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Background: As a recurrent inflammatory bone disease, the treatment of

osteomyelitis is always a tricky problem in orthopaedics. N6-methyladenosine

(m6A) regulators play significant roles in immune and inflammatory responses.

Nevertheless, the function of m6A modification in osteomyelitis remains unclear.

Methods: Based on the key m6A regulators selected by the GSE16129 dataset, a

nomogrammodelwas established topredict the incidenceof osteomyelitis by using

the random forest (RF) method. Through unsupervised clustering, osteomyelitis

patients were divided into two m6A subtypes, and the immune infiltration of these

subtypes was further evaluated. Validating the accuracy of the diagnostic model for

osteomyelitis and the consistency of clustering based on the GSE30119 dataset.

Results: 3 writers of Methyltransferase-like 3 (METTL3), RNA-binding motif protein

15B (RBM15B) and Casitas B-lineage proto-oncogene like 1 (CBLL1) and three

readers of YT521-B homology domain-containing protein 1 (YTHDC1), YT521-B

homology domain-containing family 3 (YTHDF2) and Leucine-rich PPR motif-

containing protein (LRPPRC) were identified by difference analysis, and their

Mean Decrease Gini (MDG) scores were all greater than 10. Based on these

6 significant m6A regulators, a nomogram model was developed to predict the

incidence of osteomyelitis, and the fitting curve indicated a high degree of fit in both

the test and validation groups. Two m6A subtypes (cluster A and cluster B) were

identified by the unsupervised clustering method, and there were significant

differences in m6A scores and the abundance of immune infiltration between

the two m6A subtypes. Among them, two m6A regulators (METTL3 and LRPPRC)

were closely related to immune infiltration in patients with osteomyelitis.

Conclusion: m6A regulators play key roles in the molecular subtypes and

immune response of osteomyelitis, which may provide assistance for

personalized immunotherapy in patients with osteomyelitis.
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Introduction

Osteomyelitis is a devastating bone disease usually caused

by bacterial, fungal and mycobacterial infections. Acute and

chronic osteomyelitis both cause gradual deterioration of

bone, as well as a severe inflammatory response, even

invading the surrounding tissues outside the bone marrow

cavity (Ma et al., 2021a). The incidence of posttraumatic

osteomyelitis varies from 2% to 50% (Zalavras, 2017). In

addition, diabetic ulcers due to vascular insufficiency are a

common risk factor for osteomyelitis. The incidence of

osteomyelitis is on the rise due to the increasing prevalence

of diabetic foot infection. More than one-third of patients with

diabetic foot infections are reported to be accompanied by

osteomyelitis of the foot (Berendt et al., 2008). It is difficult to

cure osteomyelitis, and even surgical intervention has an 8%

mortality rate (Noskin et al., 2005).

The key to successful treatment of osteomyelitis is early

diagnosis. However, the wide variation in clinical

presentations of osteomyelitis makes accurate diagnosis of

osteomyelitis challenging. The gold standard for the diagnosis

of osteomyelitis includes bone histopathological examination

and bacterial culture, which should be combined with imaging

examination, laboratory test and physical examination

(Hogan et al., 2013). The indicators of preliminary

evaluation included erythrocyte sedimentation rate (ESR),

C-reactive protein (CRP), and blood culture. Although CRP

is elevated earlier than ESR and can be used to detect acute

osteomyelitis, it is nonspecific for osteomyelitis (Unkila-

Kallio et al., 1994; Peltola and Pääkkönen, 2014). Even

when bacteria are cultured, 40% of osteomyelitis patients

show negative results (Scott et al., 1990). In addition, early

osteomyelitis is also difficult to diagnose with imaging, and the

positive X-ray rate of patients with osteomyelitis for 2 weeks

has been reported to be less than 20% (Pasquet et al., 2015).

Therefore, no specific markers or methods have been

identified for the diagnosis of osteomyelitis.

N6-methyladenosine (m6A) is the most prevalent chemical

modification throughout the eukaryotic population, occurring in

messenger RNAs (mRNAs), transfer RNAs (tRNAs) and

ribosomal RNAs (rRNAs) (Linder et al., 2015; Xiao et al.,

2016; Wang et al., 2020). The m6A modification process is

mainly regulated by a combination of methylation recognition

proteins (readers), m6A methyltransferases (writers), and m6A

demethylases (erasers), which perform the functions of

recognition, installation, and removal of methylation,

respectively (Shi et al., 2019; Huang et al., 2021). Due to its

reversible modifications that can affect the transcription and

translation of mRNA profiles, which in turn regulate various

fundamental cellular processes such as differentiation,

metabolism, inflammation and immunity (Zhao et al., 2020;

Zhu et al., 2020; Liu et al., 2022), it has begun to receive

widespread attention from researchers.

