patients.

GS follow link to MSigDB Size Es NOM p-val Rank at Max

COMPLEMENT 200 0.598396 0.03198294 12,533

INFLAMMATORY RESPONSE 199 0.631354 0.04535637 11,059

INTERFERON GAMMA RESPONSE 198 0.720191 0.02941177 10,281

MITOTIC SPINDLE 198 0.632598 0.04670913 14,770

KRAS SIGNALING UP 196 0.594534 0.0231579 10,234

E2F TARGETS 195 0.786049 0 9399

ALLOGRAFT REJECTION 195 0.670881 0.02547771 11,552

IL2 STAT5 SIGNALING 195 0.622643 0.02708333 12,435

MTORC1 SIGNALING 195 0.647061 0.0443038 14,672

MYC TARGETS V1 194 0.723588 0.0131291 13,140

G2M CHECKPOINT 190 0.747303 0.00408998 9630

APOPTOSIS 159 0.630793 0.02291667 12,308

DNA REPAIR 147 0.686525 0.02141328 12,039

INTERFERON ALPHA RESPONSE 95 0.745016 0.04661017 11,450

PROTEIN SECRETION 95 0.673518 0.02869757 10,966

IL6 JAK STAT3 SIGNALING 87 0.718659 0.02736842 10,998

CHOLESTEROL HOMEOSTASIS 73 0.64373 0.00632911 12,308

MYC TARGETS V2 58 0.706929 0.04814005 14,364

TGF BETA SIGNALING 54 0.722212 0.00430108 10,914

WNT BETA CATENIN SIGNALING 42 0.650237 0.02620087 6137

NOTCH SIGNALING 32 0.693124 0.00652174 6518
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the low-risk groups. Our results showed that the survival of patients in
the high-risk group was worse than that in the low-risk group. The
expression profiles of these four genes in the two groups is illustrated

as a heat map (Figure 3A). Based on these findings, we inferred that
our risk model may be an efficient tool to predict glioma patient
prognosis.

FIGURE 2
19 IFN-γ -associated genes were selected by the LASSO regression analysis. (A) 18 IFN-γ - associated genes were selected by univariate Cox analysis. (B)
4 IFN-γ - associated genes were selected by multivariate Cox analysis. The expressions of TNFAIP6 (C), PSMB2 (D), IRF4 (E) and IFNAR2 (F) were significantly
upregulated in glioma tissues compared to normal brain tissues. ****p < 0 .0001.

FIGURE 3
Construction of OS predictionmodel based on 4 genes in the TCGA dataset: (A)Heatmaps of four genes in the high and low risk score groups. (B) Time-
dependent ROC curve for OS. (C) Kaplan-Meier analysis. Validation of OS prediction model based on 4 genes in CGGA dataset: (D)Heatmaps of four genes in
the high and low risk score groups. (E) Time-dependent ROC curve for OS. (F) Kaplan-Meier analysis.
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The risk score model based on IFN-γ related
genes could independently predict prognosis
of glioma patients

Univariate COX regression analysis showed that risk score was
significantly associated with prognosis (HR = 6.616, 95% CI =
4.701–9.313, p < 0.001; Table 2). Multivariate Cox regression
analysis, after adjustment for other clinical characteristics,
confirmed that risk score was independent of the clinical
parameters (HR = 2.037, 95%CI = 1.236–3.357, p = 0.005)
(Table 2). Kaplan-Meier analysis of differential survival between
the two groups found that patients in the high-risk group had
significantly worse survival (shorter survival duration and lower
survival) than those in the low-risk group (p < 0.0001)
(Figure 3C). To verify the superiority of our risk scoring model,

relevant ROC curves were drawn. The AUC values of 1-, 3- and 5-
year regions were 0.89, 0.89, and 0.88, respectively, (all AUC
values >0.7; Figure 3B), indicating that the risk model had good
predictive value.

Validation of the risk scoring model

We used the CGGA database as a validation set to evaluate the
reliability of our risk scoring model for IFN-γ -associated genes.
The median score was taken as the critical value, and the samples
were divided into the high- and low-risk groups. Patient OS status
was assessed and the heat maps depicting the expressions of the
selected four genes in the two groups were drawn (Figure 3D).
Survival was consistently low in the high-risk group (Figure 3F).

