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We aimed to create a mitophagy-related risk model via data mining of gene

expression profiles to predict prognosis in uveal melanoma (UM) and develop a

novel method for improving the prediction of clinical outcomes. Together with

clinical information, RNA-seq andmicroarray data were gathered from the Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

ConsensusClusterPlus was used to detect mitophagy-related subgroups. The

genes involved with mitophagy, and the UM prognosis were discovered using

univariate Cox regression analysis. In an outside population, a mitophagy risk sign

was constructed and verified using least absolute shrinkage and selection operator

(LASSO) regression. Data from both survival studies and receiver operating

characteristic (ROC) curve analyses were used to evaluate model performance,

a bootstrap method was used test the model. Functional enrichment and immune

infiltrationwere examined. A riskmodelwas developedusing sixmitophagy-related

genes (ATG12, CSNK2B, MTERF3, TOMM5, TOMM40, and TOMM70), and patients

with UM were divided into low- and high-risk subgroups. Patients in the high-risk

group had a lower chance of living longer than those in the low-risk group (p <
0.001). The ROC test indicated the accuracy of the signature.Moreover, prognostic

nomograms and calibration plots, which included mitophagy signals, were

produced with high predictive performance, and the risk model was strongly

associated with the control of immune infiltration. Furthermore, functional

enrichment analysis demonstrated that several mitophagy subtypes may be

implicated in cancer, mitochondrial metabolism, and immunological control

signaling pathways. The mitophagy-related risk model we developed may be

used to anticipate the clinical outcomes of UM and highlight the involvement of

mitophagy-related genes as prospective therapeutic options in UM. Furthermore,

our study emphasizes the essential role of mitophagy in UM.
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Introduction

Uveal melanoma (UM) is the most prevalent primary

intraocular malignancy in adults, affecting 5–10 per million

people (Ortega et al., 2020). The disease is confined to the eye

in over 95% of patients at initial diagnosis; however, up to 50% of

patients eventually develop metastasis, which is associated with

poor prognosis and a survival of less than one year (Nathan et al.,

2015; Castet et al., 2019). The bleak prognosis of UM has seen

minimal improvement despite intensive research into its

physiopathology, histology, and molecular biology (Ortega

et al., 2020). Therefore, UM management currently focuses on

the early identification of diagnostic and prognostic biomarkers

and therapeutic targets.

Autophagy is a catabolic process that plays a vital role in

maintaining homeostasis in various biological processes

(Chung et al., 2020). Mitophagy, a specific type of

autophagy, is a cellular process that removes aged and

damaged mitochondria through lysosomal degradation (Ma

et al., 2020). Mitophagy defects are linked to the onset and

progression of several illnesses, including malignancies, heart

failure, and neurological disorders (Onishi et al., 2021). Various

studies have shown that mitophagy pathways are intimately

associated with the metabolic rearrangement of cancer cells to

meet the high bioenergetic needs of tumors (Vara-Perez et al.,

2019). Although definitive functional changes and molecular

mechanisms of mitophagy have not been completely elucidated,

the expression levels of some mitophagy-related genes could

serve as biomarkers for the diagnosis, prognosis, or therapy of

some cancers (Wang et al., 2021; Wang et al., 2022). A recent

paper revealed that mitophagy is closely related to the clinical

prognosis of patients with UM, and indicated that mitophagy-

related biomarkers (PGAM5, SQSTM1, ATG9A, and

GABARAPL1) are survival-related genes of UM patients (Liu

et al., 2022). However, the mitophagy-related genes that cause

pathogenesis, as well as their importance in the diagnosis,

prognosis, and therapeutic interventions of UM, remain

unclear.

We screened and examined the mitophagy-related gene

expression patterns of UM and normal samples by using an

expression matrix of the samples from The Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/) and Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo) databases.

We then constructed a mitophagy-related risk model and

mitophagy score and performed functional analysis, clinical

feature correlation analysis, and immune infiltration analysis.

Correlation analysis of the clinical prognosis based on

mitophagy-related gene scores was performed. Our findings

provide unique insights into the critical roles that mitophagy

plays in the development and prognosis of UM, as well as

determining whether the mitophagy-related gene signature is

a viable prognostic biomarker and potential treatment option for

UM patients.

Materials and methods

Collecting data

Gene expression data of patients with UM were obtained

from the TCGA (Hutter and Zenklusen, 2018) (https://portal.

gdc.cancer.gov/) and GEO databases (Barrett et al., 2007) from

the GSE22138 (Laurent et al., 2011) (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE22138) dataset. The TCGA

database contained the expression data and corresponding

clinicopathological information for 80 UM samples, as shown

in Table 1. The chip platform for the GSE22138 dataset (sample

size:63) was the [HG-U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array, as shown in Table 1. The set of mitophagy-

related genes was obtained from Wang et al, (2022).

UM patient cluster analysis using single-
sample gene set enrichment analysis
results

Bindea et al, (2013) determined that we have 23 gene sets

relating to immune response. To assess the number of

immune cells present in each sample, we measured the

expression levels of genes that are unique to those cells.