Recently, m6A modifications have been found to be involved

in the development of various inflammatory diseases, including

skeletal diseases, neurodegenerative diseases, cardiac diseases,

metabolic diseases, and cancer (Chokkalla et al., 2019; Zong et al.,

2019; Zhang et al., 2020a). Zhang et al. (2019) found that

METTL3 knockdown inhibited osteoblast differentiation and

mineralization via the Smad signaling pathway under LPS-

stimulated inflammatory conditions. In addition,

METTL3 depletion also mediates the inflammatory response

of osteoblasts through the MAPK signaling pathway, as

evidenced by the production of inflammatory cytokines such

as IL6 and IL12. However, the relationship and regulatory

mechanisms between osteomyelitis and m6A modifications

remain unclear. In this study, we used a random forest (RF)

approach to establish a diagnostic model of osteomyelitis, and

further two subtypes (m6A clusters and gene clusters) were

identified using unsupervised clustering in patients with

osteomyelitis. This study is designed to assist in the diagnosis

of osteomyelitis and personalized immunotherapy based on

different molecular subtypes.

Material and methods

Data collection and processing

Two gene expression datasets (GSE16129 and GSE30119)

containing osteomyelitis and healthy samples were selected

for this study and both were downloaded from the GEO

database website (https://www.ncbi.nlm.nih.gov/geo/).

GSE16129 datasets came from three platforms (GPL96,

GPL97 and GPL6106), while GSE30119 datasets came from

the GPL6947 platform. The gene expression data were merged

using the “Perl” language (http://www.perl.org/) and

normalized using the “sva” and “limma” packages of R

software (Ritchie et al., 2015). As the merged microarray

data come from three different platforms, the ComBat

method was applied to correct the data in batches to

eliminate the batch effects caused by multiple factors

(Larsen et al., 2014; Müller et al., 2016; Zhang et al.,

2020b). 97 osteomyelitis samples and 29 healthy samples

from the GSE16129 dataset served as the test group, and

39 osteomyelitis samples and 44 healthy samples from the

GSE30119 dataset served as the validation group. Data with

large gene expression were changed with log2.

Differential analysis of m6A regulators
expression in osteomyelitis patients and
healthy samples

26 m6A regulators were selected as references, including

15 readers, 9 writers and 2 erasers (Table 1) (Boulias et al., 2019;
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Zhang et al., 2020a). Based on these genes, the expression data of

m6A regulators from 97 patients with osteomyelitis and

29 healthy samples in the text group were extracted by

“limma” package, and the DEGs were screened by differential

analysis between two groups. The results were visualized in the

form of heatmap and boxplot with “pheatmap” and “ggpubr”

packages (Zhao et al., 2014). The filter criteria were set to |logFC|

value >1 and p-value < 0.05. In addition, the corresponding

chromosome characteristics of m6A regulators, such as name,

starting position and ending position, were obtained by

consulting the literature (Dai et al., 2021). The locations of

m6A regulators on chromosomes were extracted using the

“Perl” program and were presented as a circle diagram using

“RCirco” package (Zhang et al., 2013).

Diagnostic signature of osteomyelitis
based on m6A regulators

Machine learning algorithms such as random forest (RF) and

support vector machine (SVM) have been used for identifying

and classifying key features of diseases, detecting hard-to-discern

features in complex datasets, and analyzing gene expression data

(Huang et al., 2018). RF is an integrated classifier consisting of

many decision trees that exhibits robust performance by injecting

randomness into the training of the trees to prevent overfitting of

the data (Polan et al., 2016). SVM is also very effective in

identifying complex datasets and is often used to identify

cancer subtypes (Abinash and Vasudevan, 2022).

To better identify and screen important m6A regulators,

two models were built by RF and SVM algorithms based on

the text group. The boxplot of residual error, receiver

operating characteristic (ROC) and reverse cumulative

distribution plot of residual error were constructed to

compare the accuracy of the two models. The smaller the

residual error, the higher the accuracy of the models. After

determining the model, the m6A regulators were scored

according to their importance distribution, expressed as

the Mean Decrease Gini (MDG). A higher value of a gene

means that the gene is more important in this model. Genes

with MDG values >10 were ultimately screened out. The

“rms” package was then used to construct a nomogram model

to predict the incidence of osteomyelitis. Calibration curves

and decision curve analysis (DCA) were used in the analysis

to assess the fit of the model, and a clinical impact curve was

drawn to evaluate whether the model was beneficial to

patients (Iasonos et al., 2008). Finally, the diagnostic

model for osteomyelitis was validated based on the

GSE30119 dataset.

Identification ofmolecular subtypes based
on significant m6A regulators

In consensus clustering, the K-means algorithm is run

multiple times to obtain the input partition, and the common

matrix is calculated based on the partition result. The

ultimate goal is to detect sample subtypes with similar

characteristics (Brière et al., 2021). The

“ConsensusClusterPlus” package of R software was used to

cluster osteomyelitis samples with m6A regulators to create

subtypes with differential characteristics (Seiler et al., 2010;

Yu et al., 2012). The most appropriate number of clusters was

screened based on the consistency heatmap, consistency

scores, cumulative distribution function (CDF) and CDF

delta area curve. Specifically, the value of K corresponding

to when the CDF reaches its approximate maximum value is

the best grouping result (Wilkerson and Hayes, 2010). The

maximum value of the number of clusters K was set to 10. To

test the accuracy of clusters, the results of consensus

clustering were validated based on the GSE30119 dataset

and principal component analysis (PCA) was performed

on the classified samples to determine whether the

groupings accurately reflected the characteristics of

osteomyelitis patients (David and Jacobs, 2014).