TABLE 2 Univariate and multivariate analysis of the risk scores in TCGA database and CGGA database.

Datasets Univariate Multivariate

Variable HR (95% CI) p HR (95% CI) p

TCGA Age 4.592 (3.352–6.291) <0.001 1.252 (0.861–1.819) 0.240

Gender 1.337 (0.998–1.791) 0.051 1.264 (0.913–1.751) 0.158

Histology 8.802 (6.367–12.168) <0.001 2.220 (1.454–3.390) <0.001

Karnofsky Score 0.489 (0.348–0.686) <0.001 0.778 (0.533–1.137) 0.195

Idh1 Status 0.111 (0.079–0.154) <0.001 0.317 (0.188–0.534) <0.001

Risk Score 6.616 (4.701–9.313) <0.001 2.037 (1.236–3.357) 0.005

CGGA Age 2.897 (2.075–4.044) <0.001 1.151 (0.797–1.662) 0.454

Gender 1.131 (0.851–1.503) 0.396 0.996 (0.741–1.338) 0.978

Histology 5.063 (3.787–6.768) <0.001 2.537 (1.769–3.640) <0.001

Idh1 Status 0.226 (0.168–0.305) <0.001 0.394 (0.277–0.562) <0.001

Risk Score 2.484 (1.855–3.327) <0.001 1.585 (1.159–2.168) 0.004

FIGURE 4
IFN-γ -associated gene scoring model was correlated with WHO Grade (A), glioma subtype (B), IDH1 (C), 1P19Q co-deletion (D), ATRX (E) and TP53 (F).
**p < 0.01, ****p < 0 .0001.
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ROC curve analysis of validation sets assessed the prognostic
efficiency of risk scoring model. The AUC value for 1-, 3-, and
5-year was 0.59, 0.68, 0.70, respectively (Figure 3E). In addition,
univariate COX regression analysis showed that risk score
significantly correlated with prognosis (HR = 2.484, 95%CI =
1.855–3.327, p < 0.001) (Table 2). Multivariate Cox regression
analysis showed that risk score could independently predict
prognosis (HR = 1.585, 95%CI = 1.159–2.168, p = 0.004)
(Table 2). Collectively, these results suggest that risk score based
on the selected four genes could efficiently predict patient
prognosis.

Correlation between risk scoring model,
disease progression, and the nomogram

We explored the relationship between the IFN-γ -associated
gene scoring model and various clinicopathological factors, and
found that patients with advanced tumor grade, Astrocytoma, wild-
type IDH1, 1P/19Q non-co-deletion, and wild-type ATRX had
significantly higher risk scores (p < 0.05, Figures 4A–E). The
IFN-γ related gene score model was statistically correlated with
a variety of clinicopathological factors; the higher the risk score,
the worse the clinicopathological status. In addition, we
constructed a nomogram based on the risk scores and
independent clinical factors (age, sex, and tumor grade)
(Figure 5A). The nomogram was used to predict OS rates at 1,
3, and 5 years. Calibration curves for 1-, 3-, and 5-year OS showed
that the nomogram had good predictive accuracy for the TCGA
dataset (Figures 5B–D).

IFN-γ -associated gene scoring model
predicts tumor microenvironment changes in
glioma patients

To explore the association between immune response and IFN-γ
related genes in gliomas whose data was obtained from TCGA, we
applied the ESTIMATE algorithm to explore the relationship between
the risk models and immune cell infiltration, where the immune score
was positively correlated with risk score (Figure 6A). Next, we assessed
the relative proportions of 22 types of infiltrating immune cells using
the CIBERSORT. As shown in Figure 6B, CD8 T-cell, resting memory
CD4 T-cell, monocytes, M2macrophages, and activated mast cells had
higher proportions among infiltrated immune cells. Furthermore,
memory B-cell, naive CD4 T-cell, activated NK cells, and
monocytes were negatively correlated with risk score, whereas
CD8 T-cell, resting CD4 memory T-cell, regulatory T-cell (Tregs),
M2 macrophages, resting NK cells, activated mast cells, and
neutrophils were positively correlated with risk score (p < 0.05,
Figure 6B).