The R statistical environment (R core team) “GSVA” tool

was used to run single-sample gene set enrichment analysis

(ssGSEA). Patients’ immune cells were analyzed using the

ssGSEA technique, and we used the “hclust” module of the

“sparcl” program to separate UM patients into various groups

based on the quantity of immune cells in each sample. The

ESTIMATE Score, ImmuneScore, StromalScore, and tumor

purity were proven using the “ESTIMATE” R program. This

package was developed to assess the immune and stromal cell

invasion of the tumor microenvironment (TME) using gene

expression patterns; ImmuneScore represents the infiltration

of immune cells in the tumor tissue; ESTIMATEScore is used

to predict tumor purity, and StromalScore assesses the

presence of stroma in tumor tissue. The expression of

23 immune cells in different groups was analysed using

TABLE 1 Baseline data table.

TCGA GSE22138

No. of patients 80 63

Age (median, range) 62 (22–86) 62 (28–84)

Gender (%)

Female 35 (43.75%) 24 (38.10%)

Male 45 (56.25%) 39 (61.90%)
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heat maps. Both datasets were then processed using the Perl

programming language to identify mitophagy-related genes.

Two immunological groups with wide variations in

mitophagy-related gene expression were compared using

principal component analysis (PCA), and the results were

visualized using “ggplot2” to confirm if the grouping was

legitimate. Mitophagy-related genes were subsequently

identified using the R “limma” package (Ritchie et al.,

2015), which was used to identify separate immunological

groups of UM patients with a p < 0.05 screening cut-off.

Construction of molecular isoforms of
mitophagy-related genes

Depending on mitophagy-related gene expression, we performed

co-expression analysis of mitophagy-related genes in UM and

consistency clustering analysis of TCGA-UM data using the

“ConsensusClusterPlus” (Wilkerson and Hayes, 2010) (http://www.

bioconductor.org/packages/release/bioc/html/ConsensusClusterPlus.

html)package in R. Samples were classified into different groups as

shown by mitophagy-related gene expression, with parameters set to

50 replicates (reps = 50) and a resampling rate of 80% (pItem = 0.8).

To determine the validity of the grouping, we performed PCA (UM)

of the expressionprofiles of all genes, and the outcomeswere displayed

using the “ggplot2” package. In addition, we observed a correlation

between the different groups and mitophagy-related genes.

Gene set variation analysis and GSEA

Gene set variation analysis (GSVA) is a non-parametric

unsupervised analytic approach primarily used to examine the

microarray nuclear transcriptome gene set enrichment findings.

We wanted to see if different metabolic pathways were more

prevalent across samples by changing gene expression matrices

to gene set matrices. The gene sets “c2. Kegg. v7.5.1″ and “c5.go.

v7.5.1″were retrieved from theMsigDB database (Liberzon et al.,

2015) (http://www.gsea-msigdb.org/gsea/index.jsp). Utilizing the

“GSVA” R package for GSVA enrichment analysis (Hänzelmann

et al., 2013) and the “pheatmap” package for visualization, GSVA

enrichment was carried out on two gene sets with distinct

mitophagy-related gene molecular isoforms. Gene set

enrichment analysis (GSEA) was used to evaluate the trend of

the organization of genes from a preset gene set in a table of

differentially expressed genes (DEGs) arranged by their

phenotypic correlation, and thus to quantify their contribution

to phenotype (Subramanian et al., 2005). The “c2. Kegg. v7.5.1″
and “c5.go. v7.5.1″ character gene sets were subjected to GSEA.

The “clusterProfiler” R package (Yu et al., 2012) was used to

accomplish GSEA evaluation, and a p-value of < 0.05 was

regarded as statistically significant.

Predictive model construction and
validation

Utilizing genes linked with mitophagy, the prediction method

was created. Based on the survival package threshold values, we

initially classified all UM patients into high- and low-risk categories.

Then, we used one-way COX regression analysis to identify crucial

mitophagy-related genes and the “forestplot” R package to illustrate

the results. Using the “glmnet” R package (Friedman et al., 2010), the

training group was subjected to a least absolute shrinkage and choice

operator (LASSO) regression analysis. The LASSO method reduces

data size by employing a model with fewer components to describe

the data attributes (Gui and Li, 2005). Using tenfold cross-validation,

the training cohort-based model was prevented from overfitting. On

the basis of the regression coefficients produced from the LASSO

regression analysis, a suitable rating system and prognostic grouping

were formed. To enhance the prediction accuracy of the model,

which was developed by integrating clinical characteristics and

prognostic risk scores to predict the probability of survival in

patients with UM, we performed a receiver operating

characteristic (ROC) curve analysis using the “survival” R package

and measured the region under curves (AUCs) for various survival

times. Using calibration curves and C-index readings generated from

1,000 rounds of bootstrap testing, the discriminatory power of

column line graphs was evaluated. In addition, we examined the

relationship between prognostic models and clinicopathological

characteristics in the TCGA data. In addition, the expression of

mitophagy-related genes was identified in the various risk groupings.

Lastly, we employed the “survival” R package to examine the overall

survival of the two patient groups.