Furthermore, the expression of m6A regulators was further

analyzed to determine whether it differed significantly

between molecular subtypes.

Correlation analysis between m6A
subtypes and immune cell infiltration

We further used single-sample gene set enrichment

analysis (ssGSEA) in the “gsva” package to combine the

23 immune gene datasets with “high-low discriminant

analysis” to calculate the immune infiltration score for each

sample (Xiao et al., 2020). The boxplot was used to indicate

whether the abundance of immune cells differed between m6A

subtypes. The correlation between m6A regulators and

immune cell infiltration was represented by a heatmap, and

the top 2 m6A regulators with the strongest correlation were

TABLE 1 The characteristics of 26 m6A regulators.

Type Gene Number

Writers METTL3/METTL14/METTL16/WTAP/VIRMA/
ZC3H13/RBM15/RBM15B/CBLL1

9

Readers YTHDC1/YTHDC2/YTHDF1/YTHDF2/YTHDF3/
HNRNPC/FMR1/LRPPRC/HNRNPA2B1/IGFBP1/
IGFBP2/IGFBP3/RBMX/ELAVL1/IGF2BP1

15

Erasers FTO/ALKBH5 2
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screened. The samples were divided into low and high

expression groups based on the median expression value of

each gene, and boxplots were used to observe whether there

was a significant difference in the abundance of immune cells

between the high and low expression groups.

Correlation analysis between m6A
subtypes and clinical characteristics

To test the relationship between the two m6A subtypes of

osteomyelitis and clinical characteristics, information on the age

and sex of osteomyelitis patients in the test and validation groups

was extracted to further compare whether there were significant

differences in age and sex between the two subtypes, represented

in the form of boxplots and histograms. Furthermore, the results

of clinical correlation were validated based on the

GSE30119 dataset.

GO functional annotation and KEGG
pathway analysis based on DEGs between
the two m6A subgroups

To explore the molecular mechanisms of m6A regulators,

GO and KEGG enrichment analyses were performed using the

“ClusterProfile” and “enrichplot” packages (The Gene Ontology,

2006; Kanehisa et al., 2012). In the GO enrichment analysis, the

top 10 molecular functions (MF), cellular components (CC) and

biological processes (BP) related to DEGs were screened, while

the KEGG analysis focused on the biological pathways involved

in DEGs.

Identification ofmolecular subtypes based
on the DEGs of two m6A subgroups

Based on the DEGs of the two m6A subtypes, consensus

clustering analysis was performed using the “ClusterProfile”

package. A consistency heatmap and CDF were used to

determine the optimal number of clusters. Clustering

conditions were set as follows: maxK = 8, reps = 50,

pFeature = 1, pItem = 0.8, clusterAlg = “km”, distance =

“euclidean”, and seed = 123,456.

Correlation analysis between gene
subgroups and immune cell infiltration

To explore the relationship between the 23 immune cells and

the gene cluster, a boxplot was used to visualize whether the

abundance of immune cells was significantly different in each

molecular subtype. The expression of m6A regulators was also

visualized using boxplots to determine whether it was different

between gene subtypes.

Differential analysis of m6A scores
between the m6A subgroups or gene
subgroups

Based on the expression of m6A regulators in each sample,

the m6A score of each sample was obtained using PCA. Next, the

“ggpubr” package was used to assess whether there were

significant differences in m6A scores between the two m6A

molecular subtypes or gene molecular subtypes. A Sankey

diagram was drawn using the “ggalluvial” package to compare

the similarity between m6A molecular subtypes and gene

molecular subtypes. Finally, differences in m6A scores were

validated based on the GSE30119 dataset.

Differential analysis of collagen and
interleukin-related genes between the
m6A subgroups or gene subgroups

To further understand the relationship between m6A

modification and the occurrence and development of

osteomyelitis, we screened collagen and interleukin-related

genes, which are involved in osteogenic differentiation and

osteomyelitis inflammation, respectively. Boxplots were used

to observe whether there were significant differences in the

expression of these genes between the two m6A subtypes or

gene subtypes. The expression of differences in collagen and

interleukin-related genes were validated based on the

GSE30119 dataset.

Establishment of osteomyelitis model in
rats

Twenty 8-week-old male SD rats weighing approximately

300 g were purchased from Kunming Animal Institute

(Kunming, China), of which 10 were used as the

experimental group and 10 as the control group. After

anesthesia with intravenous sodium pentobarbital, the

proximal third of the right tibia was exposed, and the

medullary cavity was drilled approximately 1.5 mm and

injected with 5 μl of 1 × 106 S. aureus. The control group

was injected with sterile phosphate buffer solution. The

specimen was sealed with bone wax after implantation of

the 5 mm × 1 mm steel needle. The specific procedure of the

experimental model was based on the method of Vergidis

et al. (2015). All experimental procedures were reviewed and

approved by the 920th Hospital of Joint Logistics Support

Force Ethics Review Committee (2022–025–01).
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Quantitative real-time PCR

Tibial tissues from the 10 rat models of osteomyelitis and

10 control groups were collected, and total RNA was extracted

from tibial tissues using TRIzol reagent (Ambion Inc., Austin,

TX), followed by reverse transcription of RNA to cDNA using

SweScript RT I First Strand cDNA Synthesis Kit (Service Bio,

Guangzhou, China) to reverse transcribe RNA to cDNA.