We also evaluated the prognostic value of 22 types of infiltrating
immune cells and found that cells including memory B-cell
(Figure 7A), monocytes (Figure 7B), neutrophils (Figure 7D),
activated NK cells (Figure 7C), resting NK cells (Figure 7E),
resting CD4 memory T-cell (Figure 7F), and CD8 T-cell
(Figure 7G) was significantly associated with OS (p < 0.05).
Neutrophils, resting NK cells, resting memory CD4 T-cell,
CD8 T-cell higher dilatancy abundance was associated with poor
OS, whereas a higher abundance of memory B-cell, monocytes,
neutrophils, and activated NK cells indicated better OS. In
summary, risk score statistically correlated with the altered

FIGURE 5
Constructed a nomogram based on the risk scoring model and independent clinical factors. (A) Nomogram predicts 1 -, 3 -, and 5-year OS for glioma
patients. (B–D) Calibration curves for 1-, 3-, and 5-year OS.
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proportion of most immune cells, suggesting that our IFN-γ-
associated gene risk score model can predict the immunological
status of glioma microenvironment.

Correlation of interferon gamma gene risk
assessment models with immune
checkpoints

The association of our risk score with important checkpoint
molecules, including PD-1, PD-L1, CTLA-4, LAG-3, TIM-3,
TIGIT, CD226, CD48 and CD96, was evaluated in the TCGA

dataset (Figure 7H). The correlation coefficient R between risk
score and genes encoding immune checkpoint molecules is shown
in supplementary Table 1. In addition, we found that the expression of
LAG-3, CTLA-4, PD-L1, PD-1, CD48, CD226, TIM-3, and CD96 was
significantly higher in high-risk groups than in low-risk groups (p <
0.0001; Figure 7 I).

Discussion

Glioma is the most common primary malignant tumor of
central nervous system. Conventional treatment modalities for

FIGURE 6
Correlation between IFN-γ -associated gene scoring model and tumor microenvironment. (A) The ESTIMATE algorithm to explore the relationship
between the risk models and immune cell infiltration. (B) The percentages of 22 immune cells were assessed using CIBERSORT. **p < 0.01, ****p < 0 .0001.
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glioma include surgery and radio- and chemo-therapy. However,
none of these significantly improve the prognosis of glioma
patients. Studies have shown that immunotherapy is a powerful
strategy for clinical management of various cancers including
glioma (Sanmamed and Chen, 2018; Riley et al., 2019; Daubon
et al., 2020). Therefore, it is necessary to identify potential
biomarkers to predict the survival in glioma patients. Moreover,
immune-related biomarkers of TME will help to predict the patient
immune response. To maximize the clinical benefits of glioma
immunotherapy and improving patient prognosis, it may be a
useful strategy to enrich the immune cell populations relevant
for immunotherapeutic outcomes.

In tumors, IFN-γ acts as an effective apoptosis-inducing factor
by directly inducing caspase-1 and caspase-8 in tumor cells (Chin
et al., 1997). IFN-γ also plays an important role in regulating
immune response; antigen presentation (Ivashkiv, 2018);
inflammation; chemotactic signaling (Mauldin et al., 2016);
modulating extracellular matrix, thereby affecting metastasis and

tumor structure (Glasner et al., 2018); and activation and
polarization of white blood cells (Burke and Young, 2019).
Furthermore, IFN-γ plays an important role in inducing PD-L1
expression in glioma (Qian et al., 2018). So far, studies have focused
on the role of IFN-γ in cancer progression and treatment; however,
only a handful studies have investigated the role of IFN-γ-
associated genes in glioma prognosis.

Here, we first selected 198 IFN-γ -associated genes. Among
these, four genes (IFNAR2, IRF4, PSMB2 and TNFAIP6) were
identified as potential prognostic markers by univariate Cox
analysis and LASSO regression analysis, and were used to
construct prognostic models. Silginer et al. reported that
silencing the gene encoding IFN alpha/beta receptor 2 (IFNAR2)
leads to decreased expression of PD-L1 and major
histocompatibility complex (MHC) proteins, thereby facilitating
immune evasion of glioma cells (Silginer et al., 2017). Lei et al.
reported that IRF4 mRNA overexpression is associated with
advanced pathological tumor grade and worse prognosis of

