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Background: Immunogenic cell death (ICD) remodels the tumor immune

microenvironment, plays an inherent role in tumor cell apoptosis, and

promotes durable protective antitumor immunity. Currently, appropriate

biomarker-based ICD immunotherapy for breast cancer (BC) is under active

exploration.

Methods: To determine the potential link between ICD genes and the clinical

risk of BC, TCGA-BCwas used as the training set and GSE58812 was used as the

validation set. Gene expression, consistent clustering, enrichment analysis, and

mutation omics analyses were performed to analyze the potential biological

pathways of ICD genes involved in BC. Furthermore, a risk and prognosis model

of ICD was constructed to evaluate the correlation between risk grade and

immune infiltration, clinical stage, and survival prognosis.

Results: We identified two ICD-related subtypes by consistent clustering and

found that the C2 subtype was associated with good survival prognosis,

abundant immune cell infiltration, and high activity of immune biological

processes. Based on this, we constructed and validated an ICD risk and

prognosis model of BC, including ATG5, HSP90AA1, PIK3CA, EIF2AK3,

MYD88, IL1R1, and CD8A. This model can effectively predict the survival rate

of patients with BC and is negatively correlated with the immune

microenvironment and clinical stage.

Conclusion: This study provides new insights into the role of ICD in BC. The

novel classification risk model based on ICD in BC established in this study can

aid in estimating the potential prognosis of patients with BC and the clinical

outcomes of immunotherapy and postulates targets that are more useful in

comprehensive treatment strategies.
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Background

Immunogenic cell death (ICD) is a special type of regulatory

cell death that can remodel the adaptive immunity in the tumor

microenvironment and establish immune memory, enabling

patients to obtain long-term clinical benefits (Galluzzi et al.,

2020). ICD differs from other cell apoptosis in that it is defined by

the release of damage-associated molecular patterns. In the case

of tumor cells, or during the course of infection, dead cells can

stimulate a robust adaptive immune response against the

changed autoantigens/cancer derived new epitopes or

pathogen derived antigens. This increases the exposure of

endogenous adjuvants or intracellular molecules and triggers

adaptive immunity through antigen presentation, increasing the

recruitment of T cells and promoting the entire immune cycle

mechanism (Hernández Á. et al., 2021). The unique anticancer

immune regulation ability of ICD provides new hope to the

current limitations of cancer therapy, especially for breast

cancer (BC).

Breast cancer is characterized by low immunogenicity due

to low mutation rates and reduced lymphocyte infiltration;

therefore, the immunotherapy response in BC remains modest

and unpredictable (Hanna and Balko, 2021). Research has

found the number of infiltrating lymphocytes, especially

CD4 and CD8 T cells and dendritic cells, in the tumor

immune microenvironment can be used as a prognostic

indicator for patients with BC (Li et al., 2021). Therefore,

increasing immune cell infiltration in the tumor

microenvironment is predicted to be an effective way to

improve the outcomes of BC immunotherapy.

Immunogenic cell death can release relevant signals

through adenosine triphosphate during the development of

BC and recruit immune cells to infiltrate the tumor site

(Reyes-Ruiz et al., 2021). At present, it has been confirmed

that ICD in BC can be promoted by multiple pathways and

targets. Anthracyclines, as first-line chemotherapy drugs for

BC, can promote ICD, specifically by activating the

NLRP3 inflammasome to induce adaptive immunity

(Ghiringhelli et al., 2009). In addition, they can induce

high mobility group protein B1 (HMGB1) to be passively

released from dead cells in the ICD damage-associated

molecular patterns. Clinical studies have shown that in

patients with BC treated with anthracyclines, the level of

HMGB1 increases, which predicts better survival prognosis

(Stoetzer et al., 2013). This also suggests that anti-cancer

treatment not only eliminates cancer cells in the traditional

way but also induces ICD targeting related biomarkers to

trigger anti-tumor immunity in patients with BC and

promotes the extension of cancer immune cycle memory.

Moreover, heat shock proteins (HSPs) have been proven to

be associated with the ICD process and have the main function

of repairing protective proteins. Therefore, their presence in

cell components is recognized as a beneficial anti-apoptotic

component (Wu et al., 2017). HSPs can recruit dendritic cells

through different transmitters and present antigens to T cells,

thus, increasing tumor immunogenicity (Albakova et al.,

2021). These exciting research findings have aroused an

upsurge of ICD-related research among scholars, but there

is limited knowledge on effective and accurate ICD

biomarkers in BC, which prompted us to investigate them

in depth.

In this study, we aimed to identify biomarkers related to ICD in

BC and to explore their potential pathogenesis in patients with BC.

Construction of an ICD risk model is needed to evaluate the

prognosis, immune microenvironment, and clinical treatment of

patients with BC. Therefore, this study aimed to provide a theoretical

basis for the immunotherapy of patients with BC.

Materials and methods

Datasets

For the training set, the transcriptome information of a

total of 1211 BC cases was downloaded from The Cancer

Genome Atlas database (TCGA, https://portal.gdc.cancer.

gov/), including 1098 BC samples and 113 normal samples

(Ganini et al., 2021). For the validation set, the

GSE58812 microarray gene chip from the Gene Expression

Omnibus database (GEO, www.ncbi.nlm.nih.gov/geo/, GEO

accession: GSE58812, Platforms: GPL570) was used, which

comprised 107 patients with complete clinical information

(Albaradei et al., 2021). Gene mutations and matching

clinicopathological data for TCGA-BC dataset were also

obtained from TCGA database. All the data involved in

this study were obtained from an open platform, so no

ethical permission was required.