Immunopurity, immune infiltration, and
functional enrichment analysis

To examine the link between these parameters, risk scores

were first categorized by clinical features. Second, the “survival”

package in R was employed to identify the impact of prognostic

mitophagy-related gene expression on the survival of various risk

groups. The link between the ESTIMATE score and high- and

low-risk categories was investigated further.

The assessment of immune cell infiltration in UM patients

using RNA-Seq data is a crucial tool for illness research, therapy

prognosis prediction, and cellular infiltration estimation

(Newman et al., 2019). We evaluated the link between

immune cells and prognostic models to examine the link

between the various models and the degree of immune

infiltration. Lastly, we did GSVA analysis of “c2. Kegg. v7.5.1.”

and “c5.go. v7.5.1.” symbol gene sets in various risk groups,

performed GSVA enrichment analysis with the “GSVA” R

package (Hänzelmann et al., 2013), and illustrated the results

with the “pheatmap” package.
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Mitophagy score and immune cell
correlation analysis

The R “PCA” package was applied to calculate the mitophagy

level scores for each sample based on prognostic mitophagy-

related gene expression. Subsequently, correlations between

immune cells and mitophagy level scores were calculated to

assess the relationship between different models and the level

of immune infiltration.

GEO dataset validation

Key mitophagy-related genes were identified by intersecting

the gene lists produced from enrichment and correlation studies.

We divided all GEO-UM patients into high- and low-risk sets

based on the survival threshold levels provided by the R

“survival” package. Then, a univariate COX regression analysis

was carried out to screen for major impacts of mitophagy-related

genes, and we displayed the results using the R “forestplot”

package. Using the R “glmnet” package (Friedman et al.,

2010), a LASSO regression analysis was then conducted on the

training cohort. On the basis of the regression coefficients derived

from LASSO regression analysis, a score system was developed, and

prognostic grouping was done appropriately. To evaluate model

stability, we performed ROC curve assessment with the “survival”

package and produced AUCs for various survival periods. We

studied the overall survival of patients in both groups using the

R program “Kaplan–Meier survival” Furthermore, the expression of

important genes in the various risk categories and groups with or

without metastasis was evaluated.

Statistical analysis

Using the R statistical environment and associated R packages

(https://www.r-project.org/, version 4.0.2), all data were estimated

and evaluated. The statistical accuracy of normally distributed

values was assessed with an independent Student’s t-test, whilst

differences between non-normally distributed parameters were

examined with the Mann–Whitney U test (i.e., the Wilcoxon

rank sum test). p < 0.05 was considered statistically significant

for all two-sided p-values.

Results

Differential expression analysis of
mitophagy-related genes in different
immune groups

To evaluate the variability of mitophagy regulating genes in

distinct immunological groups, we calculated the degree of

infiltration of 23 immune cells in each sample using the

ssGSEA method on TCGA-UM data and then used hierarchical

clustering to separate the samples into three groups (Figure 1A).

Green indicates the low immunity group (51 samples), blue the

medium immunity group (4 samples), and red the high immunity

group (25 samples). Using the ESTIMATE technique, we also

determined the estimated score, immunological score, stromal

score, and tumor purity for each sample. We utilized a heat

map to illustrate the expression of immune cells in each sample

subgroup, so we categorized the samples into high, medium,

and low immune-level groups (Figure 1B). Consequently, we

conducted a differential gene expression (DGE) study of

mitophagy-related genes utilizing the two groups with the

greatest differential expression (high and low immunity

groups), and the PCA findings revealed that the high- and

low-immunity groups had a greater efficiency of isolation

(Figure 1C). Using the Wilcoxon test method, twelve genes

were shown to be substantially differentially expressed across

the high-and low-risk groups (Figure 1D; p < 0.001 forUBC, p <
0.01 for ATG12, UBB, TOMM7, CSNK2A2, MTERF3, RPS27A,

p < 0.05 for MAP1LC3B, SQSTM1, TOMM20, TOMM70, and

UBA52).

Characterization of mitophagy-related
gene expression in uveal melanoma

We performed a co-expression study of mitophagy-related genes

in UM/normal tissue to determine the influence of mitophagy-related

genes on UM tissue (Figure 2A). The findings of the co-expression

study demonstrated a substantial association between MFN1

expression and that of many genes. To further explore the role of

mitophagy-related genes inUM,we used the expression ofmitophagy-

related genes to perform hierarchical clustering of all TCGA samples

with the parameter set to 50 replicates (reps = 50) and resampling rate

of 80% (pItem = 0.8). All materials were categorized into two isoforms

(A: n = 38; B: n = 42; Figures 2B–D), and the PCA findings

demonstrated a high degree of separation (Figure 2F). Further

differential expression assessment of mitophagy-related genes in

groups A and B revealed that 16 genes were substantially differently

expressed in distinct subgroups, with p-values of ATG5, ATG12,

CSNK2A1, CSNK2B, FUNDC1, MAP1LC3A, MAP1LC3B, MFN1,

MTERF3, PGAM5, PRKN, TOMM5, TOMM20, TOMM70, and

UBA52 being < 0.001 and p-values of RPS27A being < 0.05.