FIGURE 7
Prognostic value of infiltrating immune cells: memory B-cell (A), monocytes (B), activated NK cells (C), neutrophils (D), resting NK cells (E), resting
CD4 memory T-cell (F), and CD8 T-cell (G). Correlation between IFN-γ -associated gene scoring model and immune checkpoints: (H) Correlation Circos
plots. (I) Expression of immune checkpoints in the high and low risk scoring group.
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glioma patients (Lei et al., 2021). Tan et al. reported that PSMB2
knockdown inhibits HCC proliferation, invasion, and
tumorigenesis (Tan et al., 2018), whereas Niu et al. reported that
TNFAIP6 is involved in inflammatory and immune response
pathways (Niu et al., 2021). In our study, these four genes were
involved in tumor development, inflammation, and immune
response pathways. We used CGGA database to verify the
validity and stability of our model. We observed significantly
lower survival in the high-risk group than in the low-risk group
(p < 0.0001). Univariate and multivariate Cox regression analysis
confirmed that our model was an independent tool to predict
patient prognosis (p < 0.05). Finally, a nomogram was
established to validate the good performance of our risk model
for predicting patient prognosis.

TME is a key factor regulating the development of malignant
tumors (Quail and Joyce, 2017). Comprehensive understanding of the
glioma TME will greatly improve the efficacy of glioma treatment
strategies and prognosis of glioma patients. Our risk scoring model
positively correlated with the immune score and matrix score of TME,
indicating that the model was stable and accurate. Tumor-infiltrating
immune cells are an important component of several cancers (Niu
et al., 2020). CIBERSORT was used to evaluate the relative proportion
of 22 types of infiltrating immune cells. M2 macrophages are the most
important immune cell type and are involved in immunosuppression
and tumor growth promotion (Zhu et al., 2017). Our results showed
that M2 macrophages were more prevalent in the high-risk
group. CD8 T-cell have the potential to treat glioblastoma via CAR
T-cell therapy (Murphy and Griffith, 2016). We found that CD8 T-cell
was significantly associated with OS (p < 0.05). Therefore, our risk
score may correctly predict the status of glioma TME as well as patient
outcomes.

Checkpoint inhibitors are playing an increasingly important
role in glioma immunotherapy (Ghouzlani et al., 2021). Among
them, PD-1 and its ligand PD-L1 significantly modulate
immunotherapy outcomes in various tumors (Wang et al., 2019).
The binding of PD-1 to PD-L1 facilitates cancer immune evasion
via inhibiting T-cell function (Ricklefs et al., 2018). In this study, we
observed a correlation between the risk scoring model and PD-L1
using the TCGA dataset (R = 0.54). The mechanism of positive
correlation between the risk score and PD-L1 in glioma may be
related to IFN/PD-L1 axis of anti-PD-1/PD-L1 treatment (Qian
et al., 2018). Biomarkers identified based on risk score model can
accurately predict the efficacy of PD-L1 inhibitor therapy, thereby
allowing glioma patients to benefit more from PD-L1 blocker
therapy in the future. Cytotoxic T-lymphocyte associated protein
4 (CTLA-4) can affect the treatment of advanced cancer and
targeting drugs have been used for treating different types of
cancer (Rotte, 2019). CTLA-4 overexpression in glioma TME
can induce immune cell infiltration (Liu et al., 2020). Our risk
score model positively correlated with CTLA-4 (R = 0.33), which
may be associated with CTLA-4 blocking and increased number of
IFN-γ -producing tumor-infiltrating T-cell (Giles et al., 2018).
Collectively, these results suggest that our risk score model can
predict patient prognosis as well as response to immune checkpoint
therapy.

We generated a risk model based on four IFN-γ -associated
gene, which were selected based on rigorous screening criteria. The

specificity and reliability of the model were verified in CGGA data
sets. In addition, we generated a nomogram based on the clinical
characteristics of patients. Further explore the correlation among
TME, infiltrating immune cells, and immune checkpoint inhibitors,
which may be useful in the future for effectively predicting
prognosis of glioma patients in clinical settings. However, our
study has limitations. Since our study mainly involved in silico
analysis of mined data, the results should be validated in
laboratories and clinics using a larger number of glioma patients
in the future.

In conclusion, we constructed a risk score model based on IFN-γ-
related genes that are closely related to the immune status of TME.
This model can better predict the prognosis of glioma patients and
help in optimizing glioma immunotherapy.
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