Identification of the immunogenic cell
death subtypes

ConsensusClusterPlus was used for combining BC mRNA

expression and ICD-related genes for cluster analysis.

ConsensusClusterPlus can visualize the number of

unsupervised clusters in sample data and is widely used in

cancer research (Wilkerson and Hayes, 2010). Eighty percent

of the samples were resampled for 10 repetitions according to
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the area under the Consensus Cumulative Distribution

Function curve, K-value, and intra-group consistency to

ensure the stability of the results.

Analysis of differentially expressed genes

The differentially expressed genes (DEGs) between

clustering subtypes were analyzed by the t. test function in

R software to explore the potential differences between the

two ICD subtypes. The screening criteria for DEGs was

determined as the adjusted p < 0.05 and |fold change| >
1.5. Next, we further enriched the DEGs to compare the

differential signaling pathways and biological effects

between the different ICD groups. Gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were based on the premise of p < 0.05.

Gene set enrichment analysis

The samples were divided into two subtypes based on the ICD

gene expression. Gene set enrichment analysis (GSEA) was used to

evaluate differences in related pathways and molecular mechanisms

between the two subtypes. GSEA is an effective method that is

commonly used to analyze the underlying biological processes of

DEGs in samples (Hung et al., 2012). Theminimum gene set was set

to 5, themaximumgene set to 5,000, and re-sampling to 1,000 times.

|NES| > 1, p < 0.05, and FDR <0.25 were considered statistically

significant.

Somatic mutation analysis

Somatic mutation analysis is crucial for identifying driver

genes in cancer, which helps to reveal the potential internal

causes of cancer occurrence and promotes the clinical

progress of targeted therapy (Dressler et al., 2022). Somatic

mutation data of 1,071 patients with BC were obtained from

TCGA to explore whether genetic structural changes occurred

between the different clusters. The chi-squared test was used

to evaluate the difference in gene mutation frequency in each

group of samples, and the mutated genes were visualized using

waterfall plots.

Immune infiltration between two
immunogenic cell death subtypes

Immuno-Oncology Biological Research (IOBR) analysis

can use multi-omics data to analyze the relationship between

tumors and immunity (Zeng et al., 2021). Based on our

expression profile, we used the CIBERSORT (Newman

et al., 2015), ESTIMATE (Yoshihara et al., 2013), and

TIMER (Li et al., 2016) methods to calculate the three

immune infiltrating cell scores of each sample in the two

cluster subtypes.

Construction of the immunogenic cell
death risk model

The Cox proportional hazard model with the least

absolute shrinkage and selection operator for variable

selection (Lasso-Cox) is an accurate and effective feature

selection and risk prediction algorithm (Wang and Liu,

2020). We used the glmnet package to integrate survival

time, survival status, and gene expression data, and used

Lasso-Cox for regression analysis. In addition, we set up a

10-fold cross validation test to obtain the optimal model. The

correlation between the risk model score, tumor immune

infiltration microenvironment, and clinical stage of patients

with BC was further analyzed.

Results

Consensus clustering identified two
immunogenic cell death-associated
subtypes

Based on published ICD-related literature (Garg et al.,

2016; Galluzzi et al., 2020), we identified 21 ICD-related genes

(ATG5, CALR, CASP1, CASP8, CD4, CD8A, CXCR3, EIF2AK3,

HSP90AA1, IFNGR1, IL17RA, IL1B, IL1R1, LY96, MYD88,

NLRP3, P2RX7, PIK3CA, PRF1, TLR4, TNF) and analyzed

their expression differences between BC and normal samples.

ICD genes, such as CALR, CASP8, P2RX7, MYD88, CD8A,

CXCR3, CD4, TNF, ATG5, and HSP90AA1, were found to be

abnormally highly expressed in BC samples (Figure 1A).

Further cluster analysis revealed that when K = 2, the

highest number of clusters appeared in the average

consistency within the group. Therefore, the two subtypes

in BC samples showed different ICD gene expression (Figures

1B–G). We further explored whether different subtypes of

C1 and C2 affected the survival of patients with BC. The

results are shown in Figure 1H, where C2 indicates better

clinical results.

Differential gene expression and
enrichment analysis of immunogenic cell
death subtypes

To explore the molecular mechanism of the difference in

prognosis between the two ICD subtypes, we first identified
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276 upregulated and 2096 downregulated DEGs (Figures

2A,B). Further enrichment analysis showed that DEGs

were significantly involved in immune-related processes,

such as positive regulation of the immune response,

immunoglobulin production, leukocyte activation,

immunoregulatory interactions between lymphoid and

non-lymphoid cells, regulation of immune effector

processes, and regulation of T cell activation (Figures

2C–E). Furthermore, we compared the signal pathways

between the two subtypes using GSEA and found that the

DEGs were closely related to the immune pathway and were

significantly enriched in group C2, indicating that group C2 is

related to immunity (Figure 2F). Thus, the molecular

mechanism revealed the potential reason for the better

prognosis of group C2.

Comparison of somatic mutations and the
tumor microenvironment among
immunogenic cell death subtypes

Through somatic mutation analysis, we noted a mutation

difference between C1 and C2 (Figure 3A). In the common

tumor-mutated genes TP53, PIK3CA, TTN, CDH1, and GATA3,

the mutation frequencies among the two subtypes were different.

