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Resilience is a process associatedwith the ability to recover from stress and adversity.
We aimed to explore the resilience-associated DNA methylation signatures and
evaluate the abilities of methylation risk scores to discriminate low resilience (LR)
individuals. The study recruited 78 young adults and used Connor-Davidson
Resilience Scale (CD-RISC) to divide them into low and high resilience groups.
We randomly allocated all participants of two groups to the discovery and validation
sets. We used the bloodDNA of the subjects to conduct a genome-widemethylation
scan and identify the significantmethylation differences of CpG Sites in the discovery
set. Moreover, the classification accuracy of the DNA methylation probes was
confirmed in the validation set by real-time quantitative methylation-specific
polymerase chain reaction. In the genome-wide methylation profiling between
LR and HR individuals, seventeen significantly differentially methylated probes
were detected. In the validation set, nine DNA methylation signatures within gene
coding regions were selected for verification. Finally, three methylation probes
[cg18565204 (AARS), cg17682313 (FBXW7), and cg07167608 (LINC01107)] were
included in the final model of the methylation risk score for LR versus HR. These
methylation risk score models of low resilience demonstrated satisfactory
discrimination by logistic regression and support vector machine, with an AUC of
0.81 and 0.93, accuracy of 72.3% and 87.1%, sensitivity of 75%, and 87.5%, and
specificity of 70% and 80%. Our findings suggest that methylation signatures can be
utilized to identify individuals with LR and establish risk score models that may
contribute to the field of psychology.
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Introduction

Resilience in the context of psychology is the process of successfully adapting or adjusting
emotionally or socially despite being exposed to substantial stress, adversity, or trauma (Luthar et al.,
2000; Rutter, 2006). Given the essential role of resilience, the study of its psychological basis has
attracted much attention in past decades. Resilience is a complicated biopsychosocial phenomenon
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including genetic variations, epistasis, epigenetics, and gene-by-
environment interactions. With recent advances in molecular genetics,
elucidating the genetic basis of resilience has attracted increasing interest
in the field of psychology (Wu et al., 2013; Mukherjee et al., 2014;
Navrady et al., 2018). Identifying the characteristic genes or epigenetic
markers would provide a clearer understanding of the biological and
neuropsychological basis of resilience by helping to explain individual
variability in resilience behaviors.

Previous studies suggested that genetics and epigeneticsmay influence
the characteristics of resilience. The identification of characteristic genes
may potentially explain individual differences in resilient behaviors and
help explore the biological and neuropsychological basis of resilience. Six
genes were found to be associated with resilience in previous studies:
BDNF,DRD4, 5-HTTLPR,OXTR,CRHR1, and RGS2 (Niitsu et al., 2019).
Epigenetic modifications are early events in stress resilience (Milaniak
et al., 2017) and regulation of functional genes and regulatory sequences of
synaptic plasticity in the brain and peripheral inflammation (Wang et al.,
2018). Epigenetic mechanisms are one molecular pathway through which
adverse and traumatic events become biologically embedded and lead to
individual differences in resilience. Molecular profiling of the executive
function of the human brain requires the full spectrum of molecular
alterations that affect genome organization and subsequently the
expression of genes in functionally mapped brain topologies (Egervari
et al., 2019). This spectrum not only includes genetic defects but also
epigenetic alterations, including DNA methylation. Numerous studies in
the past have supported the hypothesis that adverse environments affect
the epigenome and that epigenetic differences may discriminate
susceptible from resilient subjects. DNA methylation of MHC,
DNMT3A, DNMT3B, NR3C1, and FKBP5 is significantly associated
with posttraumatic growth, posttraumatic stress disorder, and resilience
(Mehta et al., 2020; Miller et al., 2020). It is possible that epigenetic
mechanisms underlie the complex etiology of anxiety disorders as well as
the mechanisms that confer resilience (Schiele and Domschke, 2018). An
animal study also demonstrated that aberrantly regulated DNA
methylation mechanisms discriminatively underlie resilience and
susceptibility to depression (Wang et al., 2018). The pattern of DNA
methylation can be modulated by neuronal activity in response to
physiological and environmental stimuli and is essential for brain
function (Moore et al., 2013). A past study indicated that the
blood–brain correlation (r) = 0.86 for methylation data averaged of
each CpG across subjects and blood had the highest proportion
(20.8%) of CpGs correlated to brain within human CpGs, as
compared to buccal tissue (17.4%) and saliva (15.1%) (Braun et al.,
2019). And other studies of psychiatric diseases have shown that the
methylation pattern in the blood and the brain are potentially similar in
some ways (Chen et al., 2017; Magwai et al., 2021). So, the altered
methylation in the peripheral blood may reflect potential susceptibility
biomarkers of resilience individuals. However, the mechanism of how
methylation in peripheral blood affects brain resilience traits still needs
further research in the future. The study using blood sample analysis also
has the following advantages. First, DNA methylation in the blood are
associated with early-life adversity and may represent a novel biomarker
for early detection of psychopathology (Kundakovic et al., 2015). A
previous study also found that a stressful environment can alter
methylation patterns in blood (Murgatroyd et al., 2009). Second, in
clinical collections, blood is a suitable tissue because it is easy to collect
and the specimen is relatively stable. Third, if the population is to be
widely used in the future, the method of blood collection has relatively
little safety risk to the participants (Clark et al., 2020).