(Figures 2E,G; Supplementary Figure S1).

Evaluation ofmolecular isoformmodels of
mitophagy-related genes

We further performed GSVA based on different groups of

molecular subtypes of mitophagy-related gene constructs. The

results suggested that the cluster A group focused on functional
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association with centrosome duplication, microtubule organizing

center organization, centriole, cul3 ring ubiquitin ligase complex,

ciliary basal body replication fork processing, centriole assembly,

ubiquitin-like protein-specific protease activity, RNA binding

involved in post-transcriptional gene silencing, and DNA-binding

transcriptional repressor activity (Figure 3; Supplementary Table S1).

Construction of prognostic model of
mitophagy-related genes and screening of
key mitophagy-related genes

To observe the effect of mitophagy-related genes on UM

tissue, we performed one-way COX regression analysis of

FIGURE 1
Differential expression analysis of mitophagy-related genes. (A) SsGSEA algorithm for hierarchical clustering of tumor samples in the TCGA-UM
dataset was divided into three groups: high immune group, medium immune group and low immune group according to the degree of immune
infiltration. (B)Complex heat map presentation of the results of immune infiltration analysis of immune subgroups of tumor samples from the TCGA-
UM dataset. (C) The PCA analysis results of the high and low immune groups of tumor samples in the TCGA-UM data set are shown. (D) Group
comparison graph showing the results of differential expression analysis of mitophagy-related genes between high and low immune subgroups of
tumor samples in the TCGA-UM dataset, red represents the high immune group and blue represents the low immune group. Ns, not significant; *p <
0.05; **p < 0.01; ***p < 0.001. TCGA, The cancer genome atlas; UM, uveal melanoma; PCA, principal component analysis.
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mitophagy-related genes in UM/normal tissue (Figure 4A;

Table 2). Regression analysis identified 12 genes, including

TOMM40, CSNK2B, ATG12, UBB, TOMM7, CSNK2A2,

TOMM5, PGAM5, MTERF3, VDAC1, TOMM70, and RPS27A,

which were significantly associated with UM; and a LASSO

prognostic model containing six genes was constructed using

significantly associated mitophagy-related gene expression in

UM (Figures 4B–C). We multiply the gene expression in the

TCGA-UM dataset of the LASSO prognostic model by the

coefficient of each gene in the model, and then add them

together to obtain the Riskscore of the LASSO prognostic

model. The Riskscore calculation formula is as follows:

riskScore � ∑
i
Coefficient

(hub genei)*mRNAExpression (hub genei)
The Riskscore calculated according to the LASSO prognostic

model was segmented into high- and low-risk groups depending

on the median and then verified using AUC for the prognostic

model, revealing that the risk level had good predictive accuracy

for 1-, 3-, and 5-year patient survival (Figure 4D). In addition, we

developed a nomogram (Figure 4E) and a calibration plot

(Figure 4F) by combining the risk score of the LASSO model

with clinical features, such as patient age, gender, and TNM stage.

In addition, we obtained the clinical data of the samples to link

several clinical parameters with the LASSO risk score. The

FIGURE 2
Expression characteristics and molecular grouping of mitophagy-related genes in uveal melanoma. (A) Correlation heat map display of
mitophagy-related genes co-expression. (B–D) Consistent clustering (K = 2) results of TCGA-UM dataset based on mitophagy-related genes
expression (B, cluster1: clusterA; cluster2: clusterB). CDF curves for different numbers of clusters in consistent clustering (C) and delta plot of area
under the CDF curve (D), dividing the samples into group A and group B. (E) Box plot of differential expression analysis of mitophagy-related
genes in different isoforms of the TCGA-UM dataset, blue represents group A and red represents group B. (F) PCA analysis results of different
subtypes of TCGA-UM dataset, blue represents group A, red represents group B. (G) Differential expression analysis of different isoforms of
mitophagy-related genes in the TCGA-UM dataset complex heat map display, blue represents group A, red represents group B. Ns, not significant; *,
p < 0.05; **, p < 0.01; ***, p < 0.001. TCGA, The cancer genome atlas; UM, uveal melanoma; CDF, cumulative distribution function; PCA, principal
component analysis; KM, Kaplan–Meier.
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findings indicate that both the T-stage and risk score of the tumor

had a substantial impact on the prognosis. We also found that

sample risk score rose substantially with increasing T-stage and

grade (Figures 4G,H), which was consistent with our earlier

assumption. The majority of mitophagy-related genes were

substantially differently expressed within subgroups

(Figure 4I), where the p-values of TOMM40, CSNK2B, UBC,

UBB, TOMM7, CSNK2A2, SQSTM1, PGAM5,MTERF3, VDAC1,

TOMM70, and RPS27A were < 0.001, the p-value of SRC was <
0.01, and the p-values of CSNK2A1, ATG12, TOMM5, and

UBA52 were < 0.05. In conclusion, the survival analysis of the

high-risk and low-risk groups revealed that the low-risk group

had greater survival rates (Figure 4J).