The frequency of mutations in TP53, PIK3CA, TTN, and CDH1

was higher in group C2 than in group C1. The latest research

reports that ICD can promote an antitumor immune

microenvironment (Iulianna et al., 2022; Mishchenko et al.,

2022). Therefore, we explored the tumor microenvironment of

the two subtypes. First, the immune score, matrix score, and

estimated score of group C2 was higher than those of group C1

FIGURE 1
Identification of ICD subtypes by consistent clustering. (A) 21 ICD genes were expressed in BC samples, including tumor and normal samples.
(B,C) Cluster analysis cumulative distribution function (CDF), indicating the area under the curve and delta decreasing trend when k = 2–10. (D)
Sample cluster consistency diagram, showing that when k = 2, consensus values are best. (E,F) Heatmap depicting the best scheme for consensus
clustering (k = 2) for 21 genes in 1,098 BC samples. (G) Heatmap of the expression of 21 ICD genes in two subtypes. Red represents high
expression; blue represents low expression. (H) Kaplan–Meier curves of the overall survival in two subtypes; the C2 group had better prognostic
outcomes than the C1 group. p = 0.03.
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FIGURE 2
Identifying differentially expressed genes (DEGs) and biological pathways between the two subtypes. (A) Volcano map showing the distribution
of DEGs between C1 and C2, where red represents high expression and blue represents low expression. (B) Heatmap showing the expression of
DEGs between the two subtypes. (C,D) Metascape enrichment network displaying the gene function enrichment of DEGs, where each cluster
annotation is color coded. (E) A bubble plot showing the enrichment of signal pathways of DEGs. (F)GSEA analysis identifying the enrichment of
different pathways between C1 and C2.
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(Figure 3B). Second, we continued to explore the differences in

immune cell infiltration between the two subtypes using

CIBERSORT. The infiltration expression of immune cells in

C2 was higher than that in C1, including naive B cells,

macrophages, plasma cells, CD8 T cells, and CD4 T cells

(Figures 3C,D). This indicates that the C2 group has a better

prognosis and, simultaneously, the immune cell infiltration is

higher than that in C1.

FIGURE 3
Differential somatic mutations and immune infiltration in two ICD subtypes. (A) Gene mutation map showing that the 10 most commonly
mutated genes in BC differ in mutations between the C1 and C2 groups. (B) ESTIMATE violin plot showing the differences in the stromal and immune
cells infiltrating C1 and C2. (C) The relative proportions of immune-infiltrating types in C1 and C2. (D) CIBERSORT violin plot showing multiple
differences in immune cell enrichment between the two ICD subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Construction of the immunogenic cell
death risk model

Based on previous analysis, we established a prediction model

based on ICD-related genes. Specifically, by integrating the survival

time, survival status, and gene expression data, a regression analysis

was carried out using Lasso-Cox (Figures 4A,B). We set the lambda

value to 0.0131770633945094 and obtained seven biomarkers

(Figures 4A–C). The model formula is as follows:

Risk Score � 0.0326363881498623*ATG5 + 0.190693483244363*HSP90AA1
+0.0965024720502192*PIK3CA+ 0.000619152780442697*EIF2AK3

− 0.25550716880708*MYD88 + 0.0655640833683533*IL1R1

− 0.0890578092004148*CD8A

In addition, the survival status of patients with BC was

analyzed according to the risk score, and the survival status in

the low-risk cohort was found to be much higher than that in the

high-risk cohort (Figure 4C). Further survival analyses verified

this hypothesis. In TCGA set, the low-risk cohort predicted a

FIGURE 4
Construction and validation of an ICD risk model. (A,B) Lasso-Cox analysis identifies seven ICD genes associated with overall survival in BC. (C)
Prognostic heatmap showing the relationship between different risk scores of the ICD risk model, patient survival events, and changes in gene
expression. (D,E) Survival analysis plot showing the risk model has valid prognostic significance in both the TCGA (p = 2.3 × 10−7) and GSE58812 (p =
2.5 × 10−8) cohorts.
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better survival prognosis (Figure 4D), and the survival results of

the validation set showed the same trend (Figure 4E).

Relationship between the immunogenic
cell death risk model, tumor
microenvironment, and clinical indicators

We conducted an in-depth analysis of the correlation

between the ICD risk score and tumor microenvironment.

The results showed that the ICD risk score was significantly

negatively correlated with the number of B cells, CD4 T cells,

CD8 T cells, and dendritic cells in BC (Figures 5A–D). This

suggests that the number of immune cell infiltrations decreased

with an increase in the ICD risk score. The higher the ICD risk

score, the worse the immune infiltration status in the BC tumor

microenvironment. This was further confirmed in the

GSE58812 validation set (Figures 5E–H).

We combined the ICD risk score with the clinical

characteristics of patients with BC and analyzed potential

prognostic indicators. The available clinical information

included age, tumor node metastasis classification, and clinical

stage, as shown in Figure 6A. We evaluated the relationship

between patient age, tumor size, lymph node metastasis, distant

metastasis, and clinical stage using the ICD risk score (Figures

6B–I). The results showed a consistent trend that patients with

low ICD risk scores were predicted to have better clinical

outcomes.