Epigenetic mechanisms are hypothesized as a molecular pathway
for how stressful events lead to differences in individual resilience.
Resilience research is needed to prevent mental disorders and promote
competent, healthy development. Both optimism and skepticism have
been expressed about the capability of current research to aid this
objective (Kim-Cohen and Gold, 2009). However, not much is known
about the role of DNA methylation in the development of
psychological resilience. DNA methylation is a stable epigenetic
mark and some methylation patterns may be preserved as a form
of epigenetic memory (Kim and Costello, 2017; Li et al., 2022). The
study aim was to explore DNAmethylation signatures associated with
low resilience and establish methylation risk scores by machine
learning. Also, we hope that DNA methylation signatures may
potentially be used to generate discriminative algorithms to
improve mental health.

Materials and methods

Study subjects

We recruited 20- to 30-year-old participants from southern Taiwan.
All participants were divided into two groups—subjects with low
resilience (LR) and high resilience (HR)—using the Connor–Davidson
Resilience Scale (CD-RISC) and randomly assigned to the discovery and
validation sets. In this study, high resilience and low resilience individuals
were matched with age and gender. In the discovery set, 8 HR individuals
(CD-RISC score ≥60 out of 100) and 8 LR individuals (CD-RISC
score <60) were randomly selected for genome-wide methylation
profiling used to detect significant methylation markers. The
methylation signatures were verified in the validation set (31 LR
individuals and 31 HR individuals). We excluded participants that 1)
had shrapnel or other metal or electronic implants in their bodies (such as
aneurysm clips, pacemakers, surgical devices, or metallic tattoos on the
head); 2) were pregnant or breastfeeding; 3) had a history of head trauma
or surgery; or 4) had major medical, neuropsychiatric, or psychological
disorders (including depression, generalized anxiety, panic attacks,
ADHD, claustrophobia, strokes, heart conditions, tumors, or substance
abuse). Data were collected from September 2020 to December 2021. The
study received ethical approval from the institutional review boards (IRB)
of National Cheng Kung University Hospital. Written informed consent
was obtained from all study subjects.

Psychological measurements

In this study, we used the 25-item self-assessment of the Connor-
Davidson Resilience Scale (CD-RISC). This scale uses a 5-point scale
(0–4) to assess resilience, defined as the ability to bounce back after
stressful events, tragedy and trauma, based on previously identified
characteristics shared among resilient subjects (Connor and Davidson,
2003). The total score is from 0 to 100, with higher scores indicating
higher resilience. The CD-RISC shows good internal consistency
(Cronbach’s α = 0.89), test-retest reliability (intraclass correlation
coefficient, ICC = 0.87), and convergent validity with the Perceived
Stress Scale (Pearson’s r = −0.76, p < .001) (Connor and Davidson, 2003).