Quantitative real-time PCR was performed using Universal

Blue SYBR Green qPCR Master Mix (Service Bio, Guangzhou,

China), and the level of GAPDH was used as an internal control.

Relative expression was calculated according to the comparative

Ct (2−ΔΔCT) method (Livak and Schmittgen, 2001). The sequences

of the primers used are shown in Supplementary Table S1.

Immunohistochemistry

Right tibial tissues from the experimental group and the

control group in the same location were taken and

immunohistochemically stained using 4% paraformaldehyde

fixation and paraffin embedding. Following paraffin removal,

experimental tissues were incubated with primary antibodies

against METTL3, YTHDC1, YTHDF2, RBM15B, LRPPRC

and CBLL1 overnight at 4°C and control tissues were

incubated with sterile phosphate-buffered saline (PBS; Service

Bio, Guangzhou, China). Representative slices were incubated

with biotinylated secondary antibodies (Service Bio, Guangzhou,

China) at 22°C (Ramos-Vara, 2005). After the samples were

sectioned, the staining differences of 6 significant m6A regulators

in tibial tissues were evaluated under the microscope.

Statistical analysis

The Kruskal‒Wallis test was used to compare the differences

between groups, with p < 0.05 indicating statistical significance.

All statistical analyses were performed using R software (version

4.1.3) and the corresponding program package (http://www.

bioconductor.org/).

Results

Expression and specific characteristics of
m6A regulators in osteomyelitis patients
and healthy samples

The test group consisted of 97 osteomyelitis samples and

29 healthy samples, including 71 males and 55 females, with an

average age of 7.4 ± 4.7 years, and the validation group consisted

of 39 osteomyelitis samples and 44 healthy samples, including

41 males and 42 females, with an average age of 7.2 ± 4.3 years.

Based on the 26 m6A regulators used as reference, 10 m6A

regulators were identified in all samples and then screened for

6 m6A regulators after differential expression analysis (Figures

1A,B). The 6 m6A regulators include 3 writers of

Methyltransferase-like 3 (METTL3), RNA-binding motif

protein 15B (RBM15B) and Casitas B-lineage proto-oncogene

like 1 (CBLL1) and three readers of YT521-B homology domain-

containing protein 1 (YTHDC1), YT521-B homology domain-

containing family 3 (YTHDF2) and Leucine-rich PPR motif-

containing protein (LRPPRC). In addition, we observed the

chromosome characteristics of m6A regulators in the form of

a circle diagram and found that m6A regulators associated with

osteomyelitis were mainly distributed on chromosomes 1, 2, 3, 4,

6, 7, 14 and 19 (Figure 1C). Specific characteristics of

chromosomes, including starting position and ending position,

are shown in Table 2.

Diagnostic signature for osteomyelitis
based on m6A regulators

RF and SVM were used to construct diagnostic signatures.

The boxplot and line plot revealed that the residual of RF was

smaller than that of SVM (Figure 2A), and the AUC value of the

model built by RF was larger than that of SVM (RF: 1.000 vs.

SVM: 0.961) (Figure 2B). Therefore, RFmodel was selected as the

best model to predict the incidence of osteomyelitis. The RF

model was constructed based on the trees (Figure 2C), of which

6 significant m6A regulators (METTL3, YTHDC1, YTHDF2,

RBM15B, LRPPRC and CBLL1) had MDG values greater than

10, and all of them were included in this RF model (Figure 2D).

Furthermore, a nomogram model was established to predict the

incidence of osteomyelitis by summing the scores for each gene

(Figure 2E). In general, a higher total score represented a higher

risk of osteomyelitis. The calibration curve and DCA curve

suggested that the RF model fit well (Figure 2F). In the

validation group, a nomogram model (Figure 2G) was

established to predict the incidence of osteomyelitis and the

calibration curve and DCA curve also suggested that the RF

model fit well (Figure 2H).

Results of molecular subtypes based
on m6A regulators

Based on CDF, consistency score, CDF delta area curve and

number of samples, two molecular subtypes of m6A were

identified (cluster A and cluster B) and consistency score (k =

2) > 0.8 (Figures 3A,B). There were 45 samples in cluster A

osteomyelitis and 52 samples in cluster B osteomyelitis. In the

validation group, cluster A osteomyelitis included 6 samples and

cluster B osteomyelitis included 33 samples (Figures 3C,D). The

results of PCA suggested that cluster A and cluster B
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osteomyelitis were well distinguished by the expression of m6A

regulators in both the text and validation groups (Figures 3E,F).

Visualization of the results by boxplot and heatmap suggested

that the 5 regulators were differentially expressed between the

two m6A subtypes, with METTL3, CBLL1 and LRPPRC highly

expressed in cluster A osteomyelitis, RBM15B and

YTHDC1 highly expressed in cluster B osteomyelitis (Figures

3G,H). The different m6A clusters of the test (k = 1–10) and

validation groups (k = 1–9) can be found in Supplementary

Figure S1.

