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Familial non-syndromic unilateral hearing loss (NS-UHL) is rare and its genetic

etiology has not been clearly elucidated. This study aimed to identify the genetic

cause of NS-UHL in a three-generation Chinese family. Detailedmedical history

consultation and clinical examination were conducted. Further, whole-exome

sequencing (WES) was performed to identify the genetic etiology of the

proband, and the variant was verified by Sanger sequencing. A novel

missense mutation, c.533G>C (p.Arg178Thr), in the SIX homeobox 1 gene

(SIX1) was identified in four patients and co-segregated with NS-UHL in a

three-generation Chinese family as a dominant trait. Using bioinformatics

analyses, we show that this novel mutation is pathogenic and affects the

structure of SIX1 protein. These data suggest that mutations in SIX1 gene are

associated with NS-UHL. Our study added the NS-UHL phenotype associated

with SIX1, and thereby improving the genetic counseling provided to individuals

with SIX1 mutations.
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1 Introduction

Unilateral hearing loss (UHL) is estimated to occur in 0.83 per 1,000 newborns (Prieve

et al., 2000). As with bilateral hearing loss, UHL can severely affect the individuals’ lives.

The etiology of approximately 35%–60% of UHL cases remains unknown (Kinney, 1953;

Everberg, 1960a; Brookhouser et al., 1991). The most commonly etiologies of UHL

include sequelae of bacterial meningitis, complication of viral infection, prenatal or

perinatal problems, head trauma, and even genetic alterations (van Wieringen et al.,

2019). With the rapid development of next-generation sequencing, genetic alterations

have been identified in bilateral hearing loss, and the gene mutation spectrum has been

constantly improving (https://hereditaryhearingloss.org/). However, the genetic

alterations accounting for UHL have not been clearly elucidated. There is no doubt
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that identifying the causal genes will benefit patients in diagnosis,

genetic counseling, and drug development.

UHL is often dismissed as sporadic or environmental, and

the genetic basis has not been explored in depth (Dodson et al.,

2012). It can be inherited as part of Pendred syndrome (PS

[MIM: 274600]) or Waardenburg syndrome (WS [MIM:

PS193500]). Among UHL, familial non-syndromic unilateral

hearing loss (NS-UHL) (MIM:125000) is rare; only a few

families are described in the literature (Everberg, 1957; 1960b;

Dikkers et al., 2005). The gene KITLG has been linked to NS-

UHL (Zazo Seco et al., 2015). Additionally, Dodson et al.

included 34 patients with NS-UHL in a national hereditary

deafness repository proved that mutations in the TECTA and

COCH genes that might be causally related to the NS-UHL

(Dodson et al., 2012). However, the molecular basis for other

genetic causes of NS-UHL remains an important gap in current

knowledge.

The absence of mutational hot genes or spots in NS-UHL

hindered mutational analysis with gene panels (Dodson et al.,

2012; Zazo Seco et al., 2015). Whole-exome sequencing (WES),

combined with validated bioinformatics tools have facilitated the

detection of variants, particularly the single nucleotide variants

(SNVs) and the small insertions and deletions (InDels).

Moreover, WES is being widely used in clinical practice due

to its high diagnostic yields, low cost, and excellent advantages in

novel genes analysis and subsequent investigation.

In this study, we performed WES to identify the genetic

cause of autosomal-dominant NS-UHL in a three-generation

Chinese Han pedigree. A novel missense mutation, c.533G>C
(p.Arg178Thr), in the SIX1 gene was found to co-segregate with

NS-UHL in this family. Our study added the NS-UHL

phenotype associated with SIX1, and thereby improving the

genetic counseling provided to individuals with SIX1

mutations.

2 Materials and methods

2.1 Family members

The proband (III-2) was a 7-year-old girl diagnosed with

severe sensorineural hearing loss in the right ear at birth. The

healthy side has normal hearing spectrum. Blood routine,

urine routine, liver function and renal function showed

normal parameters. The patient had no history of drug

intoxication, trauma, or infection. Additionally, there was a

family history of unilateral sensorineural hearing loss in her

pedigree. Patients I-2, II-2, and II-4 also showed unilateral

sensorineural hearing loss (Figure 1). This study was approved

by the Ethics Committee of the First Hospital of Jilin

University. All participants provided written informed

consent.

