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Background: ith the ongoing development of targeted therapy, non-apoptotic cell

death, including necroptosis, has become a popular topic in the field of prevention

and treatment. The purpose of this study was to explore the effect of necroptosis-

related genes (NRGs) on the classification of ovarian cancer (OV) subtypes and to

develop a necroptosis-related risk score (NRRS) classification system.

Methods: 74 NRGs were obtained from the published studies, and univariate COX

regression analysis was carried out between them and OV survival. Consensus

clustering analysis was performed on OV samples according to the expression of

NRGs related to prognosis. Furthermore, the NRRS model was developed by

combining Weighted Gene Co-Expression Network Analysis (WGCNA) with least

absolute shrinkage and selection operator (Lasso)-penalized Cox regression and

multivariate Cox regression analysis. And the decision treemodel was constructed

based on the principle of random forest screening factors principle.

Results: According to the post-related NRGs, OVwas divided into two necroptosis

subtypes. Compared with Cluster 1 (C1), the overall survival (OS) of Cluster 2 (C2)

was significantly shorter, stromal score and immune score, the infiltration level of

tumor associated immune cells and the expression of 20 immune checkpoints

were significantly higher. WGCNA identified the blue module most related to

necroptosis subtype, and 12 genes in the module were used to construct NRRS.

NRRSwas an independent prognostic variable ofOV. TheOSof sampleswith lower

NRRS was significantly longer, and tumor mutation burden and homologous

recombination defect were more obvious.

Conclusion:This studyshowedthatnecroptosisplaysan important role in theclassification,

prognosis, immune infiltration andbiological characteristics ofOV subtypes. The evaluation

of tumor necroptosis may provide a new perspective for OV treatment.
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Introduction

Ovarian cancer (OV) is the deadliest cancer in the female

reproductive tract (Whelan et al., 2022).Worldwide, 313,959 new

diagnosed ovarian cancer and 207,252 succumb to this disease in

2020 (Sung et al., 2021). OV is usually confined to the peritoneal

cavity throughout its course, with occasional distant metastases.

Due to vague and non-specific signs and symptoms, and limited

screening methods, the initial diagnosis is usually delayed until

extensive intraperitoneal diffusion occurs through the adjacent

peritoneal surface, ascites and rich lymphatic vessels (Achimas-

Cadariu et al., 2022). According to statistics, about 3/4 of OV

patients are diagnosed with advanced stage, and the prognosis is

disappointing (Zhang et al., 2022). OV also faces a large number

of unsolved problems such as difficult choice of treatment

strategies and high recurrence rate (Rakina et al., 2022).

Surgical treatment is currently recognized as the best method

for the treatment of ovarian cancer, and platinum-paclitaxel

chemotherapy as adjuvant therapy can significantly improve

the effectiveness of ovarian cancer treatment. (van Stein et al.,

2021; Wood and Ledermann, 2022). However, OV a highly

heterogeneous at the molecular level, therefore, molecular

targeted therapy is considered as a less toxic but more

effective treatment in OV (Guan and Lu, 2018). For example,

the combined application of PARP inhibitors, anti-VEGF

monoclonal antibody and ICI has become a research hotspot

(Revythis et al., 2022). Better understanding the biological

characteristics and molecular heterogeneity of OV in order to

formulate or improve treatment strategies and improve quality of

life is an urgent demand (Zhang et al., 2022).

Apoptotic cell death plays an important role in OV (Hou

et al., 2019). Ongoing development of targeted therapy allows

non-apoptotic cell death to become popular in the field of

prevention and treatment, including ferroptosis, alkaliptosis,

autophagy, necroptosis, pyroptosis, immunogenic cell death as

well as other cell death modes (Chen et al., 2022a). Necroptosis is

a form of programmed necrosis, which differs from apoptosis as

caspases activation is not involved in its progression. Instead, it is

mediated by external signals, which trigger the activation of

Mixed-Lineage Kinase Domain-Like (MLKL) signaling

cascade, Receptor Interacting Protein 1 (RIP1), RIP3 (Liu

et al., 2022). It is characterized by mitochondrial changes and

plasma membrane permeability, resulting in the release of

cytoplasmic contents into extracellular space and

inflammation (Beretta and Zaffaroni, 2022). Preclinical and

clinical evidence show that it is the outstanding pro-

inflammatory characteristics of necroptosis that contribute to

the correlation between necroptosis and cancer pathophysiology

(Pasparakis and Vandenabeele, 2015). Necroptosis is regulated

by molecular mechanism. Targeting necroptosis has shown

substantial potential in tumor treatment with small molecules

may have the advantage of bypassing the mechanism of apoptosis

resistance (Wu et al., 2022). There is growing evidence that

necrosis plays a key role in the development and progression of a

wide range of diseases, including neurodegenerative diseases,

ischemic cardiovascular disease and cancer metastases (Gong

et al., 2019; Chen et al., 2022b). In addition, necrosis has a dual

role in promoting and inhibiting tumor growth in a variety of

tumor types (Seifert et al., 2016; Strilic et al., 2016; Qin et al.,

2019). Therefore, from this point of view, the key molecular

insights on necroptosis provide a prospect for targeted therapy.

The key molecules of necroptosis have been poorly studied

in OV.

In the current study, based on the cluster analysis of

transcriptional profiles of necroptosis-related genes, we

identified the necroptosis subtypes of OV, and described the

clinical and molecular characteristics, immune characteristic and

association with immunotherapy response. A necroptosis-related

risk score (NRRS) model was developed by Weighted Gene Co-

Expression Network Analysis (WGCNA) and least absolute

shrinkage and selection operator (LASSO) Cox regression

analysis, and a clinical decision tree model and nomogram

were established to improve the risk stratification of survival

in OV patients.