Immune infiltration analysis of m6A
subtypes

The results of ssGSEA analysis revealed that a total of

7 immune cells were significantly different in two m6A

subtypes, among which activated B cells, activated

CD8 T cells, CD56 bright natural killer cells, and eosinophils

were highly abundant in cluster A osteomyelitis, while activated

dendritic cells, natural killer cells, and type 2 T helper cells were

highly abundant in cluster B osteomyelitis (Figure 4A). The

correlation heatmap suggested that the METTL3 gene showed a

strong positive correlation with activated B cells (r = 0.49), and

FIGURE 1
Expression of m6A regulators in osteomyelitis samples and healthy samples. (A) Expression of all 10 m6A regulators in osteomyelitis samples
and normal samples. (B)Heatmap of 6 significantm6A regulators between the two groups. (C)Chromosomal characteristics of all 10m6A regulators.

TABLE 2 Specific characteristics of m6A regulators on chromosomes.

Gene Chromosome Starting position Ending position

METTL3 Chromosome 14 21498133 21511375

WTAP Chromosome 6 159725585 159756319

RBM15 Chromosome 1 110338506 110346681

RBM15B Chromosome 3 51391268 51397908

CBLL1 Chromosome 7 107743697 107761667

YTHDC1 Chromosome 4 68310387 68350089

YTHDF2 Chromosome 1 28736621 28769775

LRPPRC Chromosome 2 43886508 43996005

IGFBP1 Chromosome 7 45888357 45893668

ELAVL1 Chromosome 19 7958579 8445041
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FIGURE 2
Building and validating of diagnostic models based on RF and SVMmachine learning methods. (A) Boxplot of residuals. (B) ROC curves for both
models. (C) Construction of random forest model. (D) MDG value of 6 significant m6A-related DEGs. (E) Nomogram of the model based on the
GSE16129 dataset. (F) Calibration curve of the text model. (G) Nomogram of the model based on the GSE30119 dataset. (H) Calibration curve of the
validation model. RF, random forest; SVM, support vector machine; ROC, receiver operating characteristic; MDG, Mean Decrease Gini; DCA,
Decision Curve Analysis.
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FIGURE 3
Molecular subgroups based on clustering analysis of m6A regulators. (A) Heatmap of 2 clusters (k = 2) based on m6A regulators from the
GSE16129 dataset. (B) Consistency scores of all the text clusters (k = 2–10). (C) Heatmap of 2 clusters (k = 2) based on m6A regulators from the
GSE30119 dataset. (D)Consistency scores of all the validation clusters (k = 2–9). (E) PCA analysis of the 2 clusters in the text group. (F) PCA analysis of
the 2 clusters in the validation group. (G) Box diagram of differential expression of 6 significantm6A regulators in twom6A clusters from the text
group. (H) Heatmap of differential expression of 6 significant m6A regulators in two m6A clusters from the text group.
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a strong negative correlation with activated dendritic cells

(r = −0.38) and natural killer T cells (r = −0.37). The

LRPPRC gene also showed a strong negative correlation with

natural killer T cells (r = −0.49) (Figure 4B). Therefore,

METTL3 and LRPPRC were chosen to study their

abundance of immune infiltration in the high and low

expression groups (Figures 4C,D). In the METTL3 high-

expressed group, activated B cells, CD56 bright natural killer

cells, immature dendritic cells, and plasmacytoid dendritic cells

were highly infiltrated, whereas in the low-expressed group,

activated dendritic cells, and natural killer T cells were highly

infiltrated in the low-expressed group. In the high LRPPRC

expression group, activated B cells, CD56 bright natural killer

cells, eosinophils, monocytes, and plasmacytoid dendritic cells

were highly infiltrated, whereas in the low expression group,

activated dendritic cells, natural killer T cells, T follicular helper

cells, and type 2 T helper cells were highly infiltrated in the low-

expressed group.

Clinical correlation analysis of m6A
subtypes

To test the clinical correlation of m6A subtypes, we analyzed

the relationship between the two m6A subtypes and clinical

characteristics. In the m6A subtypes of the test group, age and

proportion of male were significantly lower in subgroup A than

in subgroup B (Figures 5A,B). However, there were no significant

difference in age and proportion of male in the twom6A subtypes

of the validation group (Figures 5C,D).