Investigation of the LASSO outcome demonstrated that

patients with high-risk scores had a reduced rate of survival

and a higher mortality rate (Figures 5A–C). Survival study of the

FIGURE 3
GSVA and GSEA of molecular subtypes of mitophagy-related genes. (A) GSVA-GO enrichment analysis heat map results based on the
c5.go.v7.5.1.symbols gene set in different groups of the TCGA-UM dataset. (B) GSVA-KEGG enrichment analysis heat map results based on the
c2.kegg.v7.5.1.symbols gene set in different groups of TCGA-UM dataset. (C) GSEA-GO cluster B enrichment analysis results pathway display. (D)
GSEA-GO cluster A enrichment analysis results pathway display. (E) GSEA-KEGG cluster B enrichment analysis results pathway display. (F)
GSEA-KEGG cluster A enrichment analysis results pathway display. GSVA, Gene Set Variation Analysis; TCGA, the cancer genome atlas; UM, uveal
melanoma; GO, GeneOntology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis. The screening criteria for
significant enrichment in GSEA enrichment analysis was p < 0.05.
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screened core genes reported a significant association between

the expression of ATG12, CSNK2B, MTERF3, TOMM5,

TOMM40, and TOMM70 with patient survival rate (Figures

5D–I). The findings of the ESTIMATE data show that

samples from patients with high-risk scores had a greater

ESTIMATE score (Figure 5J).

FIGURE 4
Prognosticmodel construction based onmitophagy-related genes. (A) Forest diagram showing the results of COX regression analysis based on
mitophagy-related genes. (B,C) Prognostic model (B) and variable trajectory (C) of LASSO regression analysis model based on mitophagy-related
genes. (D) Time-dependent ROC curve results of Riskscore of LASSOmodel are shown. Green is the AUC of patients who survived one year, blue is
the AUC of patients who survived three years, and red is the AUC of patients who survived five years. (E,F)Nomogram results of different clinical
variables combined with LASSO model Riskscore high and low groups (E) and results of 1-year, 3-year, 5-year calibration curve analysis (F). (G,H)
Difference analysis group comparison chart results of LASSOmodel Riskscore in different T stages (G) and different stage stages (H). (I) The results of
analysis of the differences in expression of mitophagy-related genes between high and low Riskscore groups in the LASSO model are shown in the
group comparison chart, where blue is the low-risk group and red is the high-risk group. (J) KM curve results of survival analysis of the LASSOmodel
with high and low Riskscore groups, blue is the low -risk group and red is the high-risk group. The closer the AUC in ROC curve was to 1, the better
the diagnostic effect was. The AUC has low accuracy when it is between 0.5 and 0.7. The AUC has a certain accuracy between 0.7 and 0.9. The
accuracy is higher when the AUC is above 0.9. Ns, not significant; *, p <0.05; **, p < 0.01; ***, p < 0.001. LASSO, least absolute shrinkage and selection
operator; KM, Kaplan–Meier; ROC, receiver operating characteristic.
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Correlation analysis between risk score
and immune cell infiltration

Using the Wilcoxon test method, we identified 22 immune

cells that were substantially less penetrated in the high-risk group

compared with the low-risk group (Figure 6). The cells consisted

of activated B cells, activated CD4+ T cells, activated CD8+ T cells,

activated dendritic cells, CD56 bright natural killer cells,

CD56 dim natural killer cells, eosinophils, gamma delta

T cells, immune B cells, mature dendritic cells, macrophages,

mast cells, MDSCs, monocytes, natural killer cells, natural killer

T cells, neutrophils, regulatory T cells, T follicular Eosinophils,

and Type 2 T helper cells, which had p values of < 0.01; the

remaining 20 immune cells had p values of < 0.001.

We conducted aGSVA assessment of themolecular functions of

the various groups based on the immunological score construction

model classification of high-and low-risk groups. The gene ontology

(GO) results showed that the low-risk group was concerned with

activities linked to UDP-xylosyltransferase activity, sperm flagellum

construction, positive control of cell ageing, tumor necrosis factor-

activated receptor activity, and cellular response to interferon beta

(Figure 7A). The results of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) indicated that the low-risk group focused on

correlating with ABC transporters, apoptosis, RIG-I-like receptor

signaling mechanism, complement and coagulation cascades,

natural killer cell-mediated cytotoxicity, cytokine-cytokine

receptor interaction, graft versus host disease, and other functions

(Figure 7B).

Mitophagy score and immune cell
correlation analysis

We used the PCA technique to score mitophagy levels in

individual samples to obtain the Mitophagy Score in order to

investigate the link between mitophagy and the presence of

immune cells in patients with uveal melanoma. From the

Wilcoxon results, it was determined that 10 immune cells

were substantially different from the mitophagy level score

(Supplementary Figure S2); these included CD56 dim natural

killer cells, eosinophils, gamma delta T cells, mature B cells,

macrophages, mast cells, MDSCs, monocytes, neutrophils,

and type 2 T helper cells. Five immune cells had p <
0.01 and four immune cells displayed p < 0.01.