Another psychological assessment we used was the 21-item Beck
Depression Inventory-II (BDI-II) to measure the presence and severity
of depressive symptoms (Beck et al., 1996). The assessment uses a self-
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reported 4-point scale (0–3) to detect depression symptoms and the
severity of each reported symptom. The BDI-II evaluates the affective,
behavioral, and somatic symptoms of depression. The assessment
shows a test-retest reliability of 0.93 and split-half internal consistency
reliability of 0.91 (Beck et al., 1996).

Collection of blood sample and DNA
extraction

EDTA (ethylenediaminetetraacetic acid) blood was collected from
the forearm veins of all participants. Within 2 h of collection, blood
samples were separated into plasma, buffy coat, and red blood cells by
centrifugation at 800 × g for 10 min at 4°C. The samples were then
placed in RNase/DNase-free microcentrifuge tubes and stored
at −80°C. Following the manufacturer’s instructions, DNA was
extracted from buffy coat samples by the QIAamp DNA Mini Kit
(Qiagen, Germany). Integrity, quantity, purity, and concentration was
assessed by UV–Vis spectrophotometer (NanoDrop 2000, NanoDrop,
United States) and electrophoresis in a 1% agarose gel.

Genome-wide DNA methylation profiling,
quality control, and normalization

For globalmethylation profiling, the study used the Illumina Infinium
Human Methylation 850 BeadChip (Illumina, United States), which
interrogates DNA methylation status of >850,000 CpG methylation
sites. The CpG sites were identified in the genome-wide DNA
methylation analysis and mapped on the genome using the UCSC
genome browser. We performed bisulfite conversion on 500 ng of
genomic DNA from every samples by the EZ DNA Methylation Kit
(D5002, Zymo Research, United States) based on the manufacturer’s
standard protocol. Bisulfite-convertedDNAwaswhole-genome amplified
and enzymatically fragmented prior to hybridization to BeadChip arrays.
The Illumina iScan Reader was utilized to scan arrays (Illumina,
United States). Specimens were analyzed for global patterns of DNA
methylation, after which DNA methylation was quantified on candidate
differentially methylated CpG units and confirmed in study samples. The
image files (IDATs) of the study were processed into R software ChAMP
package for handling Illumina methylation array data (Maksimovic et al.,
2016). The level of DNAmethylation at each CpG locus was given a beta
value,whichwas calculated as (M/(M+U)) and ranged from0 to 1.Values
close to 1 indicated that there was high methylation, while values close to
0 indicated that there was low methylation. Quantile normalization was
performed before detecting differentially methylated CpG sites.
Differentially methylated probes were identified based on three criteria:
theaverage-Nbeadsofprobeswere≥3inthesamples;probedetectionwasat
a significance level of p ≤ .05; and the β-value difference between the two
groupswas≥0.25.Thedifferentialmethylationquantificationwas required
because only the informationof representativeCpGmethylation stateswas
provided by human methylation microarray methylomes.

Real-time quantitative methylation analysis

To validate the methylated regions identified by quantitative
methylation-specific PCR (qMSP) assay was carried out with Kapa
Sybr Fast qPCR kit (Kapa Biosystems, United States) at the

StepOnePlus Real-Time PCR System (Thermo Fisher Scientific,
United States). The target genes of primer and probe sequences were
designed in Supplementary Table S1. We used the following formula:
2 [Ct (β-actin)—Ct (candidate)] × 100 to estimate themethylation level as
the difference in Ct value between β-Actin and the target candidates
(Hesselink et al., 2011; Lu et al., 2017).