Materials and methods

Extraction and preprocessing of OV
cohort data

The RNA sequencing (RNA-seq), somatic mutation, copy

number alterations (CNAs) data and clinical follow-up

information of OV were found and downloaded in The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

database. In International Cancer Genome Consortium

(ICGC, https://dcc.icgc.org/), the samples with detailed RNA-

seq and clinical survival data were also included in the analysis.

Another OV cohorts (GSE26193, GSE30161, GSE63885,

GSE9891) were collected from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. The clinical

features were showed in Table 1.

Consensus clustering analysis was
performed on OV samples by obtaining
necroptosis related genes

A study by Xin et al. (2022) gave 74 necroptosis-related genes

(NRG). Univariate COX regression analysis was carried out to

screen NRGs related to prognosis. R package

“ConsensusClusterPlus” root conducted the unsupervised

hierarchical clustering of OV according to expression of

prognosis-related NRGs. Euclidean distance and “pam” were

utilized to compute the similarity distance between samples,

with 500 iterations and 80% resampling rate, ranging from
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2 to 10. The final optimal clustering number, was defined by the

cumulative distribution function (CDF) curve and delta area,

showed high consistency within the cluster, low variation

coefficient without significant change in the area under the

CDF curve.

Detection of tumor mutation

The “maftools” package (Mayakonda et al., 2018) was

employed to analyze and visualize the single nucleotide

variation (SNV) data processed by mutect2 in TCGA. Firstly,

the genes with mutation frequency >3 in the sample were

screened, and the statistical differences of high frequency

mutation genes between subgroups were analyzed by fisher

test, and the mutations of 20 genes with the highest mutation

rate in different subgroups were shown by waterfall map. For

number of segments and tumor mutation burden (TMB),

fraction altered, homologous recombination defects, between

subgroups, Wilcoxon test was used to compare.

Assessment of tumor immune
microenvironment

The proportion of immune cells in tumor microenvironment

(TME) was estimated by marker genes expressions-based

microenvironment cell population (MCP) counter (Becht

et al., 2016) and single sample gene set enrichment analysis

(ssGSEA), and the results were expressed as enrichment scores.

ESTIMATE (Estimation of STromal and Immune cells in

MAlignant Tumours using Expression data) (Yoshihara et al.,

2013) was used to calculate the stromal score and immune score

and ESTIMATE score of the sample to quantify the overall level

of TME matrix and infiltrating immune components.

Prediction of immunotherapy response

Immune checkpoint expression from HisgAtals and TIDE

score from tumor immune dysfunction and exclusion (TIDE,

http://tide.dfci.harvard.edu) (Jiang et al., 2018) were used to

evaluate the immune checkpoint inhibitors treatment response

between different OV subgroups. Different TIDE scores

represent different sensitivities to immunotherapy, and low

TIDE score is considered to be responsive to immunotherapy.

Weighted gene co-expression network
analysis

To identify the key modules that are highly related to the OV

subtypes defined by necroptosis, R packageWGCNA (Langfelder

and Horvath, 2008) was used to convert gene expression data

TABLE 1 The clinical features of datasets

TCGA ICGC GSE26193 GSE30161 GSE63885 GSE9891

(N=373) (N=93) (N=107) (N=58) (N=70) (N=276)

OS

0 143 (38.3%) 19 (20.4%) 31 (29.0%) 22 (37.9%) 4 (5.7%) 163 (59.1%)

1 230 (61.7%) 74 (79.6%) 76 (71.0%) 36 (62.1%) 66 (94.3%) 113 (40.9%)

Age

Mean (SD) 59.6 (11.4) 62.6 (10.6) 59.6 (10.5)

Median [Min, Max] 59.0 [30.0, 87.0] 62.0 [38.0, 85.0] 59.0 [22.0, 80.0]

Stage

I 1 (0.3%) 21 (19.6%) 24 (8.7%)

II 21 (5.6%) 10 (9.3%) 1 (1.4%) 17 (6.2%)

III 291 (78.0%) 79 (84.9%) 59 (55.1%) 53 (91.4%) 59 (84.3%) 212 (76.8%)

IV 57 (15.3%) 14 (15.1%) 17 (15.9%) 5 (8.6%) 10 (14.3%) 22 (8.0%)

Missing 3 (0.8%) 1 (0.4%)

Grade

G1 1 (0.3%)

G2 42 (11.3%) 25 (43.1%) 8 (11.4%)

G3 319 (85.5%) 33 (56.9%) 44 (62.9%)

G4 1 (0.3%) 18 (25.7%)

Missing 10 (2.7%)
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into gene co-expression networks. The samples were clustered

based on the Pearson correlation value between each gene pair

and average linkage, and the best β was selected by using the

“pickSoftThreshold” function to satisfy the scale-free

distribution, and the correlation coefficient was more than

0.85. Adjacency matrix was created for correlation strength

description among the nodes, and was further transformed

into topological overlap matrix (TOM). Next, hierarchical

clustering tree was constructed by dynamic hybrid cutting

technology to identify modules (parameters: height = 0.25,

deepSplit = 2, minModuleSize = 80). After merging similar

modules, the modules with strong correlation with OV

subtypes defined by necroptosis were identified.

Construction of necroptosis-related risk
signature

The genes identified in the module were analyzed by

univariate Cox regression, and the genes related to prognosis

were included in the R packet “glmnet” for (LASSO Cox

regression analysis. Then, the genes further screened by

multivariate Cox regression analysis were used to construct

risk models: NRRS = the sum of the multivariate LASSO

regression coefficient of each gene × the normalized

expression value of each gene transformed by log2 and

z-score. To analyze the prediction effect of NRRS model on

overall survival (OS), Kaplan-Meier survival curve and time-

dependent receiver operating characteristic (tdROC) analyses

were used.

