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Colon adenocarcinoma (COAD) is a common malignancy and has a high

mortality rate. However, the current tumor node metastasis (TNM) staging

system is inadequate for prognostic assessment of COAD patients.

Therefore, there is an urgent need to identify reliable biomarkers for the

prognosis COAD patients. The aberrant expression of necroptosis-related

genes (NRGs) is reported to be associated with tumorigenesis and

metastasis. In the present work, we compared the expression profiles of

NRGs between COAD patients and normal individuals. Based on seven

differentially expressed NRGs, a risk score was defined to predict the

prognosis of COAD patients. The validation results from both training and

independent external cohorts demonstrated that the risk score is able to

distinguish the high and low risk COAD patients with higher accuracies, and

is independent of the other clinical factors. To facilitate its clinical use, by

integrating the proposed risk score, a nomogram was built to predict the risk of

individual COAD patients. The C-index of the nomogram is 0.75, indicating the

reliability of the nomogram in predicting survival rates. Furthermore, two

candidate drugs, namely dapsone and xanthohumol, were screed out and

validated by molecular docking, which hold the potential for the treatment

of COAD. These results will provide novel clues for the diagnosis and treatment

of COAD.
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1 Introduction

Colon adenocarcinoma (COAD) is one of the most common

cancers worldwide and the second leading cause of cancer death

(Bray et al., 2018). Surgery and chemotherapy remain the

mainstay of colon cancer treatment (Miller et al., 2019). At

present, the prognostic assessment and treatment planning of

COAD patients depend largely on the TNM staging system

(Kehoe and Khatri, 2006). Even at the same tumor stage,

however, due to tumor heterogeneity, there are still significant

disparities in disease progression and clinical outcomes. Hence,

TNM staging system is not fully capable of predicting the

prognosis of colon cancer patients. Accordingly, more reliable

prognostic biomarkers are needed for the diagnose of colon

cancer. The occurrence of tumors is inseparable from the

abnormal gene expressions, and which have been used as

biomarkers to predict the prognosis of diseases (Liu et al.,

2018; Gao et al., 2020). Most recently, it was reported that the

aberrant expression of necroptosis-related genes (NRGs) is

closely associated with the tumorigenesis and metastasis (Ding

et al., 2022; Qi et al., 2022).

Necroptosis is a double-edged sword in the carcinogenesis

and progression of cancer. The tumor cell necrosis can lead to

tumor necrosis and promoted tumor metastasis (Lebrec et al.,

2015). For example, the pro-necrosis proteins, such as RIPK1,

RIPK3, and MLKL, play key roles in promoting tumor growth

(Liu et al., 2016). Conversely, necroptosis also exhibits tumor

suppressive effects. Results from two independent groups showed

that overexpression of the cell necroptosis factor RIP3 inhibited

the proliferation of colon cancer cells (Feng et al., 2015; Krysko

et al., 2017). These findings show that cellular necrosis has a

multifaceted biological role in carcinogenesis and invasion.

Therefore, NRGs have gained attentions of researchers and

have been proposed for risk classification and survival

prediction of COAD patients. For example, Huang et al.

found that a necroptosis-related miRNA risk signature

consisting of seven miRNAs could be used to predict the

prognosis of colon cancer patients (Huang et al., 2021).

Subsequently, Yang et al. constructed a necroptosis-related

miRNA signature for predicting colon cancer prognosis (Yang

et al., 2022). Later on, Liu et al. proposed another model to

predict the prognosis of colon cancer patients based on

necroptosis-related lncRNAs(Liu et al., 2022). However, these

studies only used the TCGA dataset for internal validation, and

did not test their results on the external validation dataset.

Moreover, their accuracies for predicting the prognosis of

colon cancer patients are not satisfactory. Therefore, new

reliable signatures are needed to predict survival in COAD

patients.

In this study, based on the seven differently expressed NRGs, we

proposed a new NRGs-based model to predict the prognosis of

COAD patients. The proposed model is able to distinguish the high

and low risk patients in both internal training and external testing

dataset with higher accuracies. In order to facilitate its clinical use, a

prognostic nomogram was built to quantify the death risk of

individual patients. Moreover, on the basis of Connectivity Map

(Cmap) database (Subramanian et al., 2017), the candidate drugs for

the treatment of high risk patients were screened out and validated

by molecular docking analysis. The workflow of this work was

shown in Figure 1.