Statistical analysis

All analyses were performed using R v4.1.2 (R Foundation, Vienna,
Austria) and SAS v9.4 (SAS Institute Inc., NC, United States).
Demographic characteristics were expressed as the mean ± standard
deviation (SD) for continuous variables and presented as percentages for
categorical variables. Student’s two-sample t-test was used for continuous
data and Pearson’s chi-square test was used for categorical variables to
assess the difference for group comparisons.

For distinguishing between LR and HR individuals by the
methylation probes, we applied the receiver operating characteristic
(ROC) curve analysis generated using logistic regression and support
vector machine (SVM). Use the principle of statistical risk
minimization to estimate a classification hyperplane, and find a
decision boundary to maximize the margins between the two
groups (Mustafa et al., 2018).

In the methylation risk score model, differentially methylated
signatures between LR and HR were used to weighting by logistic
regression and SVM and the coefficient estimates of the methylation
signatures were then calculated. The methylation risk score was expressed
as ∑n

i�1bixi, where x represented the levels of methylation signatures
(Deng et al., 2020). The LR and HR individuals were separated according
to the logistic regression based on the methylation risk score under the
hypothesis that the riskmoremight constitute a suitable discriminator. To
assess associations among the methylation probes, methylation risk score,
CD-RISC and BDI-II, we examined correlation matrices based on
Spearman’s rank-order correlation coefficients.

Enrichment analysis

In this study, we used the Enrichr website (Xie et al., 2021) for
enrichment analysis. There are many databases in this website, which can
present the analysis results of many different diseases or mechanisms.We
primarily present the results of our analysis for neuropsychiatric disorders
based on we hypothesized that low resilience may be associated with
neuropsychiatric disorders by the previous literature review. In our
recruited participants all excluded neuropsychiatric disorders, such that
may be possible to illustrate the potential relationship between low
resilience and neuropsychiatric disorders. In addition, we used the
PheWeb database from the Enrichr website because it contains a lot
of information about psychiatric and neurological disorders.

Results

Demographic characteristics of study
participants

The demographic data of the participants (76 young adults, ages
ranging from 20 to 30 years old) was shown in Table 1. We split all
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participants into a discovery and a validation sets. The distribution of
age, gender, education, BMI, smoking, alcohol drinking, CD-RISC,
and BDI-II is compared between individuals with low resilience (LR)
and high resilience (HR). In this study, CD-RISC scores ≥60 out of
100 were defined as HR and CD-RISC scores <60 out of 100 were
defined as LR. The CD-RISC and BDI-II scores were significantly
different between the two groups (p < .001). The age, gender,
education, BMI, smoking, and alcohol drinking variables were not
significantly different between the two groups.

Genome-wide DNA methylation profiling in
the discovery set

The levels of DNA methylation were compared between the LR
and HR groups (eight subjects each) in the discovery set by Human
Methylation 850 BeadChip platform (Illumina). The difference criteria
were a β-Value difference between two groups ≥.25 and p-Value <.05
(Figures 1A, B). A total of seventeen differentially methylated probes
were detected (Table 2). The gene list includes CYP2E1, AARS,
LINC01107, FBXW7, MRI1, COG5, and LGALS8 (Figure 1C).
Therefore, we selected nine signatures within coding regions for
these genes for confirmation in the validation set.

Identification of DNA methylation signatures
in the validation set

The mean level of the nine methylation signatures was
summarized in Supplementary Table S2. There were significant
differences in cg18565204 (AARS), cg17682313 (FBXW7), and
cg07167608 (LINC01107) between two groups. We also conducted
linear regression to explore possible predictors of methylation probe
levels. There were two identified probes had significant effects (p < .05)
and one identified probe had marginal significant effects (p < .06) as
predictors in the model, as shown in Supplementary Table S3.