Enrichment analysis

The candidate gene set was obtained from the hallmark

database, and the log2FC value of each gene was input into

GSEA software for gene set enrichment analysis (GSEA) to

explore the biological pathway of sample enrichment. P <
0.05 was considered to be significantly enriched after adjusting

for Enrichment Score (ES). False discovery rate (FDR) < 0.05was

defined as the cutoff value. The upregulation pathway was

defined based on normalized enrichment scores (NES) > 0,

and the downregulation pathway was defined based on NES <0.

Construction of decision tree and
nomogram

We used rpart package to build a decision tree based on age,

stage, and grade and NRRS. Through the R package “rms,” a

nomogram was generated. To evaluate the consistency between

actual survival and the predicted results, calibration curves were

plotted. The net benefit and clinical usefulness of the nomogram

and NRRS model were determined by decision curve analysis

(DCA) and tdROC.

Statistical analysis

Statistical analysis was carried out by R 4.0.2 (https://www.r-

project.org) to analyze the data and generate the results. R

package “survminer” were performed to generate Kaplan-

Meier curve, and “timeROC” were conducted to generate

tdROC curve. The Wilcoxon rank-sum test were applied to

compare continuous variables in two groups. Take p < 0.

05 was the standard of statistical significance.

Results

Identification of necroptosis subtypes
for OV

First of all, the sample expression data of four OV cohorts

obtained from GEO were merged, and the deviation caused by

batch effect was eliminated through the remove Batch Effect

function of Limma package. Univariate Cox regression analysis

of NRGs was carried out in the merged data, and 15 NRGs related

to OV survival were identified. The merged OV samples were

unsupervised consensus clustering. After comprehensive

consideration of CDF curve and the delta area, KF2 was taken

as the final number of clusters (Figures 1A,B). Consensus

clustering was conducted in TCGA dataset (Supplementary

Figure S1). Therefore, the two necroptosis subtypes that

produce OV were cluster 1 (C1) and cluster 2 (C2). C1 was

related to the better OV survival outcome of the GEO merger

cohort (Figure 1C). And in the GSE with four cohorts, patients

with survival accounted for more than 50% of C1, and patients

with death accounted for a large proportion of C2 (Figure 1D).

For OV samples in TCGA datasets, C1 was also associated with

longer OS (Figure 1E). No statistical difference between the two

subtypes in the proportion of patients with different survival

states was found (Figure 1F). Although there was no significant

difference in the proportion of age, stage, grade distribution

between the two subtypes, it was obvious that there was a higher

proportion of patients with age ≤60, stage Ⅳ and G3 in C2

(Figures 1G–I).

Characterization of the genetic variation
for two necroptosis subtypes

The mutation data downloaded from TCGA were analyzed

in two necroptosis subtypes. 2,614 genes with mutation

frequency >3 were first screened out. A total of 54 genes

with significantly different mutation rates were identified by
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FIGURE 1
Identification of necroptosis subtypes for OV. (A) Consensus clustering heatmap for two subgroups. (B) CDF curve and the delta area of the
clustering result. (C) Kaplan-Meier curve for LUAD patients in GSE dataset that merged four OV cohorts. (D) The distribution proportion of samples
with different survival states in the two necroptosis subtypes of the GSE dataset that merged four OV cohorts. (E) Survival curve for LUAD patients in
TCGA dataset. (F) Analysis of different survival states of two necroptosis subtypes in TCGA dataset. (G–I): The characteristics of age, stage and
grade of two necroptosis subtypes in TCGA dataset.
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Fisher test between the two necroptosis subtypes. The first

20 genes with the most significant difference in mutation rate

between the two necroptosis subtypes were shown in

Supplementary Figure S2A. The overall SNV rate in C2 was

higher than that in C1, and the mutation rate of CSMD3 in

C2 was the highest, followed by MST1R, PRKDC, PLEKHG1,

and SMG1. However, the mutation rate of SPTAN1, SRCAP,

FAT1, ROBO1, UBR5 in C1 was significantly higher than that

in C2. Tumor mutation burden, homologous recombination

defect, fraction altered and number of segments did not show

significant differences between the two subgroups

(Supplementary Figure S2B).

FIGURE 2
Immune microenvironment analysis and immunotherapy response prediction of necroptosis subtypes of OV. (A) The stromal score and
immune score and tumor purity of two necroptosis subtypes in TCGA. (B) The infiltration scores of 10 immune cells calculated by MCP-Counter in
the two necroptosis subtypes of OV. (C) The enrichment scores of 28 tumor-associated immune cells evaluated by ssGSEA in the two necroptosis
subtypes of OV. (D) The box chart shows the association between the two necroptosis subtypes of OV and the expression of immune
checkpoints. (E) TIDE score of two necroptosis subtypes of OV in TCGA. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Necroptosis subtypes of OV showed
different immune microenvironment and
immunotherapeutic responses

The difference of immune microenvironment between the

two necroptosis subtypes was first evaluated by ESTIMATE.

C2 showed significantly higher stromal score, immune score

and the ESTIMATE score represented the overall

microenvironment score relative to C1 (Figure 2A). Then,

MCP-counter and ssGSEA were used to analyze the

infiltration level of immune cells in the immune

microenvironment between the two necroptosis subtypes.

