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Backgrounds:Neutrophil extracellular traps (NETs) play an important role in the

occurrence, metastasis, and immune escape of cancers. We aim to investigate

Long non-coding RNAs (lncRNAs) that are correlated to NETs to find some

potentially useful biomarkers for lung adenocarcinoma (LUAD), and to explore

their correlations with immunotherapy and chemotherapy, as well as the tumor

microenvironment.

Methods: Based on the The Cancer Genome Atlas (TCGA) database, we

identified the prognosis-related lncRNAs which are associated with NETs

using cox regression. The patients were then separated into two clusters

based on the expression of NETs-associated lncRNAs to perform tumor

microenvironment analysis and immune-checkpoint analysis. Least absolute

shrinkage and selection operator (LASSO) regression was then performed to

establish a prognostic signature. Furthermore, nomogram analysis, tumor

mutation burden analysis, immune infiltration analysis, as well as drug

sensitivity analysis were performed to test the signature.

Results:Using univariate cox regression, we found 10NETs-associated lncRNAs

that are associated with the outcomes of LUAD patients. Also, further analysis

which separated the patients into 2 clusters showed that the 10 lncRNAs had

significant correlations with the tumor microenvironment. Using LASSO

regression, we finally constructed a signature to predict the outcomes of the

patients based on 4 NETs-associated lncRNAs. The 4 NETs-associated lncRNAs

were namely SIRLNT, AL365181.3, FAM83A-AS1, and AJ003147.2. Using Kaplan-

Meier (K-M) analysis, we found that the risk model was strongly associated with

the survival outcomes of the patients both in the training group and in the

validation group 1 and 2 (p < 0.001, p = 0.026, and p < 0.01). Using receiver

operating characteristic (ROC) curve, we tested the sensitivity combined with

the specificity of themodel and found that the riskmodel had a satisfactory level

of 1-year, 3-year, and 5-year concordance index (C-index) (C = 0.661 in the

training group, C = 0.679 in validation group 1, C = 0.692 in validation group 2).
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We also explored the immune microenvironment and immune checkpoint

correlation of the risk model and found some significant results.

Conclusion: We constructed a NETs-associated lncRNA signature to predict

the outcome of patients with LUAD, which is associated with

immunephenoscores and immune checkpoint-gene expression.

KEYWORDS

neutrophil extracellular traps (NETs), long non-coding RNAs (lncRNAs), risk score, lung
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Introduction

Lung Adenocarcinoma (LUAD) is a particular pathologic type

of non-small cell lung cancer (NSCLC), which accounted for nearly

90% of deaths of lung cancer worldwide (Relli et al., 2019). As the

most common primary lung cancer type, LUAD ismainly caused by

tobacco smoking—whether primary or secondary exposure, indoor/

outdoor air pollution, and occupational exposure to other harmful

agents such as silica, asbestos, radon, heavy metals, and so on.

Despite all those reasons, the reason ranked first in etiology in

LUAD is tobacco smoking (Hutchinson et al., 2019). Traditional

treatments of LUAD include surgical excision, chemotherapy, and

radiotherapy. Newly discovered treatment therapies, for example,

immunotherapy is also making progress in the treatment of LUAD

(Succony et al., 2021). Presently, evidences have shown that the

discovery and application of new molecular biomarkers is quite

promising in improving the outcomes of patients with LUAD (Xu

et al., 2020).

Neutrophils play an indispensable role in the immune

response. Neutrophil extracellular traps (NETs) are structures

released by immune cells under various stimulations or

pathological conditions (Kolaczkowska and Kubes, 2013;

Németh et al., 2016). NETs are extracellular structures made

up of mitochondrial and nuclear DNA as well as histones, which

have been recently considered an innate defense mechanism to

constrain and eliminate invading pathogens (Pruchniak and

Demkow, 2019). The process of classical NETs formation is

defined as “neutrophil extracellular traposis (NETosis)”, which

has been identified as a unique form of regulated cell death,

which is different from programmed-cell deaths, such as

apoptosis, ferroptosis, and pyroptosis (Manda-Handzlik et al.,

2020). NETs play a vital role in the development and progression

of tumors. Although the NET is considered an immune response

against pathological conditions, there are still a lot of researchers

who claim otherwise. In hepatocellular carcinoma (HCC), NETs

were proved to induce the metastasis of primary HCC (Dickson,

2020; Yang et al., 2020). Also, NETs could render the metastasis

of breast cancer, which was induced by cancer cells (Park et al.,

2016). Therefore, it is essential to find out the important

biomarkers related to NETs to predict the prognosis of

LUAD, and to provide possible therapeutic targets for this

disease (Mutua and Gershwin, 2021).