Furthermore, the linear regression model for adjusted gender and
age was shown in Supplementary Table S4. After adjusting for gender
and age, the results were similar to the unadjusted results. We
calculated the area under the curve of ROC curve analysis by
logistic regression and SVM to estimate the discrimination ability
of DNA methylation signatures between LR and HR. The results were
shown in Table 3. The best methylation probe discriminated between
LR subjects and HR subjects was cg17682313 (FBXW7) by logistic
regression and support vector machine, with an AUC of 0.77 and 0.87,
accuracy of 71% and 83.9%, sensitivity of 72% and 86.7%, and
specificity of 70% and 81.3%. The derived receiver operating
characteristic (ROC) curve was shown in Figures 2B, E.

Methylation risk score of LR individuals in the
validation set

We selected three probes (cg18565204, cg17682313, and
cg07167608) that showed good discrimination to establish
methylation risk scores by two statistical methods (logistic
regression and support vector machine). In the logistic regression
model, the coefficient estimates of DNA methylation signatures of the
methylation risk score model were showed in Figure 2A. This risk
score of the subjects ranged from −2.11 to 3.61 in the validation set.
We split the subjects into LR andHR groups by a cut-off of ≥−0.59; the
optimal cut-off value was calculated using the ROC curve analysis. We
found significant differences in methylation risk scores (Figure 2C)
between LR and HR subjects (p < .001). In the support vector machine
model, the coefficient estimates of DNA methylation signatures were
showed in Figure 2D. This risk score of the subjects ranged from
19.51 to 94.41 in the validation set. We split the subjects into LR and
HR groups by a cut-off of ≥39.96. Significant differences in
methylation risk scores (Figure 2F) could distinguish between LR
and HR subjects (p < .001). The results showed that greater risk scores
were associated with low resilience based on the corresponding risk
score value. These methylation risk score models (cg18565204 +

TABLE 1 Demographics and clinical characteristics of LR and HR groups.

Variables Discovery set Validation set

Low resilience High resilience Low resilience High resilience

(N = 8) (N = 8) p-value (N = 31) (N = 31) p-value

N % N % N % N %

Male 4 50 4 50 15 48.3 16 51.6

Smoking 0 0 0 0 0 0 0 0

Alcohol drinking 0 0 0 0 0 0 1 0.0

Mean SD Mean SD Mean SD Mean SD

Age (years) 21.5 1.41 22 2.14 22.7 2.3 22.6 3.0

Education (years) 16.3 2.0 16.1 1.7 16.4 2.2 15.9 2.0

BMI (kg/m2) 24.7 1.6 21.6 1.2 24.0 5.8 22.5 4.2

CD-RISC 38.9 14.0 91.0 4.7 a 49.9 7.3 78.2 7.0 a

BDI-II 17.9 8.6 7.8 8.7 a 11.3 8.3 4.9 3.2 a

LR, low resilience; HR, high resilience; SD, standard deviation; BMI, body mass index; CD-RISC, Connor-Davidson resilience scale; BDI-II, Beck depression inventory-II.
asignificant difference between LR and HR, p < .05.
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cg17682313 + cg07167608) showed good discrimination between LR
and HR subjects by logistic regression and support vector machine,
with an AUC of 0.81 and 0.93, accuracy of 72.3% and 87.1%, sensitivity
of 75% and 87.5%, and specificity of 70% and 80%. The results of ROC
curve analysis in the methylation risk score were shown in
Figures 2B, E.

Associations between CD-RISC, BDI-II, and
DNA methylation signatures

CD-RISC can be divided into five factors: personal competence,
trust, acceptance, control, and spirit (Connor and Davidson, 2003).
The association between these five factors of resilience and the
estimated metrics (methylation signatures level and methylation
risk score) was investigated using the Spearman rank-order
correlation test; the correlation plot is displayed in Supplementary
Figure S1. The cg17682313 showed negative correlations with total
score of CD-RISC (rs = −.456, p < .001), personal competence