The infiltration score of 10 immune cells calculated by

MCP-Counter in C2 was significantly higher than that in

C1 (Figure 2B). 28 tumor-associated immune cells assessed

by ssGSEA showed active enrichment in C2, which was

significantly higher compared with C1 (Figure 2C). The

results of Figures 2A–C reflected the abundant infiltration

of immune cells in C2, and its anti-tumor immune

microenvironment might be more active. However,

C2 patients had the worst prognosis, which was not

consistent with the immune characteristics of this subtype.

One possible reason is that the anti-tumor response of C2 was

blocked by simultaneously highly expressed immune

checkpoints. To verify this conjecture, the expression of

21 immune checkpoint molecules from HisgAtlas database

(Liu et al., 2017) was examined. It was found that except for

CD276, the expression of 20 immune checkpoints in C2 was

significantly up-regulated, such as CD274, CTLA4, GEM,

IDO1, LAG3G, PDCD1 and so on (Figure 2D). Considering

that the two necroptosis subtypes had different levels of

immune checkpoint expression, the response of different

necroptosis subtypes to immune checkpoint inhibitor (ICI)

was predicted by TIDE algorithm. The TIDE score of C2 was

significantly lower in both necroptosis subtypes, suggesting

that C2 was more likely to respond to ICB treatment than C1

(Figure 2E).

Identification of necroptosis subtype
related gene modules

To construct a co-expression network, WGCNA was used to

cluster 373 OV samples from TCGA datasets (Figure 3A). When

the lowest soft threshold power was 9, scale-free R2 >0.9,
guaranteed a scale-free network (Figure 3B). A clustering tree

diagram reflecting the relationship between different modules

and clinical features was constructed by using adjacency matrix,

and 12 modules were determined (Figures 3C, D). By looking for

the correlation between feature genes and external features, we

found that the blue module had the strongest correlation with the

two necroptosis subtypes, significantly negative correlation with

C1 and significant positive correlation with C2 (Figure 3E). The

link between each gene and C2 in the blue module was also very

high (Figure 3F).

Construction of necroptosis-related risk
score model based on hub gene in blue
module

To screen the hub genes in the blue module, the genes in the

module were analyzed by univariate Cox regression analysis, and

55 genes related to OV survival were obtained. Among them, the

higher expression level of 42 was associated with the higher death

risk, and the higher expression of 13 was associated with the

lower death risk (Figure 4A). LASSO Cox regression penalized

the unimportant features in the regularization process, 24 genes

were obtained, which need to be further analyzed (Figure 4B).

Multivariate Cox regression analysis selected 12 of these genes

to calculate the NRRS of the sample (Figure 4C). Among

the 12 genes, NACA2, DOCK11, EPB41L3, SCN1B, KRT18,

THEMIS2, PLEKHF1 were associated with poor OS of OV,

while HMGN3, WAR3, HLA_DOB, FBXO16, PLA2G2D were

associated with better OS (Figure 4D). Risk groups were divided

based on the median of the sample NRRS in each cohort. The

survival analysis was carried out between the high-risk and low-

risk packets in each cohort, and the performance of the NRRS

model in each queue was evaluated by tdROC curve. Among the

373 samples of TCGA, the survival rate of the high-risk group

was significantly lower than that of the low-risk group in the long

term and short term. TdROC curve showed that the NRRSmodel

had better long-term predictive ability in the TCGA-OV cohort

because its AUC for predicting 5-year OS was 0.75, it was higher

than the AUCs for predicting 1-year (0.69) and 3-year (0.73) OS

(Figure 4E). The high-risk group of OV samples obtained from

ICGC was also associated with a worse prognosis outcome, with

AUC of 0.67, 0.71, and 0.7 for 1 -, 3 -, and 5-year OS, respectively

(Figure 4F). In the GSE cohort that merged four GEO datasets,

the prognosis of the low-risk group was significantly better than

that of the high-risk group. The model predicted 1 year AUC =

0.63, 3 years AUC = 0.66, and 5 years AUC = 0.63 of OS

(Figure 4G).

Single nucleotide variation and biological
characteristics of necroptosis-related risk
score model

We further explored the SNV and potential biological

pathways related to NRRS. SNV existed in both high-risk and

low-risk groups, and genetic mutations were more pronounced in

the low-risk group than in the high-risk group, including but not

limited to FLNB, UBR4, TRPS1, PCNT, SACS (Figure 5A). The

TMB and homologous recombination defect characteristics of the

low-risk group were significantly higher than those of the high-risk
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group (Figure 5B). The correlation between NRRS and tumor

biological pathway was analyzed, and the results were shown in

Figure 5C. Specifically, epithelial-mesenchymal transition,

angiogenesis, coagulation, TGF beta signaling, myogenesis,

KRAS signal up, hypoxia and apical junction and apoptosis

were all up-regulated in the high NRRS group of the three

datasets (Figure 5D).

Construction of a decision tree model and
a nomogram to improve the risk
stratification of OS for OV patients

To make NRRS more suitable for predicting the prognosis of

OV, a decision tree model was constructed using the clinical

factors (age, stage, grade) of OV in TCGA and NRRS, and three

FIGURE 3
Identification of gene modules related to necroptosis subtypes. (A) The clustering tree of 373 OV samples in the TCGA dataset. (B) Analysis of
scale-free exponent and average connectivity of various soft threshold powers. (C) Cluster dendrogram of the co-expression network modules. (D)
The number of genes in each module. (E) The heatmap of the relationship between module eigengenes and necroptosis subtypes. (F) The
association strength between gene significance (GS) and module membership (MM) for the C2 in the blue module.
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different clusters:M1, M2 and M3 were established (Figure 6A).