2 Materials and methods

2.1 Data collection

The TCGA public database (https://portal.gdc.cancer.gov/) was

used to gather COADRNA-sequencing (RNA-seq) data and clinical

follow-up information. After excluding the samples with a follow-up

period of less than 30 days and samples with duplicate patients, we

obtained 417 tumor tissue samples and 41 non-tumor tissue

samples. The RNA-seq data were then converted to transcripts

per million (TPM). The 556 independent validation samples were

fetched from the GEO dataset (https://www.ncbi.nlm.nih.gov/geo/)

with the accession number GSE39582.

2.2 Acquisition of differentially expressed
NRGs

159 NRGs involved in the necroptosis signaling pathway

were obtained from the KEGG database (https://www.genome.

jp/kegg/, Supplementary Table S1). The limma package (version

3.42.2) in R software (version 3.6.1) was used to perform the

differential expression analysis of NRGs in tumor and non-tumor

tissue with p < 0.05, false discovery rate (FDR) < 0.05 and |

log2FoldChange|>0. The pheatmap (version 1.0.12) and

EnhancedVolcano (version 1.4.0) packages were used for the

visualization of differentially expressed genes (DEGs). The R

package clusterProfiler (Yu et al., 2012) (version 3.14.3) was used

for GO and KEGG enrichment analysis, and enrichplot (version

1.6.1) was used for visualization studies.

2.3 Definition of the NRGs based risk score

Univariate Cox regression analysis was used to screen NRGs

that were significantly (p < 0.05) associated with COAD survival

rates. And then, a LASSO-Cox regression analysis was used to

select the NRGs signature. The genes thus obtained were used to

define a risk score defined as following,

Risk score � ∑
n

i�1
CoefipExp i

where i stands for one of the n NRGs, Expi is the expression level

of gene i, and Coefi is the corresponding coefficient determined
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by LASSO-Cox regression analysis. Patients were then split into

two subgroups, namely low risk group and high risk group, based

on the median of risk score. The survival (version: 3.2–7) and

glmnet (version: 4.1–1) (Friedman et al., 2010) packages in R

were used for the analysis.

2.4 Prognostic performance analysis of
risk signature

Kaplan-Meier survival analysis was used to assess the survival

differences between the two risk groups. The receiver operating

characteristic (ROC) curve was used to evaluate the accuracy for

predicting the overall survival (OS) of COAD patients. The

univariate and multivariate Cox regression analysis were used

to test whether the risk score is independent of the other clinical

traits (age, sex, stage, TNM grade).

2.5 Gene set enrichment analysis

The org. Hs.eg.db (version 3.10.0), clusterProfiler (version

3.14.3), and ggplot2 (version 3.3.3) packages in R were used to

perform gene set enrichment analysis (adjust p < 0.05).

2.6 Construction and verification of
nomogram

For facilitating clinical use, the nomogram was built by using

the rms (version 6.1–1) and survival (version 3.2–7) packages in

R. The discriminative ability of the nomogram was assessed by

using AUC smoothing curve and C-index. Calibration curves

were used to evaluate the relationship between actual results (45-

degree diagonal) and predictive probabilities. The accuracy was

obtained after 1,000 times of bootstraps (Huang et al., 2016).

2.7 Candidate drug identification

The Cmap database was used to identify the drugs for the

treatment of patients in the high risk group. The DEGs between

high and low risk groups in the TCGA-COAD cohort were

identified by using differential expression analysis (|log2FC|≥1.5,
p < 0.05, and FDR<0.05). By inputting the DEGs of the high risk

group into Cmap, the potential drug candidates were obtained

and sorted based on their scores ranging from -100 to 100. The

positive scores indicate the synergistic effects of the drugs on

diseases, while negative scores indicate antagonistic effects of the

drugs on diseases (Subramanian et al., 2017). Hence, the drugs

FIGURE 1
The flow chart of this study.
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with negative scores hold the potential for the treatment of

diseases. In the present work, drugs with score less than

-80 were selected out for further analysis.