GEO dataset validation

DEGs from different immune groups, different molecular

subtype groups, and prognostic genes obtained from LASSO

regression screening were overlapped to identify key

mitophagy-related genes, including MTERF3, TOMM70,

and ATG12. Additional validation using the GEO dataset

was conducted by splitting all GEO-UM patients into high-

and low-risk groups based on survival analysis critical values,

and then performing one-way COX regression (Figure 8A;

Table 3) and LASSO regression analysis (Figures 8B–C) to

create a prognostic model grouping that included UBB, UBC,

SQSTM1, MTERF3, and ULK1. To evaluate model stability,

further ROC curve analysis was undertaken to estimate the

AUC for various survival periods; the findings indicated that

the model was stable (Figure 8D). Survival study

demonstrated the solid predictive character of the model

(Figure 8E). The important mitophagy-related genes were

intersected with the prognostic genes from GEO to identify

the hub gene MTERF3, and the expression difference of the

key MTERF3 gene was confirmed in various GEO risk

(Figure 8F) and metastatic groups (Figure 8G). MTERF3

was substantially expressed in both high-risk and

metastatic groups; hence, we hypothesized that MTERF3

may be employed as a cancer-promoting gene in uveal

melanoma.

Discussion

In our research, we examined the impact of mitophagy in

UM. Differential expression analysis of mitophagy-related genes

in various immunological groups revealed 12 DEGs in the high-

and low-risk groups. Later, TCGA samples were classified into

two subtypes using hierarchical clustering analysis based on the

expression of mitophagy-related genes, and 16 DEGs were

discovered in separate subtypes. A recent paper revealed that

mitophagy-related biomarkers (PGAM5, SQSTM1, ATG9A, and

GABARAPL1) were survival-related genes of UM patients, which

could be used to predict the survival of these patients (Liu et al.,

2022). Our results also showed the high expression of PGAM5

and SQSTM1 in the high immune-level and high-risk groups.

TABLE 2 Univariate COX analysis of TCGA data set.

id HR p-value

TOMM40 7.718 < 0.001

MTERF3 2.058 < 0.01

VDAC1 5.291 < 0.01

TOMM7 0.277 < 0.01

CSNK2A2 0.306 < 0.01

PGAM5 6.687 < 0.01

CSNK2B 0.296 < 0.01

TOMM70 0.452 < 0.01

TOMM5 5.261 < 0.05

UBB 2.979 < 0.05

RPS27A 0.405 < 0.05

ATG12 2.436 < 0.05
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Another study further validated that the high expression of

SQSTM1 was a high-risk factor for the lowest survival rate of

UM patients (Fei et al., 2022). Given this, our results are

reproducible and reliable and the mitophagy-related role of

PGAM5 and SQSTM1 are worth being investigated in future

studies.

The results of the GSEA demonstrated that the various

mitophagy subtypes may be engaged in signaling pathways

linked to cancer, mitochondrial metabolism, and modulatory

signaling. Cancer cell proliferation, abnormal mitochondrial

metabolism, and a remodeled tumor immune microenvironment

are associated with UM growth and metastasis (Castet et al., 2019;

FIGURE 5
Survival-related analysis based on the prognosticmodel ofmitophagy-related genes. (A–C) Riskscore of patient samples between high and low
Riskscore groups in LASSOmodel (A) and expression of survival status of patients between high and low risk groups (B) and complex heatmap results
of prognostic genes in themodel (C). (D–I) KM curves for survival analysis ofmitophagy-related genes, including ATG12 (D),CSNK2B (E),MTERF3 (F),
TOMM5 (G), TOMM40 (H) and TOMM70 (I) in the LASSO model. (J) Estimate analysis results between high and low Riskscore groups of the
LASSOmodel show the group comparison of Stromal Score, Immune Score, and ESTIMATE Score. Ns, not significant; *, p < 0.05; **, p < 0.01; ***, p <
0.001. LASSO, least absolute shrinkage and selection operator; KM, Kaplan–Meier.
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FIGURE 6
Correlation analysis between immune cells and Riskscores. (A–V) The scatter plot of the correlation analysis results between the LASSOmodel
risk score and the infiltration abundance of immune cell including Activated B cells (A), Activated CD4 T cells (B), Activated CD8 T cells (C), Activated
dendritic cells (D), CD56 bright natural killer cells (E), CD56dim natural killer cells (F), Eosinophils (G), Gamma delta T cells (H), Immune B cells (I),
Mature dendritic cells (J), Macrophages (K), Mast cells (L), MDSCs (M), Monocytes (N), Natural killer cells (O), Natural killer T cells (P), Neutrophils
(Q), Regulatory T cells (R), T follicular helper cells (S), Type1 T helper cells (T), Type2 T helper cells (U), Type 17 T helper cells (V). The slope is the
magnitude of the correlation, and the p-value indicates the level of significance. p ≥ 0.05, not statistically significant; p < 0.05, statistically significant;
p < 0.01, highly statistically significant; p < 0.001, extremely statistically significant. The absolute value of the correlation coefficient (R) in the
correlation scatter plot is above 0.8, which is a strong correlation; The absolute value between 0.5 and 0.8 is a moderate degree of correlation; The
absolute value between 0.3 and 0.5 is weakly correlated; The absolute value below 0.3 is considered weak or uncorrelated.
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Giallongo et al., 2020; Garcia-Mulero et al., 2021), consistent with