There were significant differences in OS among the three clusters

(Figure 6B). All samples in M1 belonged to low NRRS group,

while M2 andM3 belonged to high NRRS group (Figure 6C). The

proportion of surviving patients inM1was the highest among the

three clusters, followed by M2, and finally M3 (Figure 6D). To

construct a nomogram, univariate Cox regression analysis was

carried out first, and the age and NRRS fits very well (Figure 6E).

Multivariate Cox regression showed that NRRS was an

independent prognostic variable for OV (Figure 6F). A

nomogram was constructed according to age and NRRS

(Figure 6G). The calibration curve showed that the prediction

FIGURE 4
Construction of NRRS model based on hub gene in blue module. (A) The Cox coefficients of 55 genes related to OV survival. (B) LASSO Cox
regression penalized the unimportant features in the regularization process. (C) The forest map shows the results of multivariate Cox regression
analysis for 12 genes. (D) LASSO Cox coefficients of 12 genes. (E) Kaplan-Meier and tdROC curves of OS predicted by NRRS model in TCGA-OV
cohort. (F) Kaplan-Meier and tdROC curves of OS predicted by NRRS model in ICGC dataset. (G) Kaplan-Meier and tdROC curves of OS
predicted by NRRS model in GSE cohort.
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FIGURE 5
SNV and biological characteristics of NRRS model. (A) SNV in high-risk and low-risk groups. (B) TMB, homologous recombination defect,
fraction altered, number of segments of high-risk group and low-risk group. (C) The correlation between NRRS and tumor biological pathway. (D)
The high-risk group compared with the low-risk group in different pathways of NESs. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
Construction of a decision treemodel and a nomogram to improve the risk stratification of OS in OV patients. (A)Decision treemodel based on
NRRS and clinical factors (age, stage, grade). (B) Survival analysis of three risk subgroups of the decision tree. (C) The distribution of NRRS in three risk
subgroups of the decision tree. (D) The survival status of patients in the three risk subgroups of the decision tree. (E) Univariate Cox regression
analysis of NRRS and clinical factors of OV. (F)Multivariate Cox regression analysis of NRRS and age. (G) The nomogram constructed according
to age and NRRS. (H) The calibration curve evaluates the proximity between the prediction line of the nomogram and the ideal 45-degree calibration
line. (I) The decision curve shows the net income of NRRS and nomogram. (J) The tdROCcurve displays the AUCs of NRRS and nomogram. *p < 0.05,
***p < 0.001.
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line of nomogram was close to the ideal 45° calibration line,

indicating that nomogram had a certain degree of accuracy

(Figure 6H). The decision curve showed that NRRS and

nomogram have the highest net income (Figure 6I). And

tdROC curve displayed that the AUC of NRRS and

nomogram was very similar, both above 0.7 (Figure 6J).

Discussion

OV is a complex disease with multiple subtypes, each of

which has different histopathology and different responses to

treatment. Accurate classification and typing of OV can reliably

predict disease progression and provide insight into the

potentially targeted molecular mechanisms unique to each

subtype (Cook and Vanderhyden, 2019). The study of

Seehawer et al. provides a revolutionary insight that

necroptotic microenvironment direct the lineage commitment

of liver cancer and thus determine cancer subtypes (Seehawer

et al., 2018). It is unclear whether necroptosis can affect the

subtypes of other cancers. In recent years, several studies have

focused on the effects of necroptosis-related genes on cancer

typing, prognosis and biological effects (He et al., 2022; Nie et al.,

2022; Xin et al., 2022). In this study, we systematically studied the

effects of necroptosis on OV typing, prognosis, TMB, tumor

microenvironment, immunotherapy response and biological

pathway by bioinformatics analysis, which might be provide

new molecular insights for necroptosis in OV.

First of all, we classified OV into two necroptosis subtypes

according to 15 OV prognosis-related NRGs out of 74 NRGs.

Compared with C1, C2 with a worse prognosis. The possible

reason was that C2 showed a high immunosuppressive

microenvironment. In OV, a large number of

immunosuppressive cells, including tumor-associated

macrophages, regulatory T cells (Tregs), myeloid-derived

suppressor cells (MDSCs) and Tumor associated dendritic cells,

act as accomplices to coordinate highly complex

immunosuppressive networks, inhibit anti-tumor immunity and

help tumor cells escape immune attacks (Cai and Jin, 2017).

Besides, in the early stage of tumor, the adaptive immune

resistance mechanism may occur in patients with high

CD8T cell density and predict a poor prognosis of the tumor

(Peske et al., 2015). In the immunosuppressive environment, it is

rich in immunosuppressive molecules such as IDO, PD-1, PD-L1,

VISTA, LAG3, etc (Dempke et al., 2017; Drakes and Stiff, 2018). In

C2, the levels of above immune cells and immunosuppressive

molecules were higher than those in C1, which explained why the

prognosis of C2 iwas worse than that of C1.

Then, the blue module most related to necroptosis subtype

was identified by constructing a co-expression network, and the

hub gene of the module was identified by LASSO Cox regression

analysis. A NRRS model containing 12 genes (NACA2,

DOCK11, EPB41L3, SCN1B, KRT18, THEMIS2, PLEKHF1,

HMGN3, WAR3, HLA_DOB, FBXO16, PLA2G2D) was

constructed. Among all 12 prognostic related genes, 8 genes

(EPB41L3, SCN1B, KRT18, THEMIS2, PLEKHF1, HLA_DOB,

FBXO16, PLA2G2D) (Dafou et al., 2010; Trisdale et al., 2016; Li

et al., 2020; Brummelhuis et al., 2021; Ji et al., 2021; Zheng et al.,

2021; Huang et al., 2022; Zhao et al., 2022) have been reported to

be involved in tumorigenesis of OC or to be important predictors

of overall survival. This implies that our bioinformatics analyses

using cohorts have prognostic value. The remaining 4 genes have

not previously been found to be associated with the prognosis of

ovarian cancer andmay serve as new potential biomarkers for the

disease.