2.8 Drug targets identification and
validation

The targets of the candidate drugs were predicted by using

the STITCH database (http://stitch.embl.de/) with the

confidence score greater than 0.8 (Szklarczyk et al., 2016).

Only the targets that differentially expressed between high and

low risk groups and significantly correlated with patient OS

were screened out. The 2D structures of candidate drugs were

taken from the PubChem database (https://pubchem.ncbi.

nlm.nih.gov/), and their 3D chemical structures were drawn

using ChemOffice 2019. The protein structures of the targets

were obtained from the RCSB PDB database (PDB, http://

www.pdb.org/). The AutoDockTools-1.5.6 and Autodock

Vina-1.1.2 were used to perform molecular docking

between candidate drugs and the targets (Morris et al.,

2009; Trott and Olson, 2010). A docking free energy less

than -5.0 kcal/mol was regarded as a stable binding (Li

et al., 2022). PyMOL-2.4.0 and Discovery studio 4.5 were

used to visualize the molecular docking results.

2.9 Statistical analysis

All statistical analysis and result visualization were
performed by using R (version 3.6.1). The Wilcoxon test was
utilized to determine the difference between the two groups. The
Pearson correlation coefficient was calculated to assess the
associations between clinicopathological characteristics and
risk scores. p < 0.05 was regarded as statistically significant
for two-sided tests.

3 Results

3.1 Differentially expression of NRGs

Among the 159 NRGs, 105 were differentially expressed (p <
0.05 and FDR<0.05) between normal and COAD samples,

Figure 2A. Further analysis demonstrated that 40 NRGs were

significantly under-expressed in tumor tissues, and 65 were

significantly over-expressed, Figure 2B and Supplementary

Table S2. The results from KEGG analysis demonstrated that

the most significantly enriched pathway of the differentially

expressed NRGs is necroptosis (Supplementary Figures

FIGURE 2
The differentially expressed NRGs. (A) Heatmap for the
105 differentially expressed NRGs. Red is tumor tissue samples,
and blue is normal samples (*p < 0.05; **p < 0.01; ***p < 0.001). (B)
A volcano plot of NRGs. Up-regulated and down-regulated
genes are indicated by red and blue, respectively.
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FIGURE 3
Validation of the prognostic NRGs signature in COAD patients (A–B) The TCGA-COAD samples were divided into high and low risk groups
according to themedian risk score. The larger the risk score, themore the samples of deaths. (C)Differentially expression of prognostic genes in high
and low risk groups are depicted in a boxplot. Red is the high risk group and green is the low risk group (***p < 0.001). (D) Kaplan-Meier curve for
predicting OS in the TCGA cohort. Red is the high risk group and blue is the low risk group. (E) ROC curve in the TCGA cohort. (F) Kaplan–Meier
curve for predicting OS in the GEO cohort. (G) ROC curve in the GEO cohort.
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S1A,B). However, the GO enrichment analysis demonstrated that

the under-expressed and over-expressed NRGs were enriched in

different entries (Supplementary Figure S1C and S1D). For the

biological process (BP), the up-regulated genes were most

significantly enriched in regulation of apoptotic signaling

pathway, while down-regulated genes were in necroptotic

process. In terms of cellular component (CC), the up-

regulated genes were in nuclear chromatin, while down-

regulated genes were in endosome membrane. The most

significantly enriched molecular function of up-regulated

genes is cytokine receptor binding, while that of down-

regulated genes is protein serine/threonine kinase activity.

These results demonstrated that the differentially expressed

NRGs were associated distinct biological functions.

3.2 Establishment and validation of the
prognostic NRGs signature in COAD
patients

Univariate Cox regression analysis showed that eight

NRGs were significantly associated with the survival status

of COAD patients (Supplementary Table S3). We further

employed the LASSO-Cox regression analysis to assess the

survival rates of COAD patients, and obtained seven NRGs

(Supplementary Figures S2A,B, Supplementary Table S4). It

was found that five of them (CAMK2B, H2AC6, MLKL,

RBCK1, and TRAF2) were risk factors and two

(RIPK3 and VDAC3) were protective factors

(Supplementary Figure S2C). Then, they were used to

build the prognostic-related NRG signature (also called

risk score, see section 2.3).