FIGURE 1
Pedigree of the family affected by NS-UHL. White symbols indicate normal individuals. The filled black symbol denotes the individual diagnosed
with NS-UHL. The arrow indicates the proband of the family.
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2.2 Whole exome sequencing

Genomic DNA was isolated from whole blood of all available

family members using the QIAamp DNA Blood MiNi Kit (Qiagen,

Germany) according to the manufacturer’s instructions. We

performed genetic testing using WES technology on the proband

(III-2).Whole-exome capture was xGen Exome Research Panel v2.0

(IDT, Iowa, United States). High-throughput sequencing was

performed on the DNBSEQT7 (BGI, China) platform. Average

sequencing depth of WES was 162.75 × with an average of 97.7% of

reads covered at a depth of at least 20×. For SIX1 gene, the average

depth of sequencing was 167.56×. Raw data sequenced byWESwere

processed by using fastp (https://github.com/OpenGene/fastp) to

remove adapters and filtering low-quality reads. High-quality reads

were aligned to the GRCh37/hg19 reference genome using Burrows-

Wheeler Aligner (BWA, https://github.com/lh3/bwa). Base quality

score recalibration and calling variant were performed using the

Genome Analysis Toolkit (GATK, http://www.broadinstitute.org/

gatk/). The pipeline of variants analysis is as follows. According to

the sequence depth and variant quality, the high-quality and reliable

variants were obtained. Variants were then annotated with minor

allele frequencies (MAFs) databases (genomAD, ESP,

1,000 genomes, EXAC, dbSNP databases). The Effect of the

variant on gene product was predicted by using bioinformatics

softwares such as Provean (http://provean.jcvi.org/genome_submit_

2.php?species=human), REVEL (https://sites.google.com/site/

revelgenomics/), SIFT (http://sift.jcvi.org/), GERP (http://mendel.

stanford.edu/sidowlab/downloads/gerp/index.html) and phastCons

(https://varianttools.sourceforge.net/Annotation/PhastCons).

According to the American College of Medical Genetics criteria

(ACMG), the identified variants were classified as pathogenic, likely

pathogenic, benign, likely benign, or of uncertain significance

(Richards et al., 2015; Harrison et al., 2019). Online Mendelian

Inheritance in Man (OMIM), Human Gene Mutation Database

(HGMD), and ClinVar databases were then used as conferences of

pathogenicity of every variant. Finally, the most possible pathogenic

genes were identified from the screened deleterious variants

combining disease correlation and clinical phenotype. The

variants filtering criteria was shown in Supplementary Table S1.

2.3 Sanger sequencing

We designed specific primers (forward 5′-CGCCCACCG
CCAAGTTCCGACTCC-3′ and reverse 5′-CCCGACACTCAC
ATCCCAGAGAAACCCAC-3′) based on the variant loci

FIGURE 2
Alignment of SIX1 protein sequences from different species. Homo:Homo sapiens (NM_005982.4), Mus: Mus musculus (NM_009189.3), Bos:
Bos Taurus (XM_002691019.6), Gallus:Gallus gallus (NM_001044685.2). Red: amino acid containing non-polar and hydrophobic R group, Green:
amino acid containing polar and neutral R group, Blue: amino acid containing acidic R group, Purple: amino acid containing basic R group. “*”: a
completely consistent residue, “.”: residues with weak and similar properties, “:”: residues with very similar properties.
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detected by next-generation sequencing (NGS). DNA isolated

from all available family was used as a template for PCR

amplification on HEMA 9600 PCR sequencer using the

specific primers for SIX1 gene. Sanger sequencing was further

performed using the ABI 3730XL sequencer (Applied

Biosystems). Co-segregation was analyzed in all available

members.

2.4 Protein conserved prediction and 3D
structure prediction

We performedmultiple sequence alignments usingMUSCLE

(https://www.ebi.ac.uk/Tools/msa/muscle/) and prepared model

diagrams of protein domain using Illustrator for Biological

Sequences V1.0 (IBS). The protein sequence encoded by the

transcript (NM_005982.4) and the X-ray crystal structure (PDB

ID 4EGC) were used for SWISS-MODEL with 100% sequence

similarity, and PyMOL (PyMol Molecular Graphics System,

Schrödinger, LLC) was used to visualize the model by

referring to Version 2.1.0.

3 Results

3.1 SIX1 gene mutations and sanger
sequencing validation

A novel heterozygous missense variant in SIX1 gene was

detected in the proband (III-2) by using WES. The missense

variants SIX1 c.533G>C resulted in a threonine substitution.