FIGURE 4
Immune cells infiltration analysis of m6A regulators. (A) Box diagram of immunocyte abundance in molecular subgroups of m6A regulators. (B)
Heatmap of correlation between immunocyte abundance and m6A regulators expression. (C) Box diagram of comparison of immunocyte
abundance in the METTL3 high- and low-expression groups. (D) Box diagram of comparison of immunocyte abundance in the LRPPRC high- and
low-expression groups.
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Effects of GO functional annotation and
KEGG pathway analysis

A total of 167m6A-related DEGs were obtained from the two

m6A subtypes using the “limma” and “VennDiagram” packages

(Figure 6A). To understand the molecular functions and

biological processes of the DEGs, GO annotation and KEGG

pathway analysis were performed on DEGs from cluster A

osteomyelitis and cluster B osteomyelitis (Figures 6B–D). In

GO analysis, DEGs were mainly involved in biological

processes (BP) such as T cell activation, Ras protein signal

transduction, and regulation of protein stability; cellular

components (CC) such as nuclear envelope, nuclear speck,

and transcription regulator complex; and molecular functions

(MF) such as RNA polymerase II−specific, DNA−binding

transcription activator activity, and ubiquitin−like protein

ligase binding. KEGG pathway analysis revealed that DEGs

were mainly involved in T cell activation and proteasomal

protein catabolic processes.

Immune infiltration of gene subtypes

To validate the m6A subtypes, two molecular subtypes were

further confirmed based on 167 DEGs of the m6A subtypes (gene

cluster A and gene cluster B) (Figures 7A,B). There were 54 cases of

gene cluster A osteomyelitis and 43 cases of gene cluster B

osteomyelitis. Among the 6 m6A regulators, METTL3 and

FIGURE 5
Clinical correlation analysis of two m6A clusters based on the GSE16129 and GSE30119 datasets. Differences in age (A) and proportion of male
(B) between twom6A clusters based on theGSE16129 dataset. Differences in age (C) and proportion ofmale (D) between twom6A clusters based on
the GSE30119 dataset.
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LRPPRCwere highly expressed in subgroupA osteomyelitis, whereas

YTHDC1 was highly expressed in gene cluster B osteomyelitis

(Figure 7C). In addition, the results of immune infiltration

showed that 9 immune cells were significantly different between

the two gene subtypes, in which activated B cells, activated

CD8 T cells, CD56 bright natural killer cells, eosinophils,

monocytes, and regulatory T cells were highly infiltrated in gene

clusterA, while activated dendritic cells, natural killer T cells, and type

2 T helper cells were highly infiltrated in gene cluster B (Figure 7D).

Differential analysis of m6A scores,
collagen- and interleukin-related genes in
the two typing methods

Based on the expression of m6A regulators, 97 samples from

the test group and 83 samples from the validation group were

scored using PCA analysis, and the score of each sample is shown

in Supplementary Table S2. We then compared m6A scores in

the two typing approaches, and the results showed that m6A

FIGURE 6
GO functional annotation and KEGG pathway analysis of DEGs based two m6A subgroups. (A) Venn diagram of DEGs. Circle (B) and bubble
diagram (C) of GO functional annotation. (D) Top 20 KEGG pathway analysis of DEGs.
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scores in cluster B or gene cluster B were significantly higher than

those in cluster A or gene cluster A (Figures 8A,B). The Sankey

diagram suggested a high similarity between m6A subtypes and

gene subtypes (Figure 8C). In the validation group, the m6A

scores in cluster B or gene cluster B were also significantly higher

than those in cluster A or gene cluster A (Figures 8D,E) and the

Sankey diagram suggested a similarity between m6A subtypes

and gene subtypes (Figure 8F).

To further reveal the relationship between m6A subtypes and

the development of osteomyelitis, we found that between the two

m6A subtypes from the test group, the expression of 3 collagen-

related genes was significantly different, with COL4A1,

COL8A2 and COL18A1 both highly expressed in cluster A

osteomyelitis. The expression of 2 interleukin-related genes

was significantly different, with IL11RA and IL17RA highly

expressed in cluster B osteomyelitis (Figures 9A,B). Between

the two gene subtypes, the expression of 3 collagen-related

genes was significantly different, among which COL4A1,

COL8A2 and COL18A1 were all highly expressed in gene

cluster A osteomyelitis. The expression of 2 interleukin-related

genes were significantly different, among which IL11RA and

IL17RA were highly expressed in gene cluster B osteomyelitis

(Figures 9C, D). Similar to the results of the test group, the

validation group exhibited a weak correlation with collagen- and

interleukin-related genes. Between the two m6A subtypes from

the validation group, the expression of 2 collagen-related genes

was significantly different, with COL8A2 and COL18A1 both

highly expressed in cluster A osteomyelitis. The expression of

1 interleukin-related gene was significantly different, with

IL11RA being highly expressed in cluster A osteomyelitis

(Figures 9E,F). Between the two gene subtypes, the expression

of 2 collagen-related genes was significantly different, among

FIGURE 7
Molecular subgroups and immune cells infiltration analysis based onm6A-associated DEGs. (A)Clustered heatmap of 2 clusters (k = 2) based on
m6A-associated DEGs. (B)Heatmap of typing for 167 DEGs. (C) Box diagram ofm6A regulators between the two gene subgroups. (D) Box diagram of
immunocyte abundance between the two gene subgroups.
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which COL8A2 and COL18A1 were all highly expressed in gene

cluster A osteomyelitis. The expression of 2 interleukin-related

genes was significantly different, among which IL11RA was

highly expressed in gene cluster A osteomyelitis (Figures 9G,H).