Long non-coding RNAs (lncRNAs) are RNAs with a length

of more than 200 nucleotides that do not have the function of

encoding proteins and play important roles in a wide range

of cellular processes (Eptaminitaki et al., 2022). By participating

in pathophysiological activities such as cell growth, apoptosis,

invasion and metastasis, lncRNAs play a key regulatory role in

the development and evolution of cancers, so it can be used as a

tumor marker for a variety of malignant tumors, including

LUAD (Vallone et al., 2018; Tian et al., 2020; Tian et al.,

2021). In addition, multiple lncRNAs have been identified as

promising biological therapeutic targets and closely related to

drug resistance of lung cancer (Chen et al., 2020; Yu et al., 2020;

Zhang et al., 2021). Also, studies related to the mechanisms

regarding the synergetic interactions between those NETs

associated lncRNAs are becoming more and more important

(Fang et al., 2021).

In this article, we constructed a NETs-associated lncRNA risk

model for the prediction of prognosis based on public databases and

repositories. Kaplan-Meier survival analysis and ROC analysis were

used to assess the validity of themodel. Also, based on the riskmodel

we acquired, analyses were employed to investigate the relationship

between the model and tumor immunity, immune checkpoint, and

chemotherapeutic sensitivity.

Materials and methods

Data acquisition and processing

LUAD patients’ transcriptomic data and clinical information

were downloaded from TCGA database (LUAD samples: 539,

normal samples: 59) (Tomczak et al., 2015). Samples with no

follow-up information and incomplete clinical information were

also deleted, 478 tumors samples were retained for this study. Perl

software was used to integrate the raw data into an expressionmatrix.

NETs associated-lncRNA downloading
and acquisition

We identified 469 lncRNAs that had close correlation with

NET-related genes from the TCGA database based on Pearson
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analysis and he standard used in this part was Pearson R >
0.5 and p < 0.001 (Liu et al., 2022).

Survival analysis using univariate cox
regression

Univariate cox regression was conducted for lncRNAs that

are identified as NETs-related lncRNA associated with prognosis

using the R software package survival (version 3.2). The lncRNAs

with survival significance (p < 0.01) were filtered to conduct

further analysis.

Consensus clustering analysis

To evaluate the characteristics of classifying patterns of

NETs in prognosis and immune feature, all LUAD patients

were divided into two subgroups by performing consensus

clustering analysis. This method identified distinct NETs

modification patterns based on the expression level of

NETs-related genes by “ConsensusClusterPlus” package.

For the major parameters in the “ConsensusClusterPlus”

function, the following was set: the max cluster number

(maxK) = 9, proportion of items to sample (pItem) = 0.8,

proportion of features to sample (pFeature) = 1, cluster

algorithm (clusterAlg) = hc/hierarchical, and distance =

spearman. The above process is repeated 1,000 times to

ensure the consistency of the classification (Wilkerson and

Hayes, 2010).

Establishing a prognostic signature using
LASSO regression

We randomly divided the entire set (478 samples) into two

sets using the R package “caret.” The least absolute shrinkage and

selection operator (LASSO) regression was performed to

construct a prognostic signature to reduce the number of

variables and to reduce Multicollinearity in our model. The

risk score can be illustrated as follows: Risk score =

∑n
i�1βi*gene expressioni (βi: coefficient of gene i;

gene_expressioni: expression of gene i). The patients were

grouped by risk scores, which divided them into high-risk and

low-risk groups (Ni et al., 2022). Survival analysis was performed

accordingly using package Survival (version 3.2).