Discussion

As a form of cell death that can cause an immune response,

ICD can stimulate or release immunoregulatory properties while

tumor cells die and multiple immune pathways to promote

immune responses (Sansone et al., 2021). The current low

response rate and multiple side effects of tumor

immunotherapy can hopefully be solved by inducing ICD (Li

et al., 2022). ICD can not only reverse the microenvironment of

tumor immunosuppression but also improve the sensitivity of

immunotherapy. Therefore, according to the urgent need for

tumor immunotherapy, the identification of ICD-related

biomarkers in patients with BC can serve as an effective

clinical treatment. Based on this, this study explored the

potential relationship between ICD-related genes and BC and

found that ICD-related genes were closely related to the survival

prognosis, tumor microenvironment, and clinical characteristics

of patients with BC. Specifically, we constructed and validated a

prognostic risk model for seven ICD-related genes and used it to

classify patients with BC into high- and low-risk cohorts. It is

worth mentioning that this risk model score showed a high

predictive value for BC survival prognosis and showed a negative

FIGURE 5
Correlation between the ICD risk model and tumor microenvironment. The scatter plots indicate that the ICD risk score is significantly
negatively correlated with B cells, CD4 T cells, and CD8 T cells (A–D), and further validation of the GEO cohort showed the same trend (E–H).
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correlation with the tumor microenvironment and clinical

characteristics.

In this study, BC samples were divided into subgroups

C1 and C2 based on the consistent clustering analysis of ICD-

related genes. The results showed that the two subgroups could

effectively distinguish between the survival and prognosis of

patients with BC. GO and KEGG analyses showed that the

DEGs in the two subgroups were significantly enriched in the

adaptive immune response pathways, processes regulating the

immune effect, and immune-related cytokine signaling. DEGs

can interfere with the progression of tumors via twomechanisms:

innate and adaptive immunity (Sun et al., 2020). GSEA further

elucidated the presence of differential regulation in the C1 and

C2 subgroups. The results showed that immune-related signaling

pathways, for example, natural killer cell-mediated cytotoxicity

and the T cell receptor signaling pathway, were significantly

enriched in the C2 group. This could also potentially explain the

reason for better survival and prognosis of the C2 group of

patients with BC at the biological level. The differential

expression of ICD genes in patients with BC prompted us to

construct a prognostic risk model of ICD-related genes.

Initially, 21 confirmed ICD genes were studied, and 7 were

found to be significantly associated with the survival and

prognosis of patients with BC. Among them, the oncogenic

genes were PIK3CA (Hou et al., 2022; Ouedraogo et al., 2022),

EIF2AK3 (Chen et al., 2019), and MYD88 (Chen et al., 2015),

and the immune-related genes were ATG5 (Park et al., 2022),

HSP90AA1 (Lin et al., 2020; Liu et al., 2021), IL1R1 (Dagenais

et al., 2017; Tulotta et al., 2021), and CD8A (Hu et al., 2021),

all of which have been found to be related to the occurrence

and development of BC. Cho et al. (2022) found using

immunohistochemistry that PIK3CA mutations in patients

with BC receiving adjuvant chemotherapy could cause poor

survival and prognosis. Chen et al. analyzed the relationship

between the expression of MYD88 and clinical features in the

pathological tissues of 60 patients with BC and found that the

expression ofMYD88 in tumor tissues was significantly higher

than that in adjacent normal tissues, and protein expression

was significantly correlated with adverse clinical features

(Park et al., 2022). In addition, the latest study on

HSP90AA1 shows that it not only is a pro-oncogene in BC

but also plays a regulatory role in the immune

FIGURE 6
Correlation between the ICD riskmodel and clinical prognosis. (A) Sankey diagram showing the distribution of BC clinical information in the two
subtypes. (B–I) Survival prognosis diagram, which analyzes the relationship with the ICD risk score with regards to age, tumor node metastasis
classification, and clinical stage, which all show that a low ICD risk score indicates a better clinical prognosis.
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microenvironment (Lin et al., 2020). HSP90AA1 regulates the

infiltration of immune cells in BC and has a potential

relationship with T cells, neutrophils, macrophages, and

dendritic cells. This study also identified HSP90AA1 as a

new target for BC immunotherapy.

Immunogenic cell death induced by anticancer drugs may

trigger individual BC patients to acquire anti-tumor immune

memory and promote the treatment process of BC. This also

inspired many ICD biomarkers and therapeutic drugs in BC

in-depth exploration. As early as 2013, researchers conducted

clinical trials on 51 BC patients, and found that HMGB1 and

RAGE are key biomarkers to promote the process of ICD in

patients (Stoetzer et al., 2013). High expression of HMGB1

and low expression of RAGE can effectively predict better

therapeutic response. In addition, Li et al. (2020) conducted

an experimental study on the ICD of BC in vitro. The results

showed that inhibiting the expression of the ICD-related

genes CDK12/13 could release HMGB1 and translocate

calreticulin, and promote T cell dependent tumor

inhibition. Moreover, the enhancement of dendritic cells

and the activation and infiltration of T cells promote the

improvement of tumor immune microenvironment. Another

recent study reported that the new chemotherapeutic

compound TPH104 can induce ICD in BC cells by

increasing the stimulating ability of dendritic cells, thereby

enhancing tumor immunogenicity (Tukaramrao et al., 2021).

The reports of these studies elaborated the role and potential

target value of ICD in the process of BC.