(rs = −.360, p < .01), trust (rs = −.424, p < .001), acceptance
(rs = −.304, p < .05), control (rs = −.429, p < .001), and spirit
(rs = −.355, p < .01) in all individuals. The cg07167608 showed
negative correlations with total score of CD-RISC (rs = −.266, p <
.05), trust (rs = −.390, p < .01), and control (rs = −.261, p < .05) in all
individuals. The methylation risk score showed negative correlations
with total score of CD-RISC (rs = −.459, p < .001), personal
competence (rs = −.375, p < .01), trust (rs = −.494, p < .001),
acceptance (rs = −.363, p < .01), control (rs = −.450, p < .001), and
spirit (rs = −.306, p < .05) in all individuals. Equivalent tests of the
association between CD-RISC, BDI-II and the samemetrics are shown
in Supplementary Figure S2.

Enrichment analysis of functional annotation
in networks of individuals with LR

We generated a gene-gene enrichment analysis on PheWeb
databases by the coding genes (AARS, FBXW7, and LINC01107)

FIGURE 1
Genome-wide DNAmethylation significantly associated probes of LR (low resilience) versus HR (high resilience) groups in the discovery set. (A)Heatmap
of differentially methylated probes with >25% differences and p < .05 between LR and HR. (B) Volcano plot of differentially methylated probes with >25%
differences and p < .05 between LR and HR. (C) Manhattan plot of differentially methylated probes with >25% differences and p < .05 between LR and HR.
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for the three methylation probes of the methylation risk score model in
the validation set. The network analysis focuses on the related diseases.
The gene sets were associated with some neuropsychiatric diseases and
other neuronal functions including bipolar disorder (p < .01),
schizophrenia (p = .01), circadian rhythm (p = .02), brain (p =
.02), intelligence tests (p = .04), child development disorders (p =
.05), autistic disorder (p = .07), depressive disorder (p = .07), attention
deficit disorder (p = .08), and Alzheimer’s disease (p = .15). A
Manhattan plot of the enrichment analysis was shown in
Supplementary Figure S3.

Discussion

We performed three steps for a DNA methylation analysis of the
study. According to the results, a total of seventeen CpG sites that were
differentially methylated between the LR and HR cohorts were
identified in the discovery set. The nine methylation signatures
within gene coding regions were selected for confirmation in the
validation set. Finally, the study selected three methylation probes that
were significantly effective differentiators to build the methylation risk
score model for low resilience. These three methylation probe coding
genes were associated with neuropsychiatric diseases. To our
knowledge, this study is the first to investigate DNA methylation
in resilience and to develop methylation risk score models for low
resilience using logistic regression and machine learning methods.

In this study, three probes within relevant gene coding regions (AARS,
FBXW7, and LINC01107) were identified. These genes also overlap with
some brain function and neuropsychiatric disease-associated genes.AARS

(human alanyl-tRNA synthetase) belongs to a family of tRNA synthases
of the class II enzymes (Rajendran et al., 2018). Multiple paths of the
evidence (that is tRNA gene mutations, tRNA epitranscriptome, tRNA
charging, and tRFs) support that various aspects of tRNA function and
metabolism are linked to neurodevelopmental and neuropsychiatric
disorders (Legge et al., 2019; Blaze and Akbarian, 2022). FBXW7
encodes a member of the F-box protein subunit of an Skp1-Cul1-F-
box protein (SCF)-type ubiquitin ligase complex and plays a principal role
in the degradation of Notch familymembers (Snyder et al., 2012). FBXW7
is also an important regulator of the maintenance and differentiation of
neural stem cells in the brain (Matsumoto et al., 2011). The gene was
associated with neurodevelopmental syndromes and is distinguished by
global developmental delays, borderline to severe intellectual disability,
hypotonia, and gastrointestinal functions (Stephenson et al., 2022).
LINC01107 (Long Intergenic Non-Protein Coding RNA 1107) is an
RNA gene affiliated with the lncRNA class. However, the gene set in
our final selection (AARS, FBXW7, and LINC01107) was associated with
brain functions, psychiatric disease and neurological disease. This means
that we identifiedmethylation of resilience-associated genes that may play
a potential role in neuropsychiatric diseases. In addition, our enrichment
analysis was found that this gene set are associated with some
neuropsychiatric diseases and other neuronal functions including
bipolar disorder, schizophrenia, circadian rhythm, brain, intelligence
tests, child development disorder, autistic disorder, depressive disorder,
attention deficit disorder, andAlzheimer’s disease. This resultmay explain
the association between methylation abnormalities of low resilience
individuals and brain, neurological, and psychiatric disorders, but the
causation andmechanismmust be confirmed. In the enrichment analysis,
we also found some results on non-neuropsychiatric disorders. We are