Time ROC curve analysis for assessing the
prognostic ability of the model

The receiver operating characteristic (ROC) curve is a

graphical plot that illustrates the diagnostic ability of a binary

classifier system as its discrimination threshold is varied (Hoo

et al., 2017).

Tumor immune infiltration analysis

In this study, we employed multiple methods for tumor

immune infiltration, including TIMER, QUANTISEQ,

ESTIMATE, and so on (Li et al., 2017; Chakraborty and

Hossain, 2018). Immune checkpoint analysis was also

performed to examine the immunological differences between

the high-risk and the low-risk groups. The details of the immune-

infiltration analysis have been intensively described in our

previous works (Liu et al., 2021a).

Tumor mutation burden analysis

Tumor mutation burden (TMB) analysis, which refers to the

density of non-synonymous mutation in the protein-coding area

of the tumor cell genomes (Cui et al., 2021).

Nomogram construction

The nomogram of the risk score and relevant clinical

information was depicted using package survival (version 3.2)

and package RMS (version 6.3) (Wu et al., 2020).

Immunophenoscore analysis

Immunophenoscore (IPS) consists of MHC molecular

(MHC), effector cells (ECs), immune checkpoints (CPs),

and immunosuppressive cells (SCs). Immunophenotype

scores with a scale ranging from 0 to 10 was calculated

using the expression of representative genes or immune

manifestation of gene sets (Xu et al., 2021). The IPS of

LUAD patients were obtained from the Cancer Immunome

Atlas (TCIA) framework (Kirby et al., 2020). Furthermore, IPS

z-score is regarded as an integration of the four phenotypes:

MHC, CPs, SCs and ECs.

Tumor stemness analysis using stemness
scores

To analyze the features of tumor stem cells in LUAD patients,

we downloaded RNA expression data and DNAmethylation data

for LUAD from TCGA. RNA stemness score (RNAss) and DNA

stemness score (DNAss) of the patients were presented using the

R packages “limma” and “corrplot” correspondingly (Zhang

et al., 2020). The algorithms for calculation of tumor stemness
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have been introduced and described by scientists previously

(Malta et al., 2018).

Drug sensitivity analysis

The “pRRophetic” package and the expression matrix of

LUAD patients was used for predicting the minimum drug

inhibition concentration (IC50) of drugs in uveal melanoma

patients of high-risk and low-risk groups (Geeleher et al.,

2014). Drugs that have statistically different IC50 values and

may become candidates for the treatment of LUAD were

obtained as potential therapeutic drugs.

Statistical analysis

R v.4.1.0 was used to do statistical tests. The differences of the

two subgroups were calculated by Student’s t test and ANOVA.

Kaplan-Meier analysis and log rank test were employed to

calculate the discrepancy of OS between the two risk groups.

The relationships between risk score and immune infiltration

level were calculated by Pearson correlation test. p < 0.05 was

defined to have statistical difference.

Results

10 NETs-related lncRNAs were filtered as
the potentially prognosis-related lncRNAs

We identified 469 lncRNAs that was correlated with Nets

from TCGA database by Pearson correlation analysis with the

correlation coefficient >0.5 and p < 0.001. Then, the univariate

cox regression was performed for the NETs-associated lncRNAs

that have potential prognostic values (p < 0.05). 10 NETs-

associated lncRNAs in total were obtained, namely

AL133335.2, AL137230.1, AC004080.2, SIRLNT, AL365181.3,

AL590666.2, FAM83A-AS1, AL133390.1, AC106045.1, and

AJ003147.2. All lncRNAs had HR > 1, meaning that the

lncRNAs were related to a poor prognosis of LUAD (Table 1).

Based on the expression profiles in TCGA database, these

10 NETs-associated lncRNAs expression were different

between the LUAD and normal tissues (Figures 1A,B).

According to the similarity of NETs-related genes expression

level and the proportion of fuzzy clustering measurement, it was

found that, when k = 2, the cluster had the best stability.

Therefore, the LUAD patients were separated into 2 clusters:

cluster1 and cluster 2 according to the expression of the 10 NETs-

associated lncRNAs. Survival analysis using Kaplan-Meier plot

showed that cluster 2 had a significantly poorer prognosis than

cluster1, illustrating the possible relation of the NETs-associated

lncRNAs with the clinical outcomes of LUAD patients

(Figures 1C,D).