our results. Enrichment analysis results confirmed the validity of the

mitophagy-related genes identified in our study. Thus, we speculate

that the differentially expressed mitophagy-related genes play key

roles in facilitating the poor prognosis of UM, possibly by regulating

cancer cell proliferation and immune or TME factors. Amitophagy-

related risk model and nomogram were constructed using LASSO

and Cox regression analysis to anticipate the prognosis of UM. A

unique prognostic pattern consisting of six mitophagy-related genes

was identified as a crucial independent prognostic factor for

predicting the long-term prognosis of UM patients. The risk

scores of mitophagy-associated signatures were connected to

survival rate, tumor stage, and T stage, according to a correlation

study. Depending on the risk model, patients were categorized as

high- or low-risk. Owing to the poorer prognosis of high-risk

patients, more aggressive therapies and shorter follow-up periods

are necessary, suggesting that this risk model might help in the

provision of accurate and tailored therapy in clinical practice.

Six key mitophagy-related genes (ATG12, CSNK2B,

MTERF3, TOMM5, TOMM40, and TOMM70) were

screened. ATG12 is a human homolog of the yeast protein

involved in autophagy (Murrow and Debnath, 2015). One study

reported that the overexpression of lncRNA ZNNT1 can

promote ATG12-dependent cell death to inhibit UM tumor

cell growth and migration (Li et al., 2020a). In contrast,

different research discovered frameshift mutations with

FIGURE 7
GSVA enrichment analysis between high and low prognostic risk groups. (A) Complex heat map showing the results of GSVA-GO analysis
between low and high prognostic risk groups. (B) Complex heat map showing the results of GSVA-KEGG analysis between low and high prognostic
risk groups. GSVA, gene set variation analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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single nucleotide repeats in ATG12 genes in gastric and

colorectal tumors, which may contribute to the advancement

of cancer by dysregulating the autophagy process (Li et al.,

2020b). CSNK2B encodes the beta component of casein kinase

II, a protein that controls physiological mechanisms, signal

transduction, transcription, translation, and replication

(Heller-Harrison et al., 1989). Overexpression of CSNK2B in

hepatocellular carcinoma and colorectal cancer increases cell

division and prevents death (Yu et al., 2021). Mitochondrial

transcription is inhibited by MTERF3 [20]. High MTERF3

expression correlates with cancer development and predicts a

poor outcome in brain glioma patients (Zi et al., 2019).

Interestingly, our findings also revealed that MTERF3 might

be exploited as a cancer-promoting gene in UM, which is

associated with illness advancement and poor prognosis.

TOMM5, TOMM40, and TOMM70 are elements of the

mitochondrial outer membrane translocase complex (Melin

et al., 2014; Wang et al., 2020; Pitt and Buchanan, 2021),

which facilitates the supply of proteins into mitochondria.

P53-tom5 slows the proliferation of human A549 non-small

cell lung cancer cells via directly impairing mitochondria

(Umemoto et al., 2011). By controlling mitochondrial

FIGURE 8
GEO dataset validates key mitophagy-related genes. (A) Forest diagram showing the results of COX regression analysis of mitophagy-related
genes based on the GEOdataset. (B,C) Prognosis model diagram (B) and variable trajectory diagram (C) of LASSO regression analysismodel based on
the GEO dataset of mitophagy-related genes. (D) The time-dependent ROC curve results of Riskscore of the LASSO model based on the GEO
dataset, green is the AUC of patients who survived for one year, blue is the AUC of patients who survived for three years, and red is the AUC of
patients who survived for five years. (E) KM curve results of survival analysis of the LASSOmodel with high and low Riskscore groups, show that blue is
the low-risk group and red is the high-risk group. (F–G) Based on the GEO dataset, the results of group comparison between the high and low
Riskscore groups (F) and whether to transfer group (G) of mitophagy-related gene MTERF3 in the LASSO model. High risk group in blue, low risk
group in red (F); blue represents the non-metastasized group, red represents the metastasized group (G). The closer the AUC in ROC curve was to 1,
the better the diagnostic effect was. The AUC has low accuracy when it is between 0.5 and 0.7. The AUC has a certain accuracy between 0.7 and 0.9.
The accuracy is higher when the AUC is above 0.9. Ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001. LASSO, least absolute shrinkage and
selection operator; KM, Kaplan–Meier; ROC, receiver operating characteristic.
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activity and increasing cellular energy and redox state, TOM40

supports the formation of epithelial ovarian cancer; greater

levels of TOM40 protein expression are linked to fewer survival

outcomes (Yang et al., 2020). Richter et al. identified TOM70 as

the primary target of RL2 in the mitochondrial membrane and

proved that RL2 acts primarily on the mitochondria, causing

reduced ATP generation and apoptosis in breast cancer

(Richter et al., 2020). Autophagy can serve a balanced,

tumor-inhibiting, or tumor-promoting function in multiple

circumstances and phases of malignant transformation,

depending on the cancer type, milieu, pathogenic

circumstances, existence and state of the immune system,

and stage of cancer progression (Li et al., 2020b). The

mechanism of these six UM genes is not yet completely

understood. Further investigation of their roles in UM

pathogenesis, particularly in relation to mitophagy, may

generate new lines of inquiry.