TABLE 2 Genome-wide DNA methylation probe levels in the LR and HR groups of the discovery seta.

Probe ID Mean β values in LR Mean β values in HR p-value Gene

cg03139414 .893180042 .607209185 .000207411

cg19508671 .822328634 .504008435 .000271561

cg00321709 .458138739 .180541564 .001256527 CYP2E1

cg19070118 .777427782 .412867498 .001690978

cg23400446 .383165974 .131292967 .00223429 CYP2E1

cg05194426 .616399879 .334172033 .004403253 CYP2E1

cg16524778 .425451486 .173924232 .008112836

cg18565204 .972945459 .53091779 .009455589 AARS

cg05528899 .690132696 .958883762 .011982008

cg09780996 .304721816 .624051331 .014250895

cg07167608 .841830328 .57399626 .024667224 LINC01107

cg17682313 .834110455 .412761164 .02643509 FBXW7

cg07030646 .781571158 .522591259 .031194558

cg25755428 .309003001 .577580963 .033384153 MRI1

cg23024343 .747953956 .462397392 .041271331 COG5

cg10123377 .736455899 .437780254 .043007361

cg03013609 .390040555 .764941446 .047209222 LGALS8

LR, low resilience; HR, high resilience.
aMethylation probe levels with greater than 25% mean methylation differences with p-value< .05 between LR and HR in the discovery set.
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TABLE 3 Logistic regression and SVM models of methylation probes and methylation risk scores for LR and HR groups in the validation set.

Logistic regression SVM

Variables AUC
(95%
CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

AUC
(95%
CI)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

cg18565204 (AARS) .65
(.50, .80)

62.9 70 56.2 .80
(.69, .91)

75.8 78.7 75

cg17682313 (FBXW7) .77
(.65, .89)

71 72 70 .87
(.78, .97)

83.9 86.7 81.3

cg23024343 (COG5) .47
(.31, .60)

43.6 50 37.5 .63
(.49, .77)

66.1 76.7 56.3

cg05194426 (CYP2E1) .50
(.35, .64)

50 50 50 .77
(.66, .89)

69.4 86.7 53.1

cg25755428 (MRI1) .54
(.39, .68)

50 50 50 .78
(.67, .90)

69.4 88.3 56.3

cg23400446 (CYP2E1) .54
(.40, .69)

56.5 60 53.1 .78
(.67, .89)

67.7 87.3 53.4

cg07167608 (LINC01107) .73
(.61, .86)

71.0 73.3 68.8 .85
(.76, .97)

75.8 83.7 61.3

cg03013609 (LGALS8) .53
(.38, .68)

51.6 53.3 50 .78
(.67, .89)

72.6 86.7 59.4

cg00321709 (CYP2E1) .53
(.38, .67)

54.8 60 50 .78
(.67, .90)

69.4 80 59.4

Methylation risk score (cg18565204
(AARS) + cg17682313 (FBXW7) +
cg07167608 (LINC01107))

.81
(.72. .90)

72.3 75 70 .93 (.86, 1) 87.1 87.5 80

SVM, support vector machine; LR, low resilience; HR, high resilience; AUC, area under the ROC curve.

Bold values denote good discriminant ability.