NRRS had many far-reaching clinical significances. First, it

was related to the genomic stability of tumors. The NRRS low-

risk group showed higher levels of SNV, TMB and homologous

recombination defect. Second, it was related to the biological

process of tumor. Specifically, compared with the NRRS low-risk

group, epithelial-mesenchymal transition, angiogenesis,

coagulation, TGF beta signaling, myogenesis, KRAS signal up,

hypoxia and apical junction and apoptosis pathways were

significantly up-regulated in the high-risk group. Third, NRRS

was an independent prognostic variable of OV, and it was more

accurate than other clinical parameters in predicting the

prognosis of OV. And the decision tree and nomogram

combined with NRRS and other clinical factors improved the

risk stratification of OS in patients with OV.

However, some limitations of this study must be recognized.

This study was purely from the bioinformatics analysis of the

public database, the sample size of each cohort was relatively

small, clinical information was prone to deviation, large-scale,

multicenter, prospective studies are needed to further confirm

our results. And the impact of the model needs biological

experiments and clinical data to support it. In addition, the

specific molecular mechanism of the model in OV remains to be

further explored.

To sum up, OV was divided into two necroptosis subtypes

in this study. There were significant differences in OS, immune

cell infiltration, immune checkpoint expression and

applicability to immunotherapy between patients with

different subtypes. Moreover, a NRRS model was

constructed to identify high-risk patients with OV, and

combined with clinical factors to build a decision tree and

nomogram to optimize the risk stratification of OS. Our

research may provide molecular insights into the effects of

necroptosis in cancer.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Frontiers in Genetics frontiersin.org12

Ji et al. 10.3389/fgene.2022.1043870

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1043870


Author contributions

All authors contributed to this present work: [CJ] designed

the study and revised the manuscript, [YH] acquired the data.

[YW] drafted the manuscript. All authors read and approved the

manuscript.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1043870/full#supplementary-material

References

Achimas-Cadariu, P., Kubelac, P., Irimie, A., Berindan-Neagoe, I., and Ruhli, F.
(2022). Evolutionary perspectives, heterogeneity and ovarian cancer: A complicated
tale from past to present. J. Ovarian Res. 15 (1), 67. doi:10.1186/s13048-022-
01004-1

Becht, E., Giraldo, N. A., Lacroix, L., Buttard, B., Elarouci, N., Petitprez, F., et al.
(2016). Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol. 17 (1), 218. doi:10.
1186/s13059-016-1070-5

Beretta, G. L., and Zaffaroni, N. (2022). Necroptosis and prostate cancer:
Molecular mechanisms and therapeutic potential. Cells 11 (7), 1221. doi:10.
3390/cells11071221

Brummelhuis, I. S., Fiascone, S. J., Hasselblatt, K. T., Frendl, G., and Elias, K. M.
(2021). Voltage-gated sodium channels as potential biomarkers and therapeutic
targets for epithelial ovarian cancer. Cancers (Basel) 13 (21), 5437. doi:10.3390/
cancers13215437

Cai, D. L., and Jin, L. P. (2017). Immune cell population in ovarian tumor
microenvironment. J. Cancer 8 (15), 2915–2923. doi:10.7150/jca.20314

Chen, F., Yang, J., Fang, M., Wu, Y., Su, D., and Sheng, Y. (2022). Necroptosis-
related lncRNA to establish novel prognostic signature and predict the
immunotherapy response in breast cancer. J. Clin. Lab. Anal. 36 (4), e24302.
doi:10.1002/jcla.24302

Chen, J., Wei, Z., Fu, K., Duan, Y., Zhang, M., Li, K., et al. (2022). Non-apoptotic
cell death in ovarian cancer: Treatment, resistance and prognosis. Biomed.
Pharmacother. 150, 112929. doi:10.1016/j.biopha.2022.112929

Cook, D. P., and Vanderhyden, B. C. (2019). Ovarian cancer and the evolution of
subtype classifications using transcriptional profiling†. Biol. Reprod. 101 (3),
645–658. doi:10.1093/biolre/ioz099

Dafou, D., Grun, B., Sinclair, J., Lawrenson, K., Benjamin, E. C., Hogdall, E., et al.
(2010). Microcell-mediated chromosome transfer identifies EPB41L3 as a
functional suppressor of epithelial ovarian cancers. Neoplasia (New York, NY)
12 (7), 579–589. doi:10.1593/neo.10340

Dempke, W. C. M., Fenchel, K., Uciechowski, P., and Dale, S. P. (2017). Second-
and third-generation drugs for immuno-oncology treatment-The more the better?
Eur. J. Cancer 74, 55–72. doi:10.1016/j.ejca.2017.01.001

Drakes, M. L., and Stiff, P. J. (2018). Regulation of ovarian cancer prognosis by
immune cells in the tumor microenvironment. Cancers (Basel) 10 (9), 302. doi:10.
3390/cancers10090302

Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019). The role of
necroptosis in cancer biology and therapy. Mol. Cancer 18 (1), 100. doi:10.1186/
s12943-019-1029-8

Guan, L. Y., and Lu, Y. (2018). New developments in molecular targeted therapy
of ovarian cancer. Discov. Med. 26 (144), 219–229.