The expression of 10 candidate-NETs
associated lncRNAs is associated with PD-
L1 expression and immune infiltration
scores

To further explore the immune properties of the

10 candidate-NETs associated lncRNAs, we started an

analysis on tumor immune infiltration and immune

checkpoint analysis. Firstly, we compared the PD-L1 and

CTLA4 expression levels between the normal group and the

tumor group. We eventually found that the tumor group had a

lower level of PD-L1 expression compared with the normal

group (Figure 2A). Similarly, the expression of PD-L1 in cluster

2 is also lower than that in cluster1 (Figure 2B). However, the

expression cytotoxic T-lymphocyte-associated protein 4

(CTLA4), which is also an important immune checkpoint

that could be a potential therapeutic target, is downregulated

in the tumor group and upregulated in cluster 2 (Figures 2D,E).

Furthermore, the ESTIMATE score, immune score, and stromal

score are both lower in cluster 2 than in cluster 1, indicating the

immunological differences between the two clusters (Figures

2G–I). We also performed correlation plots of the 10 candidate

lncRNAs, and found a significant correlation between the

expression of gene AL137230.1 and AC004080.2. Also

present was a strong correlation between gene AL133390.1.

Such correlation implied a potential link and interaction

between those NETs-associated lncRNAs, which are worthy

of our further investigations (Figures 2C,F). Furthermore, based

on the expression of the PD1 and CTLA1 we categorized the

patients into 4 different categories, namely CTLA4−PD1-,

CTLA4−PD1+, CTLA4+PD1-, and CTLA4+PD1+. The IPS

z-scores were analyzed between the 4 groups according to

4 categories. It could be noted that the distribution of the

scores in cluster 1 was significantly higher than that of

TABLE 1 Univariate Cox regression analysis of Nets-related lncRNAs.

ID HR HR.95L HR.95H pvalue

AL133335.2 1.09015 1.035637 1.147533 0.000974

AL137230.1 1.1239 1.051428 1.201368 0.000594

AC004080.2 1.080487 1.032997 1.13016 0.000737

SIRLNT 1.058747 1.0335 1.08461 3.55E-06

AL365181.3 1.011392 1.00652 1.016287 4.27E-06

AL590666.2 1.021009 1.010469 1.031659 8.60E-05

FAM83A-AS1 1.023362 1.014632 1.032167 1.27E-07

AL133390.1 1.327722 1.132255 1.556934 0.000485

AC106045.1 1.022584 1.011173 1.034123 9.59E-05

AJ003147.2 1.348558 1.129026 1.610778 0.000972
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cluster 2 in CTLA4−PD1-, CTLA4+PD1-, and CTLA4+PD1+

patients (Figures 2J–M). The abundance of B cells memory

and NK cells resting was significantly higher in cluster2

(Figure 2N).

Construction of a prognosis-related
signature of LUAD related to NETs

The strong correlation between the 10 NETs-associated

lncRNAs showed significant collinearity, which meant that

reducing the number of variables using methods like LASSO

regression is necessary. All LUAD patients were randomly

divided into training cohort, testing cohort and entire cohort,

and there was no significant difference in clinical information

among the three groups (Supplementary Table S1). Using LASSO

regression, we found that the prognostic signature eventually

contained 4 NETs-associated lncRNAs: SIRLNT, AL365181.3,

FAM83A-AS1, and AJ003147.2. By setting a median risk score as

the cutoff value, patients in the training group and validation

group were all separated into 2 groups: the high-risk group and

the low-risk group in training cohort, testing cohort and entire

cohort respectively (Figures 3A–C). Survival analysis showed that

the patients all showed better clinical outcomes in the low-risk

group, regardless of which group they were in (Figures 3D–F).

Furthermore, we constructed a time-ROC curve to evaluate the

precision of the model. The 1-year, 3-year and 5-year C-index of

the model in the training group were separately 0.729, 0.688, and

0.674; and the C indexes in the 2 validation groups all fell between

0.6 and 0.7, regardless of the year of the cutoff (Figures 3G–I).