Another important result of our research is that the

mitophagy score is linked to the level of CD56-dim natural

killer cells, eosinophils, gamma-delta T cells, mature B cells,

macrophages, mast cells, MDSCs, monocytes, neutrophils,

and type 2 T helper cells. Several studies (Coussens and

Werb, 2002; Horii and Matsushita, 2021) have found that

the release of extracellular proteases, proangiogenic agents,

and chemokines by macrophages, neutrophils, mast cells,

eosinophils, and activated T lymphocytes promotes tumor

development. Furthermore, immune cell invasion may

influence the response to cancer immunotherapy (Zhang

and Zhang, 2020). Thus, we believe that dysregulated

mitophagy-related gene-related mechanisms may influence

the immunotherapy response in UM. There is a need for

additional research into the possible mechanisms of the

mitophagy-related gene signature, mitophagy-related

hazard ratio, and infiltrating immune cells, which may

provide potential assistance for personalized therapies and

possibilities for the creation of fresh treatment interventions

for UM. In conclusion, our findings suggest that mitophagy-

related genes may influence the tumor immune milieu and the

prognosis of UM.

Our integrated microarray and RNA-seq data analysis

showed for the first time that mitophagy-related signature

genes are implicated in UM progression, prognosis, and TME

immune cell infiltration. However, our study had certain

restrictions. All study data were obtained from a publicly

accessible database, which may contain biases based on race,

location, and/or other demographic characteristics. What’s

more, the findings were derived from bioinformatics analysis

and lacked experimental confirmation using solid clinical

specimens. It is necessary to accumulate UM samples for

sequencing and further expand the sample size to validate

our findings. Experiments such as western blot (WB),

quantitative real-time PCR, and immunohistochemistry

analysis are available to examine the primary expression of

these predicted mitophagy-related genes in clinical tissue

samples associated with UM. Furthermore, to elucidate the

function of mitophagy-related genes in UM, studies on loss-

of-function and gain-of-function at the molecular, cellular

and biological levels are essential. Relevant molecular

experiments may provide detailed and robust evidence for

these predictive genes regulatory pathways in UM. In

addition, the incorporation of many datasets in our study

may have resulted in batch-to-batch discrepancies that could

not be prevented or eliminated during evaluation. Finally, this

unique mitophagy-related risk model has not been extended

to all cancer types, which is worth being investigated in future

studies.

Conclusion

We developed a unique mitophagy-related risk model that

offers a potential viable prognostic predictor for UM. The

expression of mitophagy-related signature genes was also

linked with the tumor milieu and immune cell infiltration,

as shown by additional research into the molecular processes

of mitophagy. Therefore, this research demonstrates the

importance of mitophagy in UM, which may provide

unique and promising indicators for the accurate

prediction of clinical outcomes and choice of customized

therapy targets. Additional in vitro and in vivo research is

necessary to confirm our findings.
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SUPPLEMENTARY FIGURE S1
Analysis of mitophagy-related genes expression among different
subgroups. Group comparison diagram showing the results of
differential expression analysis of mitophagy-related genes in different
groups of TCGA-UMdataset, including (A) ATG5. (B) ATG12. (C)CSNK2A1.
(D) CSNK2B. (E) FUNDC1. (F) MAP1LC3A. (G) MAP1LC3B. (H) MFN1. (I)
MTERF3. (J) PGAM5. (K) PRKN. (L) RPS27A. (M) TOMM5. (N) TOMM20.
(O) TOMM70. (P) UBA52. Ns, not significant; *p < 0.05; **p < 0.01; ***p <
0.001. TCGA, the cancer genome atlas; UM, uveal melanoma.

SUPPLEMENTARY FIGURE S2
Correlation analysis between immune cells andmitophagy-related genes
scores. The scatter plot of the correlation analysis results between
mitophagy-related genes score and the infiltration abundance of
immune cell including CD56dim.natural.killer.cells (A), Eosinophils (B),
Gamma delta T cells (C), Mature B cells (D), Macrophages (E), Mast cells
(F), MDSCs (G), Monocytes (H), Neutrophils (I) and Type 2 T helper cells
(J). The slope is the magnitude of the correlation, and the p-value
indicates the level of significance. P ≥ 0.05, not statistically significant;
P < 0.05, statistically significant; P < 0.01, highly statistically significant;
P < 0.001, extremely statistically significant. The absolute value of the
correlation coefficient (R) in the correlation scatter plot is above 0.8,
which is a strong correlation; The absolute value between 0.5 and 0.8 is
a moderate degree of correlation; The absolute value between 0.3 and
0.5 is weakly correlated; The absolute value below 0.3 is considered
weak or uncorrelated.
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