Additionally, the study of ICD is not limited to BC, but

also includes gastric cancer (Xiao et al., 2022), colorectal

cancer (Wang et al., 2022), melanoma (Ren et al., 2022),

neuroblastoma (Wang-Bishop et al., 2020), esophageal

squamous cell carcinoma (Luo et al., 2022), etc. The latest

research, a melanoma prognosis risk model consisting of three

ICD genes was constructed to stratify the prognosis, immune

cell infiltration, and immune related pathways of melanoma

patients, and to screen the precise immunotherapy scheme

(Ren et al., 2022). This is consistent with our research ideas.

To explore the biomarkers of ICD in the tumor immune

microenvironment, which can be used to regulate tumor

immunosuppression to enhance patients’ anti-tumor

immunity and promote the development of cancer

immunotherapy.

ICD triggered by cancer therapy remodels the tumor

immune microenvironment, mainly through the display or

release of damage-associated molecular patterns by stressed

and dead tumor cells, thereby enabling T-cell activation and

the initiation of immune responses (Workenhe et al., 2021).

Damage-associated molecular patterns can stimulate pattern

recognition receptors of dendritic cells and T cells and

promote the generation of primary immunity (Ahmed and

Tait, 2020). It is worth mentioning that we comprehensively

analyzed the correlation between the immune

microenvironment of patients with BC and the ICD

prognosis risk model using ESTIMATE, CIBERSORT, and

TIMER. The results showed that the ICD risk model score was

significantly negatively correlated with B cells, CD4 T cells,

CD8 T cells, and dendritic cells. It has been confirmed that

these cells are highly enriched in cancer, which can predict an

improvement in the clinical prognosis of cancer (Bruni et al.,

2020; Baxevanis et al., 2021). This is also consistent with our

ICD risk model, in which high-risk groups of patients with BC

are predicted to have poor survival and prognosis.

In summary, this study focused on the correlation between

ICD subtypes and the tumor immune microenvironment in BC.

These findings may be helpful in identifying anti-tumor immune

regulation and immunotherapy targets in patients with BC for

tumor control. In addition, we constructed and validated a risk

model of ICD-related genes, which will provide an important

theoretical basis for the survival outcome of clinical patients with

BC and promote the development of precision immunotherapy

for BC.

This study has some limitations that should be

acknowledged. Firstly, due to the clinical data of the

validation cohort lacks information about the progression

of BC patients, such as tumor stage, we did not further

analyze the correlation between the ICD risk model and

clinical outcomes in the validation set. Besides, the BC

sample data used in this study was downloaded from open

database. More prospective studies are needed to be

conducted to further confirm the prognostic value of ICD

genes in BC.

Conclusion

In conclusion, after comprehensive analysis and screening

of ICD-related genes in BC patients, a prognostic risk model

was constructed based on seven ICD-related genes (ATG5,

HSP90AA1, PIK3CA, EIF2AK3, MYD88, IL1R1, and CD8A).

The potential relationship between the risk model and the

clinical characteristics, tumor immune microenvironment

and survival status of BC was explored. This study provides

new insights into the role of ICD in BC. The novel

classification risk model based on ICD in BC established in

this study can aid in estimating the potential prognosis of

patients with BC and the clinical outcomes of immunotherapy

and postulates targets that are more useful in comprehensive

treatment strategies.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Frontiers in Genetics frontiersin.org10

Wang et al. 10.3389/fgene.2022.1052720

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1052720


Author contributions

XW and HH were responsible for the design of the research

ideas of the article. XL, JL, and LW analyzed and corrected the

original data of the article. LL and YL conducted data processing

and built a risk model. TH wrote articles and rechecked the data.

Funding

This research is funded by the Key Research and

Development Program of Shandong (No. 2016CYJS08A01-6).

Research innovation team project on the mechanism and efficacy

evaluation of Jingfang in the treatment of major diseases (No.

220316).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Ahmed, A., and Tait, S. W. G. (2020). Targeting immunogenic cell death in
cancer. Mol. Oncol. 14, 2994–3006. doi:10.1002/1878-0261.12851

Albakova, Z., Mangasarova, Y., and Sapozhnikov, A. (2021). Heat shock proteins
in lymphoma immunotherapy. Front. Immunol. 12, 660085. doi:10.3389/fimmu.
2021.660085

Albaradei, S., Thafar, M., Alsaedi, A., Van Neste, C., Gojobori, T., Essack, M., et al.
(2021). Machine learning and deep learning methods that use omics data for
metastasis prediction. Comput. Struct. Biotechnol. J. 19, 5008–5018. doi:10.1016/j.
csbj.2021.09.001

Baxevanis, C. N., Fortis, S. P., and Perez, S. A. (2021). The balance between breast
cancer and the immune system: Challenges for prognosis and clinical benefit from
immunotherapies. Semin. Cancer Biol. 72, 76–89. doi:10.1016/j.semcancer.2019.
12.018

Bruni, D., Angell, H. K., and Galon, J. (2020). The immune contexture and
Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20,
662–680. doi:10.1038/s41568-020-0285-7

Chen, X., Zhao, F., Zhang, H., Zhu, Y., Wu, K., and Tan, G. (2015). Significance of
TLR4/MyD88 expression in breast cancer. Int. J. Clin. Exp. Pathol. 8, 7034–7039.