Multivariate regression validated that the
risk score is independent prognostic
factor

We next used multivariate cox regression to combine the risk

score with the phenotype data to evaluate the risk score and its

relevance to the patients’ clinical prognosis. Multivariate cox

regression showed that the risk score had a hazard ratio of 1.466

(95%CI: 1.324–1.623) in the training group. Similarly, the hazard

ratio of risk score in the validation group was 1.365 (95%CI:

1.218–1.529). The risk score in both groups had significant

relevance to the clinical outcomes of the patients, which was

independent of the influences of the stages, gender, age, and so on

(Figures 4A,B).

FIGURE 1
Different prognosis and clinicopathological features of two LUAD clusters. Boxplot (A) and heatmap (B) revealed the difference in expression of
10 NETs-associated lncRNA in normal and tumor tissues (C) The overall survival rate of LUAD patients in the two clusters was calculated by Kaplan-
Meier curve (D) Heatmap exhibited the differences in expression of 10 NETs-associated lncRNA and clinicopathological features of two LUAD
clusters (*p < 0.05, ** p < 0.01, *** p < 0.001).
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Assessment of the signature using ROC
curve and nomogram

To further assess the value of the model, we used a

nomogram to combine the clinical phenotypes with the risk

score (Figure 4C). After combining the phenotype data with

the risk score, we found that the predicted survival rate was

adjacent to the actual survival rate in the comparison plot, in

the entire group at 1-year, 3-year and 5-year (Figures 4D–F).

Also, we compared the predicting value of the risk score with

different types of clinical data, including age, gender and

clinical stages, and found that the risk score demonstrated a

stronger capability to predict than those clinical data (Figures

4G–I). Previous study demonstrated that as AUC >0.6,
predictive signature could effectively predict the survival

rate of tumor patients (Liu et al., 2022). The muti-ROC

curves proved that AUC of NETs-related signature was

greater than 0.6, synthesizing clinical factors and risk scores

would be better than clinical factor (Figures 4J–L). Based on

above results, we inferred that risk score evaluated by NETs-

FIGURE 2
Immunoassay of two clusters. The expression level of PD-L1 between normal and tumor tissues (A), between cluster 1 and cluster 2 (B). The
correlation between PD-L1 expression and expression of 10 NETs-associated lncRNA (C). The expression level of CTLA4 between normal and tumor
tissues (D), between cluster 1 and cluster 2 (E). The correlation between CTLA4 expression and expression of 10 NETs-associated lncRNAs (F). The
difference in ESTIMATE score, immune score and stromal score between cluster 1 and cluster 2 (G–I). Immunephenoscores (IPS) analysis
(J–M). The abundance of immune infiltration cells in cluster 1 and cluster 2 (N) (* p < 0.05, ** p < 0.01, *** p < 0.001).
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related genes can accurately forecast the prognosis of LUAD

patients.

The gene signature is correlated to cell-
cycle and once-immunological properties

GSEA enrichment analysis related to the gene signature

showed that the pathways enriched in the high-risk group

were cell cycle, phenylalanine metabolism, steroid hormone

biosynthesis, and systemic lupus erythematosus (SLE).

Conversely, the pathways enriched in the low-risk group

were allograft rejection, asthma, cell adhesion molecules

(CAMs), and intestinal immune network (Figures 5A,B).

The results showed that immunological differences may be

a major protection factor in the low-risk group. Immune

infiltration scoring and cell components showed that the

infiltration of immune cells in the high-risk group was

FIGURE 3
Prognostic model construction and evaluation. In the training cohort (A), testing cohort (B) and entire cohort (C) the patient with different risk
score, survival status, and NETs-associated lncRNAs expression were shown. Survival analysis of training cohort (D), testing cohort (E) and entire
cohort (F) and the prognosis of high-risk group was significantly worse. ROC curve revealed that in the training cohort (G), testing cohort (H) and
entire cohort (I), the AUC values for 1, 3, and 5-year OS were over 0.6.
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generally lower than the low-risk group. Scorings of

immunological processes also revealed that the high-risk

group was lower in multiple immunological signs of

progress, such as APC and T cell co-stimulation, HLA

activity, checkpoint, and type I and II IFN responses

(Figures 5C,D).