On the basis of the prognostic-related NRG signature, each

sample was assigned a risk score. With the median risk score as a

cut-off value, the samples in the dataset were divided into high

risk group (n = 208) and low risk (n = 209) group, respectively.

With the increasement of risk score, the number of deaths

increased progressively (Figures 3A,B). In the high risk group,

the risk factors were significantly overexpressed, while the

protective factors were significantly under expressed

(Figure 3C). The Kaplan-Meier survival curve based on the

risk score shows that the high and low risk groups have

significantly different survival rates. Patients in the high risk

group having a lower OS than those in the low risk group

(Figure 3D).

The performance of the risk score for predicting the

patient’s OS was evaluated by using the ROC curve. Its

area under the ROC curve (AUC) for 1-year, 3-year and 5-

year OS were 0.697, 0.711, and 0.737 (Figure 3E), respectively.

The AUC for predicting 5-year OS is better than those

reported by Huang et al. (AUC = 0.724) (Huang et al.,

2021), Yang et al. (AUC = 0.656) (Yang et al., 2022), and

Liu et al. (AUC = 0.639) (Liu et al., 2022). The 7-NRGs based

risk score model was further validated in the independent

GEO dataset (GSE39582). Compared with low risk patients,

patients in the high risk group also had a worse OS

(Figure 3F). The AUCs for 1-, 3-, and 5-year OS were

0.636, 0.577, and 0.587 (Figure 3G). These results indicate

that the developed prognostic model is reliable, and the seven

NRGs holds the potential to be efficient biomarkers for the

prognosis of COAD.

3.3 NRGs signature is an independent
prognostic factor

The univariate and multivariate Cox regression analysis were

further performed to test whether the risk score is independent of

the other clinical factors. The result of univariate Cox regression

analysis demonstrated that risk score, age, stage, T, N, and M

stages were all associated with patient survivals (Figure 4A). The

multivariate Cox regression analysis demonstrated that the risk

score is independent of the above mentioned clinical factors

(Figure 4B), and can satisfactorily classify the survival status,

tumor stage, N and M grades of COAD patients (Figures 4C–F).

With the increase of the risk score, the pathological degree of

tumor become worse. These findings imply that the risk score is

effective in predicting the survival and prognosis of COAD

patients.

3.4 Gene set enrichment analysis

The results of GSEA demonstrated that the focal adhesion,

ECM-receptor interaction and glycosaminoglycan

biosynthesis pathways were enriched in the high risk group

(Figures 5A–C, Supplementary Table S5), indicating that the

tumor metastasis and invasion were the characteristics of high

risk group. Chemical carcinogenesis-DNA adducts,

ferroptosis and chemical carcinogenesis-reactive oxygen

species were the enriched pathways of the low risk group

(Figures 5D–F), demonstrating that tumor formation and

progression are the characteristics of the low risk

group. These results were consistent with the progression

of COAD.

3.5 Construction and evaluation of a
prognostic nomogram for individual
COAD patients

In order to facilitate personalized survival prediction of COAD

patients, the nomogram was built based on risk score, T and age

(Figure 6A). The C-index and AUC were used to evaluate the

performance of the nomogram, and the calibration curve is used to

see how well the prediction matches the actual. The C-index of the
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model is 0.75 and the 1-, 3-, and 5-year survival probabilities are

quite close to ideal performance (45-degree line), indicating

satisfactory performance of the nomogram in predicting OS

(Figure 6B). When compared with a single kind of prognostic

feature, the nomogram outperforms risk score, T and age for

predicting the survivals of COAD patients, suggesting the better

performance of nomogram (Figure 6C).

3.6 Candidate drugs identification for high
risk COAD patients

To identify potential drugs for the treatment of high risk

COAD patients, a total of 237 DEGs (Supplementary Table

S6) were used as the inputs of the Cmap database, among

which, 210 DEGs were significantly up-regulated and 27 were

FIGURE 4
Independent prognostic analysis. (A) Univariate independent prognostic analysis in the TCGA cohort. (B) Multivariate independent prognostic
analysis in the TCGA cohort. (C–F) NRGs signature based outcome stratification of different clinicopathological features (Status, Stage, N, M).
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significantly down-regulated in the high risk group. It was

found that five drugs, namely MST-312, flucytosine,

ganglioside, xanthohumol and dapsone, were with the

scores less than -80 and held the potential for the

treatment of high risk patients (Table 1).