FIGURE 2
Receiver operating characteristic (ROC) curves and forest plot of methylation probes and methylation risk score using logistic regression and support
vector machine in LR (low resilience) versus HR (high resilience) groups in the validation set. (A) Forest plot showing methylation probe coefficient estimates
for methylation risk scores by logistic regression. (B) ROC curves showing the capabilities of logistic regression to discriminant LR. (C) Box plot showing
methylation risk scores of the three methylation probes in LR and HR by logistic regression. (D) Forest plot showing methylation probe coefficient
estimates for methylation risk scores by support vector machine. (E) ROC curves showing the capabilities of support vector machine to discriminant LR. (F)
Box plot showing methylation risk scores of the three methylation probes in LR and HR by support vector machine.
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currently unable to explore the relationship between resilience and these
physical diseases because we did not exclude these diseases from all
participants. Furthermore, the findings of association between the
methylation signatures and psychological resilience still need further
research to parse out the biological mechanism.

The findings of this study link altered expression of DNAmethylation
signatures to biological pathways involved in resilience; however, there are
some limitations in the study. First, resilience may dynamically change
during development and time since exposure (Windle, 2011; Stainton
et al., 2019). Longitudinal studies of epigenetic change and resilience still
require future attention. Second, our method of measuring resilience was
a self-report questionnaire, which may have resulted in biased resilience
scores. Third, for complex psychological characteristics, multiple
interacting factors play significant roles in developing and modulating
resilience in an integrated way (Rutten et al., 2013). There are many
factors that may affect resilience, and DNA methylation studies may not
be able to comprehensively explore all relevant biological mechanisms of
resilience (Smeeth et al., 2021). For example, genetics, epigenetics,
developmental biology, environmental factors, psychosocial factors,
neurochemicals, and functional neural networks (Wu et al., 2013;
Niitsu et al., 2019). Fourth, the identification of biological mechanisms
is challenging because of the paucity of data from epigenetic studies in
peripheral tissues and CNS tissue and the possible bias of respective
methylation signatures (Walton et al., 2016). Fifth, because this is a cross-
sectional study, it can only be established that DNA methylation
signatures are related to resilience, while possibly pointing to biological
mechanisms. The longitudinal cohort study may be conducted in the
future for exploring potential causality. Finally, all participants were
Taiwanese (Han Chinese descents), so this is not necessarily applicable
to other races.

In this study, we produced an LR methylation risk score from
three methylation signatures to estimate individualized outcomes
for LR identification. The methylation risk score model of our study
is primarily used to identify whether individuals have low resilience
risk. The accuracy of the discriminative model between LR and HR
was 72.3% (logistic regression) and 87.1% (SVM), suggesting that
this risk score model may be suitable in application of the
psychological field. Although the results of classification are
good, high dimensional data with small number of samples may
lead to misclassification and biased discriminators. A larger sample
size study data can improve the robustness of discriminative
models. Furthermore, the resilience trait is related to many
factors, it can only be preliminarily concluded that epigenetics
may be related to resilience in the current study. But its explanatory
power and the actual mechanism still need further study. In the
future, we also expect that other variables can be added into the risk
scoring model, such as environmental factors, genetic variation,
different age groups, etc. We believe that this may have a higher
discrimination ability in identifying low resilience groups. Further,
we may also be able to examine the association of low resilience
groups with mental illness states in the future, which may help
prevent mental health deterioration. If we can use our risk scoring
model well to find low resilience risk groups early on, we might be
able to conduct early intervention to help improve mental health.

Conclusion

Our findings support that evidence of a link between resilience
and DNA methylation in peripheral blood and may provide further
understanding of epigenetics in resilience traits. We also
established the methylation risk score model using the
methylation markers that may be useful in psychological
practice or research. Our findings may be helpful in the
development of psychosocial and psychological interventions for
enhancing resilience and mitigating stress and adverse effect, and
thus in improving mental health care.
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