Chen, L., He, J., Zhou, J., Xiao, Z., Ding, N., Duan, Y., et al. (2019). EIF2A
promotes cell survival during paclitaxel treatment in vitro and in vivo. J. Cell. Mol.
Med. 23, 6060–6071. doi:10.1111/jcmm.14469

Cho, Y. A., Ko, S. Y., Suh, Y. J., Kim, S., Park, J. H., Park, H. R., et al. (2022).
PIK3CAmutation as potential poor prognostic marker in asian female breast cancer
patients who received adjuvant chemotherapy. Curr. Oncol. 29, 2895–2908. doi:10.
3390/curroncol29050236

Dagenais, M., Dupaul-Chicoine, J., Douglas, T., Champagne, C., Morizot, A.,
and Saleh, M. (2017). The Interleukin (IL)-1R1 pathway is a critical negative
regulator of PyMT-mediated mammary tumorigenesis and pulmonary
metastasis. Oncoimmunology 6, e1287247. doi:10.1080/2162402X.2017.
1287247

Dressler, L., Bortolomeazzi, M., Keddar, M. R., Misetic, H., Sartini, G., Acha-
Sagredo, A., et al. (2022). Comparative assessment of genes driving cancer and
somatic evolution in non-cancer tissues: An update of the network of cancer genes
(NCG) resource. Genome Biol. 23, 35. doi:10.1186/s13059-022-02607-z

Galluzzi, L., Vitale, I., Warren, S., Adjemian, S., Agostinis, P., Martinez, A. B., et al.
(2020). Consensus guidelines for the definition, detection and interpretation of
immunogenic cell death. J. Immunother. Cancer 8, e000337. doi:10.1136/jitc-2019-
000337

Ganini, C., Amelio, I., Bertolo, R., Bove, P., Buonomo, O. C., Candi, E., et al.
(2021). Global mapping of cancers: The cancer Genome Atlas and beyond. Mol.
Oncol. 15, 2823–2840. doi:10.1002/1878-0261.13056

Garg, A. D., De Ruysscher, D., and Agostinis, P. (2016). Immunological
metagene signatures derived from immunogenic cancer cell death associate
with improved survival of patients with lung, breast or ovarian malignancies: A
large-scale meta-analysis. Oncoimmunology 5, e1069938. doi:10.1080/
2162402X.2015.1069938

Ghiringhelli, F., Apetoh, L., Tesniere, A., Aymeric, L., Ma, Y., Ortiz, C., et al. (2009).
Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent
adaptive immunity against tumors. Nat. Med. 15, 1170–1178. doi:10.1038/nm.2028

Hanna, A., and Balko, J. M. (2021). Breast cancer resistance mechanisms:
Challenges to immunotherapy. Breast Cancer Res. Treat. 190, 5–17. doi:10.1007/
s10549-021-06337-x

Hernández Á, P., Juanes-Velasco, P., Landeira-Viñuela, A., Bareke, H.,
Montalvillo, E., Góngora, R., et al. (2021). Restoring the Immunity in the
Tumor Microenvironment: Insights into Immunogenic Cell Death in Onco-
Therapies. Cancers (Basel) 13, 2821. doi:10.3390/cancers13112821

Hou, Y., Peng, Y., and Li, Z. (2022). Update on prognostic and predictive
biomarkers of breast cancer. Semin. Diagn. Pathol. 39, 322–332. doi:10.1053/j.
semdp.2022.06.015

Hu, S., Qu, X., Jiao, Y., Hu, J., and Wang, B. (2021). Immune classification and
immune landscape analysis of triple-negative breast cancer. Front. Genet. 12,
710534. doi:10.3389/fgene.2021.710534

Hung, J. H., Yang, T. H., Hu, Z., Weng, Z., and Delisi, C. (2012). Gene set
enrichment analysis: Performance evaluation and usage guidelines. Brief.
Bioinform. 13, 281–291. doi:10.1093/bib/bbr049

Iulianna, T., Kuldeep, N., and Eric, F. (2022). The achilles’ heel of cancer:
Targeting tumors via lysosome-induced immunogenic cell death. Cell Death Dis.
13, 509. doi:10.1038/s41419-022-04912-8

Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., et al. (2016).
Comprehensive analyses of tumor immunity: Implications for cancer
immunotherapy. Genome Biol. 17, 174. doi:10.1186/s13059-016-1028-7

Li, Y., Zhang, H., Li, Q., Zou, P., Huang, X., Wu, C., et al. (2020). CDK12/
13 inhibition induces immunogenic cell death and enhances anti-PD-
1 anticancer activity in breast cancer. Cancer Lett. 495, 12–21. doi:10.1016/
j.canlet.2020.09.011

Li, X., Zheng, J., Chen, S., Meng, F. D., Ning, J., and Sun, S. L. (2021). Oleandrin, a
cardiac glycoside, induces immunogenic cell death via the PERK/elF2α/ATF4/
CHOP pathway in breast cancer. Cell Death Dis. 12, 314. doi:10.1038/s41419-021-
03605-y

Li, Z., Lai, X., Fu, S., Ren, L., Cai, H., Zhang, H., et al. (2022). Immunogenic cell
death activates the tumor immune microenvironment to boost the immunotherapy
efficiency. Adv. Sci. 9, e2201734. doi:10.1002/advs.202201734

Lin, T., Qiu, Y., Peng, W., and Peng, L. (2020). Heat shock protein 90 family
isoforms as prognostic biomarkers and their correlations with immune infiltration
in breast cancer. Biomed. Res. Int. 2020, 2148253–2148315. doi:10.1155/2020/
2148253