3.7 Targets screening and molecular
docking

Based on the STITCH database, we obtained 17 targets for

the five candicate drugs, including seven for dapsone, three for

flucytosine, and seven for xanthohumol, respectively (Figures

7A–C). Eight of the 17 genes were differentially expressed in

high risk group. NOTCH1, DNMT1, LCAT were over-

expressed, while CYP3A4, NAT2, DGAT1, CYP3A5,

CYP3A7 were under-expressed (Figure 7D). Further

analysis demonstrated that only two of the eight

differentially expressed genes were significantly associated

with the survival of COAD patients (Figures 7E,F and

Supplementary Figure S3). The patients with a high

expression of NAT2 and a low expression of LCAT exhibit

the higher survival rate (Figures 7E,F). Therefore, it is

speculated that the drugs xanthohumol and dapsone may

affect tumor progression by affecting the abnormally

expression of LCAT and NAT2, respectively.

To validate whether the xanthohumol and dapsone could

interact with target genes, the molecular docking was performed

between the drugs and target genes, i.e. dapsone and NAT2,

xanthohumol and LCAT, respectively. The dapsone and NAT2

(PDB ID: 2 P FR) had a docking affinity score of -6.4 kcal/mol

(Figure 8A). Dapsone binds to NAT2 through interacting with

amino acid residues, such as glu261, leu275, ser274, gly276,

glu264, leu267, asn278, leu279, val263 and glu260. The

docking affinity score between xanthohumol and LCAT (PDB

ID: 4X96) was -7.1 kcal/mol (Figure 8B). Xanthohumol binds to

LCAT through interacting with amino acid residues, such as

asp56, phe58, glu55, thr54, lys53, thr123, arg52, asn379, his122,

phe382, gly199 and tyr51. These results demonstrate that

dapsone and xanthohumol possess good combination with

their targets, and hold the potential to be the drugs for the

treatment of COAD.

4 Discussion

The development of biomarkers and therapeutic targets at the

molecular level is crucial for the prognosis and treatment of COAD.

Tumorigenesis and metastasis are both aided by necroptosis (Stoll

et al., 2017; Seehawer et al., 2018; Yan et al., 2022). Dysregulated

expression of necroptosis genes can lead to chronic colonic

inflammation which promotes colon cancer growth (Wang et al.,

FIGURE 5
Functional gene set enrichment analysis. (A–C) The pathways enriched in high risk group; (D–F) The pathways enriched in low risk group.
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2020), suggesting that necroptosis is important for the development

of COAD. At the meantime, it was also reported that medicines and

substances that can interact with necroptosis genes have anticancer

potentials (Su et al., 2015; Gong et al., 2019). In the present work, we

therefore developed a NRGs based model for predicting the

prognosis of COAD patients and identified the candidate drugs

for the treatment COAD.

The proposed risk score model was built by using seven

differentially expressed NRGs, namely CAMK2B, H2AC6,

FIGURE 6
Construction and evaluation of the prognostic nomogram. (A) The nomogram predicts the probability of the 1-, 3-, and 5-year OS. (B) The
calibration plot of the nomogram for predicting the probability of the 1-, 3-, and 5-year OS. (C) AUC smooth curve for evaluating the accuracy of
nomogram predictions.

TABLE 1 Summary of connectivity map prediction results.

Drugs Score Description

MST-312 -93.38 Telomerase inhibitor

Flucytosine -87.35 Antifungal

Ganglioside -85.85 SRC activator

Xanthohumol -82.18 ATPase inhibitor

Dapsone -80.21 Bacterial antifolate
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FIGURE 7
Candidate drugs screening for high risk patients and target identification. (A–C) The identified targets (confidence score>0.8) from STRING for
dapsone, xanthohumol and flucytosine, respectively. (D) Eight of the 17 targets were significantly differentially expressed, of which five were
significantly under-expressed in the high risk group and three were significantly over-expressed (**p < 0.01; ***p < 0.001). (E,F) Patients with a high
NAT2 expression and patients with a low LCAT expression had a higher survival rate.
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FIGURE 8
The result of molecular docking between candidate drugs and targets. (A) Themolecular docking results between dapsone and its target NAT2.
(B) The molecular docking results between xanthohumol and its target LCAT.
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MLKL, RBCK1, VDAC3, RIPK3, and TRAF2. CAMK2B