FIGURE 4
The construction and assessment of prognostic nomogram. (A,B) Univariate and multivariate Cox regression analyses were used to evaluate
whether risk score and clinical characteristics were independent predictors. (C) A nomogram was constructed to predict OS (D–F) The calibration
curves of the nomogrambased on 1-, 3-, and 5-year OS (G–I) The ROC curve of risk score and clinical characteristics was performed based on 1-, 3-,
and 5-year OS (J–L) When combined risk score with clinical factors for analysis, the AUC values of 1-, 3-, and 5-year OS was detected.
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Tumor-immune infiltration differences in
the data showed the differences of
immune landscape between the high-risk
and the low-risk group

Using recently-developed immune infiltration algorithms to

calculate the abundance of immune cells in different samples, we

found that differences existed between the high-risk and the low-

risk groups in immune scores and stromal scores; using the

ESTIMATE algorithm, we also found estimate scores varied

between the high-risk and the low-risk group. All data

showed that the low-risk group exhibited a higher score

(Figures 5F–J).

The immune infiltration and tumor
mutation analysis

Tumor mutation analysis was subsequently conducted, and

the most frequently mutated genes in the high-risk and the low-

FIGURE 5
GSEA, ssGSEA and ESTIMATE analysis. Gene set enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) in high-risk and
low-risk groups (A,B). ssGSEA analysis showed the difference of immune cells and immune function between high-risk and low-risk groups (C,D).
The difference of immune score, stromal score, ESTIMATE score between high-risk and low-risk groups (E–G). The correlation of immune score,
stromal score, ESTIMATE score and risk score (H–J). (ns, not significant, * p < 0.05, ** p < 0.01, *** p < 0.001).
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risk group were generally similar, with the most frequently

mutated gene being TP53. The 10 genes most frequently

mutated both in the high-risk group and the low-risk group

were (listed in descending order): TP53, TTN, MUC16, CSMD3,

RYR2, LRP1B, ZFHX4, USH2A, KRAS, XIRP2 (Figures 6A,B).

Not surprisingly, the high-risk group carried significantly more

mutation burden than the low-risk group (Figures 6C,D). Tumor

mutation burden was subsequently analyzed combined with the

risk scores and we found the group with a higher mutation rate

received better clinical outcomes, and the clinical outcomes of

patients in the L-TMB+high risk group were significantly poorer

than other groups, compared with the H-TMB+low risk group

which ranked best as regards the clinical outcomes (Figures

6E,F), and we found that the high-risk group was associated

with higher mutation rate and higher tumor-stemness scores

(Figures 6G,H). EPCAM PMS2, MSH2, and MSH6 expression

were also compared between the low-risk group and the high-risk

group, and all showed higher expression levels in the high-risk

group (Figures 6I–L).

After applying multiple algorithms to calculate the

immunological differences, we constructed an immune

infiltration heatmap, and the results were shown to include

the different results in immune infiltration (Figures 7A,B).

Furthermore, the correlation between the infiltration and

expression of every single gene was depicted using a heatmap

(Figure 7C). We found that the risk score was correlated to the

level of macrophages, dendritic cells, mast cells, NK cells, and

T-cells (Figures 7D–J).

Immune checkpoint and
immunophenoscore analysis

Immune checkpoints are a class of immunosuppressive

molecules that are expressed on immune cells and regulate

the degree of immune activation, and they play an important

role in preventing the occurrence of autoimmunity (Zhai et al.,

2021). Immune checkpoint genes were analyzed between the

high-risk group and the low-risk group. The differences in the

expression were quantified and depicted (Figure 8A). Although

the immune checkpoint inhibitors like anti-CTLA4 monoclonal

antibodies and anti PD-1/PD-L1 antibodies have been used

FIGURE 6
The relationship between risk score and mutation, tumor stemness, mismatch repair-related genes. Waterfall plots displayed the mutation
information of top 20 geneswith highmutation frequency in high-risk group (A) and low-risk group (B). The difference of TMBbetween high-risk and
low-risk groups (C). The correlation of TMB and risk score (D). Survival analysis of LUAD patients with different level of TMB and TMB combing with
risk score (E,F). The difference of tumor stemness index (RNAss and DNAss) between high-risk and low-risk groups (G,H). The difference of
mismatch repair-related genes expression between high-risk and low-risk groups (I–L).