He, R., Zhang, M., He, L., Huang, J., Man, C., Wang, X., et al. (2022). Integrated
analysis of necroptosis-related genes for prognosis, immune microenvironment
infiltration, and drug sensitivity in colon cancer. Front. Med. 9, 845271. doi:10.3389/
fmed.2022.845271

Hou, J., Zhang, Y., Zhu, Y., Zhou, B., Ren, C., Liang, S., et al. (2019). α-Pinene
induces apoptotic cell death via caspase activation in human ovarian cancer cells.
Med. Sci. Monit. 25, 6631–6638. doi:10.12659/MSM.916419

Huang, W. C., Yen, J. H., Sung, Y. W., Tung, S. L., Chen, P. M., Chu, P. Y., et al.
(2022). Novel function of THEMIS2 in the enhancement of cancer stemness and
chemoresistance by releasing PTP1B fromMET.Oncogene 41 (7), 997–1010. doi:10.
1038/s41388-021-02136-2

Ji, M., Zhao, Z., Li, Y., Xu, P., Shi, J., Li, Z., et al. (2021). FBXO16-mediated
hnRNPL ubiquitination and degradation plays a tumor suppressor role in ovarian
cancer. Cell Death Dis. 12 (8), 758. doi:10.1038/s41419-021-04040-9

Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu, X., et al. (2018). Signatures of T cell
dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24
(10), 1550–1558. doi:10.1038/s41591-018-0136-1

Langfelder, P., and Horvath, S. (2008). Wgcna: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-
9-559

Li, Y., Li, H., Yang, B., Wei, J., Zhen, C., and Feng, L. (2020). Clinical significance
of PI3 and HLA-DOB as potential prognostic predicators for ovarian cancer. Transl.
Cancer Res. 9 (2), 466–476. doi:10.21037/tcr.2019.11.30

Liu, J., Hong, M., Li, Y., Chen, D., Wu, Y., and Hu, Y. (2022). Programmed cell
death tunes tumor immunity. Front. Immunol. 13, 847345. doi:10.3389/fimmu.
2022.847345

Liu, Y., He, M., Wang, D., Diao, L., Liu, J., Tang, L., et al. (2017). HisgAtlas 1.0: A
human immunosuppression gene database. Database. 2017, bax094. doi:10.1093/
database/bax094

Mayakonda, A., Lin, D. C., Assenov, Y., Plass, C., and Koeffler, H. P. (2018).
Maftools: Efficient and comprehensive analysis of somatic variants in cancer.
Genome Res. 28 (11), 1747–1756. doi:10.1101/gr.239244.118

Nie, S., Huili, Y., He, Y., Hu, J., Kang, S., and Cao, F. (2022). Identification of
bladder cancer subtypes based on necroptosis-related genes, construction of a
prognostic model. Front. Surg. 9, 860857. doi:10.3389/fsurg.2022.860857

Pasparakis, M., and Vandenabeele, P. (2015). Necroptosis and its role in
inflammation. Nature 517 (7534), 311–320. doi:10.1038/nature14191

Peske, J. D., Woods, A. B., and Engelhard, V. H. (2015). Control of CD8 T-cell
infiltration into tumors by vasculature and microenvironment. Adv. Cancer Res.
128, 263–307. doi:10.1016/bs.acr.2015.05.001

Qin, X., Ma, D., Tan, Y. X., Wang, H. Y., and Cai, Z. (2019). The role of
necroptosis in cancer: A double-edged sword? Biochim. Biophys. Acta. Rev. Cancer
1871 (2), 259–266. doi:10.1016/j.bbcan.2019.01.006

Rakina, M., Kazakova, A., Villert, A., Kolomiets, L., and Larionova, I. (2022). Spheroid
Formation and peritoneal metastasis in ovarian cancer: The role of stromal and immune
components. Int. J. Mol. Sci. 23 (11), 6215. doi:10.3390/ijms23116215

Revythis, A., Limbu, A., Mikropoulos, C., Ghose, A., Sanchez, E., Sheriff, M., et al. (2022).
Recent insights into PARP and immuno-checkpoint inhibitors in epithelial ovarian cancer.
Int. J. Environ. Res. Public Health 19 (14), 8577. doi:10.3390/ijerph19148577

Frontiers in Genetics frontiersin.org13

Ji et al. 10.3389/fgene.2022.1043870

https://www.frontiersin.org/articles/10.3389/fgene.2022.1043870/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1043870/full#supplementary-material
https://doi.org/10.1186/s13048-022-01004-1
https://doi.org/10.1186/s13048-022-01004-1
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.3390/cells11071221
https://doi.org/10.3390/cells11071221
https://doi.org/10.3390/cancers13215437
https://doi.org/10.3390/cancers13215437
https://doi.org/10.7150/jca.20314
https://doi.org/10.1002/jcla.24302
https://doi.org/10.1016/j.biopha.2022.112929
https://doi.org/10.1093/biolre/ioz099
https://doi.org/10.1593/neo.10340
https://doi.org/10.1016/j.ejca.2017.01.001
https://doi.org/10.3390/cancers10090302
https://doi.org/10.3390/cancers10090302
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.1186/s12943-019-1029-8
https://doi.org/10.3389/fmed.2022.845271
https://doi.org/10.3389/fmed.2022.845271
https://doi.org/10.12659/MSM.916419
https://doi.org/10.1038/s41388-021-02136-2
https://doi.org/10.1038/s41388-021-02136-2
https://doi.org/10.1038/s41419-021-04040-9
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.21037/tcr.2019.11.30
https://doi.org/10.3389/fimmu.2022.847345
https://doi.org/10.3389/fimmu.2022.847345
https://doi.org/10.1093/database/bax094
https://doi.org/10.1093/database/bax094
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.3389/fsurg.2022.860857
https://doi.org/10.1038/nature14191
https://doi.org/10.1016/bs.acr.2015.05.001
https://doi.org/10.1016/j.bbcan.2019.01.006
https://doi.org/10.3390/ijms23116215
https://doi.org/10.3390/ijerph19148577
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1043870