regulates the microenvironmental remodeling of renal

papillary cell carcinoma, which has an anti-tumor effect (Jia

et al., 2022). H2AC6, which belongs to the H2A family of

histones, is a replication-dependent histone. Histone H2A has

been linked to diabetic nephropathy, atherosclerosis,

cardiovascular disease, and hypertensive kidney injury (Gao

et al., 2013; Jiang et al., 2018; Yerra and Advani, 2018; Pei

et al., 2021). MLKL may serve as a promising target to block

tumor regeneration and participate in the regulation of

necroptosis pathway, thereby improving the efficacy of

radiation therapy for colorectal cancer (Wang et al., 2019).

Overexpression of RBCK1 was reported to be associated with

a poor prognosis in colorectal cancer patients (Liu et al., 2019).

VDAC3 has been linked to cancer and pathology as a potential

marker of mitochondrial status (Reina et al., 2016). Up-

regulation of RIPK3 can prevent the development of liver

cancer (Wu et al., 2020). TRAF2 is a tumor suppressor gene

in colon cancer (Moon et al., 2021). Considering that RNA

modifications were associated with the development of

cancers, we performed the conservation analysis of N6-

methyladenosine (m6A) modification for the seven genes by

using ConsRM(Song et al., 2021). The conserved m6A sites

were identified in TRAF2 and RBCK1, suggesting that m6A

modification may be also associated with the pathogenesis

of COAD.

Based on the proposed model, the patients in the TCGA

cohort were clustered into low and high risk groups. In the high

risk group, patients have a considerably shorter OS than those in

the low risk group. The ROC curves obtained from the TCGA

training data and the independent GEO data indicated that the

proposed model has a relative high accuracy for predicting the

OS of COAD patients and could be utilized as an independent

predictor to predict patients’ risk of death.

The results from GSEA enrichment analysis demonstrated that

the tumor metastasis and invasion associated signaling pathways

were enriched in the high risk group (Figure 5). For example, the

focal adhesion signaling pathway is closely related to tumor invasion

(Golubovskaya and Cance, 2010). ECM-receptor interaction is an

important pathway for colorectal cancer cell metastasis (Nersisyan

et al., 2021). Glycosaminoglycan can promote cancer angiogenesis

and metastasis (Wei et al., 2020). Signaling pathways related to

tumor formation and progression were enhanced in the low risk

group. Ferroptosis and chemical carcinogenesis promote the

occurrence and development of cancer (de Bono et al., 2020;

Chaudhary et al., 2021).

In order to provide insights for the treatment of COAD, we

identified two candidate drugs, namely dapsone and xanthohumol,

from the Cmap database. The dapsone improves the overall survival

of colon cancer patients by inhibiting the expression level of tumor

growth-driving elements IL-8 (Fisher et al., 2019; Kast et al., 2022).

Xanthohumol acts as a carcinogenic inhibitor, lowdose xanthohumol

treatment blocks the proliferation and spread of primary colon

cancer cells (Torrens-Mas et al., 2022). The results of molecular

docking analysis demonstrated that dapsone and xanthohumol can

interact with NAT2 and LCAT, respectively. Thus, dapsone and

xanthohumol may alter the tumor progression of high risk COAD

patients by acting on NAT2 and LCAT, respectively. Further

experimental analysis was needed to illustrate the detail mechanisms.

Taken together, we developed a NRGs signature that can be

used to predict the prognosis of COAD patients and screened out

two candidate drugs for the treatment of high risk COAD patients.

Inevitably, the following limitations should be considered in the

future works. First, the robustness of the proposed model should be

validated by large-scale prospective trials or cell experiments.

Second, experiments are needed to validate the interactions

between candidate drugs and targets and to demonstrate their

treatment mechanisms on COAD. In addition, the data from the

RNA modification databases, such as m6A-atlas (Tang et al., 2021),

m5C-atlas (Ma et al., 2022), andm7Ghub (Song et al., 2020), should

be integrated to further examine whether RNA modifications are

associated with COAD as well.
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