Liu, H., Zhang, Z., Huang, Y., Wei, W., Ning, S., Li, J., et al. (2021). Plasma
HSP90AA1 predicts the risk of breast cancer onset and distant metastasis. Front.
Cell Dev. Biol. 9, 639596. doi:10.3389/fcell.2021.639596

Luo, H., Wang, X., Song, S., Wang, Y., Dan, Q., and Ge, H. (2022). Targeting
stearoyl-coa desaturase enhances radiation induced ferroptosis and immunogenic

Frontiers in Genetics frontiersin.org11

Wang et al. 10.3389/fgene.2022.1052720

https://doi.org/10.1002/1878-0261.12851
https://doi.org/10.3389/fimmu.2021.660085
https://doi.org/10.3389/fimmu.2021.660085
https://doi.org/10.1016/j.csbj.2021.09.001
https://doi.org/10.1016/j.csbj.2021.09.001
https://doi.org/10.1016/j.semcancer.2019.12.018
https://doi.org/10.1016/j.semcancer.2019.12.018
https://doi.org/10.1038/s41568-020-0285-7
https://doi.org/10.1111/jcmm.14469
https://doi.org/10.3390/curroncol29050236
https://doi.org/10.3390/curroncol29050236
https://doi.org/10.1080/2162402X.2017.1287247
https://doi.org/10.1080/2162402X.2017.1287247
https://doi.org/10.1186/s13059-022-02607-z
https://doi.org/10.1136/jitc-2019-000337
https://doi.org/10.1136/jitc-2019-000337
https://doi.org/10.1002/1878-0261.13056
https://doi.org/10.1080/2162402X.2015.1069938
https://doi.org/10.1080/2162402X.2015.1069938
https://doi.org/10.1038/nm.2028
https://doi.org/10.1007/s10549-021-06337-x
https://doi.org/10.1007/s10549-021-06337-x
https://doi.org/10.3390/cancers13112821
https://doi.org/10.1053/j.semdp.2022.06.015
https://doi.org/10.1053/j.semdp.2022.06.015
https://doi.org/10.3389/fgene.2021.710534
https://doi.org/10.1093/bib/bbr049
https://doi.org/10.1038/s41419-022-04912-8
https://doi.org/10.1186/s13059-016-1028-7
https://doi.org/10.1016/j.canlet.2020.09.011
https://doi.org/10.1016/j.canlet.2020.09.011
https://doi.org/10.1038/s41419-021-03605-y
https://doi.org/10.1038/s41419-021-03605-y
https://doi.org/10.1002/advs.202201734
https://doi.org/10.1155/2020/2148253
https://doi.org/10.1155/2020/2148253
https://doi.org/10.3389/fcell.2021.639596
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1052720


cell death in esophageal squamous cell carcinoma. Oncoimmunology 11, 2101769.
doi:10.1080/2162402X.2022.2101769

Mishchenko, T., Balalaeva, I., Gorokhova, A., Vedunova, M., and Krysko, D. V.
(2022). Which cell death modality wins the contest for photodynamic therapy of
cancer? Cell Death Dis. 13, 455. doi:10.1038/s41419-022-04851-4

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al.
(2015). Robust enumeration of cell subsets from tissue expression profiles. Nat.
Methods 12, 453–457. doi:10.1038/nmeth.3337

Ouedraogo, S. Y., Zoure, A. A., Zeye, M. M. J., Kiendrebeogo, T. I., Zhou, X.,
Sawadogo, A. Y., et al. (2022). BRCA1, BRCA2, TP53, PIK3CA, PTEN and
AKT1 genes mutations in Burkina Faso breast cancer patients: Prevalence,
spectrum and novel variant. Mol. Genet. Genomics. 297, 1257–1268. doi:10.
1007/s00438-022-01914-1

Park, J. W., Kim, Y., Lee, S. B., Oh, C. W., Lee, E. J., Ko, J. Y., et al. (2022).
Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-
mediated regulation of ATG5 and/or ATG2B. Mol. Oncol. 16, 1857–1875. doi:10.
1002/1878-0261.13180

Ren, J., Yang, J., Na, S., Wang, Y., Zhang, L., Wang, J., et al. (2022).
Comprehensive characterisation of immunogenic cell death in melanoma
revealing the association with prognosis and tumor immune microenvironment.
Front. Immunol. 13, 998653. doi:10.3389/fimmu.2022.998653

Reyes-Ruiz, A., Calvillo-Rodriguez, K. M., Martínez-Torres, A. C., and
Rodríguez-Padilla, C. (2021). The bovine dialysable leukocyte extract
IMMUNEPOTENT CRP induces immunogenic cell death in breast cancer cells
leading to long-term antitumour memory. Br. J. Cancer 124, 1398–1410. doi:10.
1038/s41416-020-01256-y

Sansone, C., Bruno, A., Piscitelli, C., Baci, D., Fontana, A., Brunet, C., et al. (2021).
Natural compounds of marine origin as inducers of immunogenic cell death (ICD):
Potential role for cancer interception and therapy. Cells 10, 231. doi:10.3390/
cells10020231

Stoetzer, O. J., Fersching, D. M., Salat, C., Steinkohl, O., Gabka, C. J., Hamann, U.,
et al. (2013). Circulating immunogenic cell death biomarkers HMGB1 and RAGE in
breast cancer patients during neoadjuvant chemotherapy. Tumour Biol. 34, 81–90.
doi:10.1007/s13277-012-0513-1