Validation of m6A regulators in rat models
of osteomyelitis

Based on the 6 significant m6A regulators with differential

expression in the dataset, we further validated the expression of

the 6 m6A regulators (METTL3, YTHDC1, YTHDF2, RBM15B,

LRPPRC and CBLL1) in 10 osteomyelitis samples and 10 control

samples by qRT‒PCR analysis. The qRT‒PCR results showed

that the mRNA expression of METTL3, YTHDC1, RBM15B,

LRPPRC and CBLL1 in osteomyelitis tissues was significantly

increased, while that of YTHDF2 was significantly decreased (p <
0.05), which was consistent with the results of bioinformatics

analysis (Figures 10A–F). To verify the effectiveness of our

analysis, immunohistochemical staining was further performed

on the focal bone tissue and healthy bone tissue of rat model of

osteomyelitis (Figures 11A–F). The results suggested that

METTL3, YTHDC1, RBM15B, LRPPRC and CBLL1 were

highly expressed in the focal bone tissue of rats, while

YTHDF2 was expressed at low levels. Compared with the

healthy bone tissue, the positive rates of METTL3, YTHDC1,

RBM15B, LRPPRC and CBLL1 in the focus bone tissue were

higher, while YTHDF2 was lower (p < 0.05), which is consistent

with the results of bioinformatics analysis and qRT‒PCR.

Discussion

In this study, two datasets (GSE16129 and GSE30119) were

collected, the GSE16129 dataset as the test group and the

GSE30119 dataset as the validation group. A diagnostic model

for osteomyelitis was established based on m6A regulators using

a RF approach, and calibration curves and DCA plots

demonstrated that the model fit well. In addition, we classified

97 osteomyelitis samples into two molecular subtypes based on

the expression of 6 significant m6A regulators and 167 m6A-

associated DEGs. The abundance of immune cell infiltration and

FIGURE 8
Differential analysis of m6A scores in the two typing methods based on the GSE16129 and GSE30119 datasets. Differential analysis of m6A
scores in the two m6A subgroups (A) and two gene subgroups (B) based on the GSE16129. (C) A Sankey diagram was showed the relationship
between m6A subgroups, m6A gene subgroups, and m6A scores based on the GSE16129. Differential analysis of m6A scores in the two m6A
subgroups (D) and two gene subgroups (E) based on theGSE30119. (F) A Sankey diagramwas showed the relationship betweenm6A subgroups,
m6A gene subgroups, and m6A scores based on the GSE30119.
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FIGURE 9
Differential analysis of collagen-related and interleukin-related genes in the two typingmethods. Differential analysis of collagen-related genes
between the two m6A (A) and two gene subgroups (B) based on the GSE16129. Differential analysis of interleukin-related genes between the two
m6A (C) and two gene subgroups (D) based on the GSE16129. Differential analysis of collagen-related genes between the twom6A (E) and two gene
subgroups (F) based on the GSE30119. Differential analysis of interleukin-related genes between the two m6A (G) and two gene subgroups (H)
based on the GSE30119.
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genes involved in osteomyelitis were significantly different

between the two m6A subtypes or gene subtypes. The

accuracy of both the osteomyelitis diagnostic model and the

m6A molecular subtypes were validated using the

GSE30119 dataset. All these findings suggest that the

diagnostic model and molecular subtypes were crucial to

differentiate osteomyelitis. To our knowledge, this is the first

study to comprehensively evaluate the functions of m6A

regulators in the diagnosis and molecular subtypes of

osteomyelitis.

The diagnostic model of osteomyelitis included 6 significant

m6A-related DEGs, namely METTL3, YTHDC1, YTHDF2,

RBM15B, LRPPRC and CBLL1, which all had importance

scores greater than 10. A previous study found that

METTL3 knockdown promoted the expression levels of the

inflammatory cytokines IL6 and IL12, as well as the

expression of osteogenic-related genes and osteoblast

differentiation in an LPS-mediated inflammatory environment

(Zhang et al., 2019). In vitro, overexpression of METTL3 can

attenuate LPS-induced inflammatory responses in macrophages

via the NF-κB pathway (Wang et al., 2019a). Silencing

YTHDF2 exacerbated LPS-induced inflammatory response in

RAW264.7 cells through activation of the NF-κB pathway (Yu

et al., 2019). A recent study also demonstrated that

METTL3 knockdown promoted proliferation and

differentiation of osteoblasts under LPS-mediated

inflammatory conditions and similar results were observed

after YTHDF2 knockdown (Kong et al., 2022). These findings

were similar to our results. We found that METTL3 was highly

expressed and YTHDF2 was expressed at low levels in

osteomyelitis samples and validated this finding in a rat

model of osteomyelitis. It is suggested that METTL3 and

YTHDF2 may be involved in promoting osteogenic

differentiation and attenuating the inflammatory response in

the inflammatory environment of osteomyelitis, making them

potential therapeutic targets. 15 m6A regulators, including

METTL3, YTHDC1, YTHDF2, RBM15B, LRPPRC and

CBLL1, are involved in the pathological process of

periodontitis (Zhang et al., 2021). Our study also came to

similar conclusions, suggesting that these 6 m6A regulators

may play a key regulatory role in the development of

inflammatory diseases.