Frontiers in Genetics frontiersin.org10

Ding et al. 10.3389/fgene.2022.1047231

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047231


clinically and improved patients’ outcomes, there are also other

factors like human leukocyte antigens (HLAs) that affect the

sensitivity to immunotherapy. Hence, we investigated the

expression of HLA molecule family across the high-risk and

the low-risk groups, and found that most of the HLA genes

showed higher expression in low-risk groups (Figure 8B).

Moreover, we re-analyzed the IPS z-scores across

CTLA4−PD1-, CTLA4−PD1+, CTLA4+PD1-, and CTLA4+PD1+

groups, and found that in all subgroups, IPS scores were lower in

the high-risk groups (Figures 8C–F).

Drug sensitivity analysis

The study of the sensitivity of different groups of patients to

chemotherapy or targeted-therapy drugs can provide help for the

formulation of future treatment regimens. Using half maximal

inhibitory concentration (IC50) as the index for the antitumor

potency of the drugs, we investigated the differences in drug

responsiveness between the high-risk and the low-risk groups.

The high-risk group was more sensitive to antitumor drugs like

Axitinib, Erlotinib, Doxorubicin, Bortezomib, Gefitinib,

Gemcitabine, Paclitaxel, Tipifarnib, and Vinblastine (Figures

9A–I). Those antitumor drugs were potentially more capable

of inhibiting high-risk uveal melanoma with relatively minor

dosage. Conversely, drugs like Vinblastine, Cisplatin and

Methotrexate exhibited lower antitumor efficiency in high-risk

groups (Figures 9J–L).

Discussion

As a lethal disease with a poor survival rate, the treatment of

lung adenocarcinoma has become a heated topic in clinical

oncology for decades. Despite the therapeutic advances based

on progress in molecular biology and tumor immunology, the

survival rate and efficiency of therapy are still not satisfactory

(Relli et al., 2019; Anichini et al., 2020).

FIGURE 7
Analysis of immune cell infiltration. The immune landscapes of high-risk and low-risk groups (A). The difference of immune cell between high-
risk and low-risk groups (B). The association of 4 NETs-associated lncRNAs expression and immune cell infiltration (C). The association of risk score
and immune cell infiltration (D–J) (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Neutrophil Extracellular Traps (NETs), a mechanism that is

an indispensable part in innate immunity, are also involved in

cancer progression and has been an emerging hotspot in recent

years (Demkow, 2021). Accumulating pieces of evidence has

shown that NETs could arouse dormant cancer cells, causing the

unstrained growth and the metastasis of malignant tumors

(Demers and Wagner, 2013). Also, NETs are believed to play

a key role in the immune microenvironment of tumors. The close

correlation between cancer cell and the co-localization between

the tumor cells and NETs has also been discovered recently,

which is believed to have a positive effect on the progression of

the tumor (Masucci et al., 2020).

Although many molecular mechanisms have been found to

take part in the pathogenes is of LUAD, little has been found

about the mechanisms related to NETs. Recent pan-cancer

analyses have figured out a prognostic signature related to

NETs, which include the LUAD. However, to the best of our

knowledge, a NETs-related signature has not been constructed

for LUAD patients (Zhang et al., 2022).

Therefore, inspired by the recent discoveries of NETs’

oncogenic properties, we used TCGA to construct a NETs-

related model based on the RNA-seq data. In our study,

469 NETs-related lncRNAs in total were identified as

NETs-associated lncRNA lncRNAs. According to the

univariate cox regression, 10 NETs-related lncRNAs were

filtered and we separated the patients into 2 subgroups:

cluster 1 and cluster 2. We found some differences between

the 2 clusters that are related to survival and tumor immunity.

The abundance of B cells memory and NK cells resting was

significantly higher in cluster 2. NK cells are cytotoxic

lymphocytes with direct killing effect in the innate immune

system, participate in natural and adaptive immunity, and are

the first line of defense for anti-tumor immunity (Valipour

et al., 2019; Bald et al., 2020). ESTIMATE score, PD-

L1expression, CTLA4 expression and IPS score are lower in

cluster 2, which means that patients in cluster 2 have lower

immunogenicity. So it can be applied to forecast the

immunotherapeutic effect of LUAD patients.