Sun, L., Wang, X., Saredy, J., Yuan, Z., Yang, X., and Wang, H. (2020). Innate-
adaptive immunity interplay and redox regulation in immune response. Redox Biol.
37, 101759. doi:10.1016/j.redox.2020.101759

Tukaramrao, D. B., Malla, S., Saraiya, S., Hanely, R. A., Ray, A., Kumari, S., et al.
(2021). A novel thienopyrimidine analog, TPH104, mediates immunogenic cell
death Triple-Negative Breast Cancer Cells. Cancers 13, 1954. doi:10.3390/
cancers13081954

Tulotta, C., Lefley, D. V., Moore, C. K., Amariutei, A. E., Spicer-Hadlington, A. R.,
Quayle, L. A., et al. (2021). IL-1B drives opposing responses in primary tumours and
bone metastases; harnessing combination therapies to improve outcome in breast
cancer. NPJ Breast Cancer 7, 95. doi:10.1038/s41523-021-00305-w

Wang, W., and Liu, W. (2020). Integration of gene interaction information into a
reweighted Lasso-Cox model for accurate survival prediction. Bioinformatics 36,
5405–5414. doi:10.1093/bioinformatics/btaa1046

Wang, Z., Li, W., Park, J., Gonzalez, K. M., Scott, A. J., and Lu, J. (2022).
Camptothesome elicits immunogenic cell death to boost colorectal cancer immune
checkpoint blockade. J. Control. Release 349, 929–939. doi:10.1016/j.jconrel.2022.07.042

Wang-Bishop, L., Wehbe, M., Shae, D., James, J., Hacker, B. C., Garland, K., et al.
(2020). Potent STING activation stimulates immunogenic cell death to enhance
antitumor immunity in neuroblastoma. J. Immunother. Cancer 8, e000282. doi:10.
1136/jitc-2019-000282

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class
discovery tool with confidence assessments and item tracking. Bioinformatics 26,
1572–1573. doi:10.1093/bioinformatics/btq170

Workenhe, S. T., Pol, J., and Kroemer, G. (2021). Tumor-intrinsic determinants
of immunogenic cell death modalities. Oncoimmunology 10, 1893466. doi:10.1080/
2162402X.2021.1893466

Wu, J., Liu, T., Rios, Z., Mei, Q., Lin, X., and Cao, S. (2017). Heat shock proteins
and cancer. Trends Pharmacol. Sci. 38, 226–256. doi:10.1016/j.tips.2016.11.009

Xiao, Y., Yao,W., Lin, M., Huang,W., Li, B., Peng, B., et al. (2022). Icaritin-loaded
PLGA nanoparticles activate immunogenic cell death and facilitate tumor
recruitment in mice with gastric cancer. Drug Deliv. 29, 1712–1725. doi:10.
1080/10717544.2022.2079769

Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Zeng, D., Ye, Z., Shen, R., Yu, G., Wu, J., Xiong, Y., et al. (2021). Iobr: Multi-
Omics immuno-oncology biological research to decode tumor microenvironment
and signatures. Front. Immunol. 12, 687975. doi:10.3389/fimmu.2021.687975

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.1052720

https://doi.org/10.1080/2162402X.2022.2101769
https://doi.org/10.1038/s41419-022-04851-4
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1007/s00438-022-01914-1
https://doi.org/10.1007/s00438-022-01914-1
https://doi.org/10.1002/1878-0261.13180
https://doi.org/10.1002/1878-0261.13180
https://doi.org/10.3389/fimmu.2022.998653
https://doi.org/10.1038/s41416-020-01256-y
https://doi.org/10.1038/s41416-020-01256-y
https://doi.org/10.3390/cells10020231
https://doi.org/10.3390/cells10020231
https://doi.org/10.1007/s13277-012-0513-1
https://doi.org/10.1016/j.redox.2020.101759
https://doi.org/10.3390/cancers13081954
https://doi.org/10.3390/cancers13081954
https://doi.org/10.1038/s41523-021-00305-w
https://doi.org/10.1093/bioinformatics/btaa1046
https://doi.org/10.1016/j.jconrel.2022.07.042
https://doi.org/10.1136/jitc-2019-000282
https://doi.org/10.1136/jitc-2019-000282
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1080/2162402X.2021.1893466
https://doi.org/10.1080/2162402X.2021.1893466
https://doi.org/10.1016/j.tips.2016.11.009
https://doi.org/10.1080/10717544.2022.2079769
https://doi.org/10.1080/10717544.2022.2079769
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3389/fimmu.2021.687975
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1052720

	Immunogenic cell death-related classifications in breast cancer identify precise immunotherapy biomarkers and enable progno ...
	Background
	Materials and methods
	Datasets
	Identification of the immunogenic cell death subtypes
	Analysis of differentially expressed genes
	Gene set enrichment analysis
	Somatic mutation analysis
	Immune infiltration between two immunogenic cell death subtypes
	Construction of the immunogenic cell death risk model

	Results
	Consensus clustering identified two immunogenic cell death-associated subtypes
	Differential gene expression and enrichment analysis of immunogenic cell death subtypes
	Comparison of somatic mutations and the tumor microenvironment among immunogenic cell death subtypes
	Construction of the immunogenic cell death risk model
	Relationship between the immunogenic cell death risk model, tumor microenvironment, and clinical indicators

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