To investigate the role of m6A modification in disease,

researchers were the first to conduct studies in the field of

oncology (Liu et al., 2020; Zhao et al., 2021a; Li and Zhang,

2021). In the non-oncology field, studies based on consensus

FIGURE 10
The mRNA expression levels of 6 significant m6A regulators in the focal bone tissue and healthy bone tissue of rat model of osteomyelitis. The
mRNA expression levels of METTL3 (A), YTHDC1 (B), YTHDF2 (C), RBM15B (D), LRPPRC (E), and CBLL1 (F) in focal bone tissues were significantly
higher than that of healthy bone tissues.
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clustering analysis have been conducted to explore their

regulatory mechanisms in periodontitis and acute myocardial

infarction (Zhao et al., 2021b; Zhang et al., 2021). In the

clustering analysis, two kinds of molecular subtypes were

identified based on m6A regulators and gene clusters. In the

m6A regulators-associated molecular subtypes, METTL3,

CBLL1 and LRPPRC were significantly more highly expressed

in subgroup A osteomyelitis than in subgroup B, while RBM15B

and YTHDC1 expression were higher in subgroup A

osteomyelitis. We obtained consistent findings in the gene

subtypes. These results suggested that above 5 m6A regulators

were important for distinguishing between subgroup A

osteomyelitis and subgroup B osteomyelitis.

In addition, m6A modification has been proven to be

involved in the regulation of the cellular immune response

(Shriwas et al., 2020; Ma et al., 2021b; Liu et al., 2021). We

FIGURE 11
Immunohistochemistry of 6 significant m6A regulators in the focal bone tissue and healthy bone tissue of rat model of osteomyelitis.
METTL3 (A), YTHDC1 (B), YTHDF2 (C), RBM15B (D), LRPPRC (E), and CBLL1 (F)were abundantly expressed in focal bone tissues, and the positive rates
were significantly higher than that of healthy bone tissues.
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found significant differences in the abundance of numerous

immune cells in molecular subtypes based on either m6A

clusters or gene clusters. In these subtypes, 7 immune cells

were different in m6A subtypes, and 9 immune cells were

different in gene subtypes. Specifically, there were significant

differences between activated B cells, activated CD8 T cells,

activated dendritic cells, CD56 bright natural killer cells,

eosinophil, natural killer T cells, and type 2 T helper cells.

We further identified METTL3 and LRPPRC as two m6A

regulators with strong relevance to immune cell infiltration.

9 immune cell infiltration abundances were significantly

different in METTL3, and 8 immune cells were

significantly different in LRPPRC. Liu et al. found that

METTL3 knockdown inhibited M1-type macrophages but

promoted the polarization of M2-type macrophages (Liu

et al., 2019). In our study, the proportion of monocyte

infiltration was higher in the group with low

METTL3 expression. On the other hand,

METTL3 mediates the activation and maturation of

dendritic cells. MTTTL3 knockout can reduce the

production of viruses in B cells infected by viruses (Hesser

et al., 2018; Wang et al., 2019b). In this study, we indicated

that activated B cells had higher infiltration abundance in the

group with high METTL3 expression, suggesting that

METTL3 may play an important role in the immune

response of B cells and be closely related to the immune

regulation of osteomyelitis. However, there are still few

studies on the regulatory role of LRPPRC in immune cells.

In addition, the inflammatory response is mainly caused by

immune cells and cytokines (Luo et al., 2021). To explore the

role of inflammatory cytokines in osteomyelitis, we explored

the expression of interleukin-related genes in molecular

subtypes. The differences between IL11RA and IL17RA in

the m6A cluster and gene cluster suggested that the two genes

may be involved in osteomyelitis-mediated inflammation.

Additionally, collagens and collagen-related genes have

been shown to be involved in a variety of bone diseases

(Myllyharju and Kivirikko, 2001; Marini and Blissett, 2013;

Forlino and Marini, 2016), and we also analyzed the

differential expression of collagen-related genes among

molecular subtypes of osteomyelitis. The results suggested

that both COL4A1 and COL18A1 were highly expressed in

subgroup A osteomyelitis.

Our study has some certain limitations. Firstly, we tried to

find additional datasets to validate the consistency of the

osteomyelitis diagnostic model and clustering analysis, but no

eligible datasets were found outside the GEO database. The

GSE30119, as the only validation data set, leads to clustering

results with unbalanced sample allocation and future large

sample datasets for verification are necessary. Secondly, this

study analyzed the relationship between m6A regulators and

immune cell infiltration and briefly validated the expression of

key m6A regulators in rat model of osteomyelitis, but its specific

regulatory mechanism in osteomyelitis-mediated inflammatory

conditions requires more in vitro and clinical experiments to

demonstrate.

Conclusion

In this study, a well-fitting nomogrammodel was constructed

to predict the incidence of osteomyelitis based on six significant

m6A regulators using a random forest approach, while two m6A

isoforms were obtained using unsupervised clustering analysis.

Furthermore, METTL3 and LRPPRC were determined to be

closely associated with immune infiltration by immune

infiltration analysis, which will provide guidance for

personalized immunotherapy of osteomyelitis patients in the

future.
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