Next, we used the LASSO regression method to reduce the

variable to four, reducing over-fitting while strengthening the

clinical significance of the model. The results showed the

signature we constructed was of strong clinical relevance,

and could effectively predict patients’ outcomes. Calibration

is used to describe the accuracy of a model to predict the

probability of individual clinical outcomes. In practical

application, it is usually characterized by calibration curve.

The calibration curve shows the deviation between the

predicted value of the model and the actual value, which is

another way to test the prediction ability of the model

(Gittleman et al., 2020). Similar to the results of other

studies (Liu et al., 2021b; Cui et al., 2022), the calibration

curve showed that the observed OS ratios in 1, 3 and 5 years

were in good agreement with the predicted ratios.

Also, we discovered the differences between the immune cell

infiltration, and immune checkpoint analysis, and found out that

the results are related to the infiltration of various types of

immune cells, such as macrophages, T cells, and NK cells. In

addition, immune infiltration affects the survival rate of tumor

patients (Riquelme et al., 2019). The results indicate that different

types of immune cells are correlated to the signature, and the

FIGURE 8
The correlations between risk score and immune checkpoint, immunephenoscores (IPS). The difference of immune checkpoint related genes
(A) a and HLA-related genes (B) were showed in boxplot between high-risk and low-risk groups. The differences of IPS in patients with different risk
are shown (C–F) (ns, not significant, * p < 0.05, ** p < 0.01, *** p < 0.001).

Frontiers in Genetics frontiersin.org12

Ding et al. 10.3389/fgene.2022.1047231

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1047231


sensitivity to immunotherapy varied between the low-risk group

and the high-risk group, further demonstrating its clinical

significance. Low TMB is associated with low immune

infiltration, which means a poor immune response (Hu et al.,

2021). HLA alleles have been shown to stratify tumor patients

with high accuracy (Callahan et al., 2018). This may be the

mechanism of the difference in immunogenicity between the two

groups. Moreover, it is also recommended to perform RNA-seq

in clinically harvested samples, calculating immunephenoscores

(IPS) and immune infiltration scores and to validate the

relevance with our previous model (Chen et al., 2022a).

Then, we analyzed the drug sensitivity of the two risk groups,

providing targeted guidance for LUAD patients to choose

treatment drugs.

Of all 4 NETs-related lncRNAs that are involved in the

prognostic signature, it has been proved that lncRNA-

FAM83A-AS1 could promote tumor progression in lung

adenocarcinoma, via promoting the HIF-1α/glycolysis axis

(Chen et al., 2022b). Our study further validated its robust

capability as a biomarker in lung adenocarcinoma. lncRNA

SIRLNT was recently discovered as a tumor promoter in

breast cancer, by regulating the miR-4766-5p (Liang et al.,

2018). However, whether those lncRNAs could act as a tumor

promoter in LUAD requires further investigation.

However, due to the limitations of bioinformatic methods,

we were only capable to find the correlations between the scores

and immune phenotypes. Further studies are needed to reveal the

mechanisms that lie within, including in vitro and in vivo studies

regarding the molecular mechanisms. Also, the interactions

between the lncRNAs in the signatures we constructed still

require further investigation.

Conclusion

Above all, the risk model we constructed was strongly

correlated to the NETs properties and could predict patient

outcomes. Besides, whether the risk model was correlated to

the sensitivity of immunotherapy still requires further

investigation. Therefore, in vitro and in vivo experiments

FIGURE 9
Drug sensitivity analysis. The IC50 of Axitinib, Erlotinib, Doxorubicin, Bortezomib, Gefitinib, Gemcitabine, Paclitaxel, Tipifarnib, Vinblastine,
Vinblastine, Cisplatin and Methotrexate was analyzed in high-risk and low-risk groups (A–L).
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regarding lung adenocarcinoma are urgently needed to test the

possible target lncRNAs and their oncogenic mechanisms.
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