The frequency of the variant was absent from control database

(gnomAD database, ESP database, 1,000 genomes database,

EXAC database, dbSNP database). The variant were then

validated in all available members by Sanger sequencing

and revealed that the variant was maternally inherited. The

family members (I-2, II-2, and II-4) with NS-UHL shared the

same variant with the proband. Whereas, other family

FIGURE 3
Prediction of the tertiary structure of SIX1 protein. The novel variant of the SIX1 gene is c.533 G>C, p.R178T (p.Arg178Thr), (A) is the 3D overall
picture of wild-type (WT) SIX1 protein: the 178th amino acid is ARG. (B) is the 3D partial enlarged view of WT SIX1 protein. The 178ARG respectively
form a hydrogen bond with the 123ASP, 127THR, 175 ARG, and 182 ALA, and 178ARG form two hydrogen bonds with 174ASN, together to maintain
the stability of the protein structure. (C) is the 3D overall picture of mutant (MUT) SIX1 protein: the 178th amino acid is mutated to THR. (D) is the
3D partial enlarged view of mutant SIX1 protein. No hydrogen bond interaction existed between the 178THR and 123ASP, 127THR.
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members (II-3, II-5, and III-1) without NS-UHL did not have

any variants detected by Sanger sequencing. We verified that

NS-UHL cosegregated with the SIX1 c.533G>C mutation

(Figure 1).

3.2 Bioinformatics analyses of the
identified mutation

All scores generated by different prediction softwares

suggested deleterious effect: Provean (score -4.92), REVEL

(score 0.947), SIFT (score 0.0) GERP (score 5.96) and

phastCons (score 1.0). The amino acids in SIX1 protein,

including arginine at position 178 (p.Arg178), are conserved

across vertebrates from human to Gallus (Figure 2) and are

located in the highly conserved homologous domain (HD)

(Figure 2). Using PyMOL software to analyze the 3D structure

of wild-type and mutant SIX1 proteins, the results (Figure 3)

showed that compared with the wild-type, the c.533G>C variant

substituted the neutral amino acid threonine for basic amino acid

arginine at position 178 of the protein (p.Arg178Thr). In

addition, compared with wild-type, the hydrogen bond

between the 178th amino acid and the 123th and 127th

amino acid of protein disappeared after mutation, which

might affect the protein structure and function. According to

the ACMG criteria, this mutation is pathogenic (Richards et al.,

2015).

4 Discussion

UHL is often caused by acquired and unnoticed trauma,

infection or other factors (van Wieringen et al., 2019). About

35%–60% of UHL cases do not receive an etiological diagnosis,

which has stalled treatment for this disease. With the rapid

development of next-generation sequencing, genetic alterations

have also been identified as a cause of UHL. Previously, UHL

frequently inherited as part of Pendred syndrome or

Waardenburg syndrome that has been reported continuously.

However, NS-UHL is rarely reported. Here, we reported a novel

missense mutation in SIX1 gene and provide evidence that this

pathogenic mutation may be responsible for dominantly

inherited NS-UHL.

The SIX1 gene is located at chromosome 14q23.1 and is

composed of an amino terminus, SIX domain (SD),

homologous domain (HD) and a carboxyl terminus. The

SD and HD domain were highly conserved. The SIX1 gene

plays an essential role in the development of several organs,

including kidney, muscle and inner ear (Wu et al., 2014; Shah

et al., 2020). According to the HGMD, only 24 pathogenic

variants of the SIX1 gene have been reported in the literature.

Individuals carrying a heterozygous SIX1 mutation were

reported to have a very different clinical outcomes, ranging

from being non-syndromic bilateral hearing loss to Branchio-

otic (BO) syndrome and to Branchio-otic-renal (BOR)

syndrome (Salam et al., 2000; Ruf et al., 2004; Mosrati

et al., 2011).

Salam et al. demonstrated that heterozygous mutation in the

SIX1 gene associated with prelingual bilateral symmetric hearing

loss (Salam et al., 2000). Mosrati et al. also proved that dominant

mutation in SIX1 result in only auditory defects in humans

(Mosrati et al., 2011). Differently, Ruf and Kumar et al.

reported SIX1 mutations associated with branchio-otic

syndrome or branchio-oto-renal syndrome (Kumar et al.,

2000; Ruf et al., 2003; Ruf et al., 2004). Thus, the clinical

phenotype associated with SIX1 gene mutation need to be

further enriched. In this study, we identified a novel missense

mutation, SIX1 c.533G>C in a three-generation Chinese Han

pedigree and co-segregate with NS-UHL. Our study added the

NS-UHL phenotype associated with SIX1. However, the effect of

SIX1 gene on the clinical phenotype has not been fully

elucidated, and expanding the hearing loss family sample sizes

is essential.

5 Concluding remarks

In conclusion, a novel missense mutation, c.533G>C
(p.Arg178Thr), in the SIX1 gene was identified in a Chinese

Han family with NS-UHL. To the best of our knowledge, this is

the first report on the association of the SIX1 gene with NS-UHL.

The mechanisms underlying this unilateral hearing loss is not

clearly understood, further functional studies of the SIX1

mutations and the application of in vivo models with genetic

deficiency are warranted. This finding not only enriches the

spectrum of diseases caused by SIX1 gene, but also provides a new

focus for genetic counseling.
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