Seehawer, M., Heinzmann, F., D’Artista, L., Harbig, J., Roux, P. F., Hoenicke, L.,
et al. (2018). Necroptosis microenvironment directs lineage commitment in liver
cancer. Nature 562 (7725), 69–75. doi:10.1038/s41586-018-0519-y

Seifert, L., Werba, G., Tiwari, S., Giao Ly, N. N., Alothman, S., Alqunaibit, D., et al.
(2016). The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-
induced immune suppression. Nature 532 (7598), 245–249. doi:10.1038/
nature17403

Strilic, B., Yang, L., Albarrán-Juárez, J., Wachsmuth, L., Han, K., Müller, U. C.,
et al. (2016). Tumour-cell-induced endothelial cell necroptosis via death receptor
6 promotes metastasis. Nature 536 (7615), 215–218. doi:10.1038/nature19076

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71 (3),
209–249. doi:10.3322/caac.21660

Trisdale, S. K., Schwab, N. M., Hou, X., Davis, J. S., and Townson, D. H. (2016).
Molecular manipulation of keratin 8/18 intermediate filaments: Modulators of FAS-
mediated death signaling in human ovarian granulosa tumor cells. J. Ovarian Res. 9,
8. doi:10.1186/s13048-016-0217-z

van Stein, R. M., Aalbers, A. G. J., Sonke, G. S., and van Driel, W. J. (2021).
Hyperthermic intraperitoneal chemotherapy for ovarian and colorectal cancer: A
review. JAMA Oncol. 7 (8), 1231–1238. doi:10.1001/jamaoncol.2021.0580

Whelan, E., Kalliala, I., Semertzidou, A., Raglan, O., Bowden, S., Kechagias, K.,
et al. (2022). Risk factors for ovarian cancer: An umbrella review of the literature.
Cancers 14 (11), 2708. doi:10.3390/cancers14112708

Wood, G. E., and Ledermann, J. A. (2022). Adjuvant and post-surgical treatment
in high-grade epithelial ovarian cancer. Best. Pract. Res. Clin. Obstet. Gynaecol. 78,
64–73. doi:10.1016/j.bpobgyn.2021.09.002

Wu, J., Ye, J., Xie, Q., Liu, B., and Liu, M. (2022). Targeting regulated cell death
with pharmacological small molecules: An update on autophagy-dependent cell
death, ferroptosis, and necroptosis in cancer. J. Med. Chem. 65 (4), 2989–3001.
doi:10.1021/acs.jmedchem.1c01572

Xin, S., Mao, J., Duan, C., Wang, J., Lu, Y., Yang, J., et al. (2022). Identification and
quantification of necroptosis landscape on therapy and prognosis in kidney renal
clear cell carcinoma. Front. Genet. 13, 832046. doi:10.3389/fgene.2022.832046

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-
Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell
admixture from expression data. Nat. Commun. 4, 2612. doi:10.1038/ncomms3612

Zhang, M., Chen, Z., Wang, Y., Zhao, H., and Du, Y. (2022). The role of cancer-
associated fibroblasts in ovarian cancer. Cancers (Basel) 14 (11), 2637. doi:10.3390/
cancers14112637

Zhao, N., Xing, Y., Hu, Y., and Chang, H. (2022). Exploration of the
immunotyping landscape and immune infiltration-related prognostic
markers in ovarian cancer patients. Front. Oncol. 12, 916251. doi:10.3389/
fonc.2022.916251

Zheng, M., Long, J., Chelariu-Raicu, A., Mullikin, H., Vilsmaier, T., Vattai, A.,
et al. (2021). Identification of a novel tumor microenvironment prognostic
signature for advanced-stage serous ovarian cancer. Cancers (Basel) 13 (13),
3343. doi:10.3390/cancers13133343

Frontiers in Genetics frontiersin.org14

Ji et al. 10.3389/fgene.2022.1043870

https://doi.org/10.1038/s41586-018-0519-y
https://doi.org/10.1038/nature17403
https://doi.org/10.1038/nature17403
https://doi.org/10.1038/nature19076
https://doi.org/10.3322/caac.21660
https://doi.org/10.1186/s13048-016-0217-z
https://doi.org/10.1001/jamaoncol.2021.0580
https://doi.org/10.3390/cancers14112708
https://doi.org/10.1016/j.bpobgyn.2021.09.002
https://doi.org/10.1021/acs.jmedchem.1c01572
https://doi.org/10.3389/fgene.2022.832046
https://doi.org/10.1038/ncomms3612
https://doi.org/10.3390/cancers14112637
https://doi.org/10.3390/cancers14112637
https://doi.org/10.3389/fonc.2022.916251
https://doi.org/10.3389/fonc.2022.916251
https://doi.org/10.3390/cancers13133343
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1043870

	Identification of necroptosis subtypes and development of necroptosis-related risk score model for in ovarian cancer
	Introduction
	Materials and methods
	Extraction and preprocessing of OV cohort data
	Consensus clustering analysis was performed on OV samples by obtaining necroptosis related genes
	Detection of tumor mutation
	Assessment of tumor immune microenvironment
	Prediction of immunotherapy response
	Weighted gene co-expression network analysis
	Construction of necroptosis-related risk signature
	Enrichment analysis
	Construction of decision tree and nomogram
	Statistical analysis

	Results
	Identification of necroptosis subtypes for OV
	Characterization of the genetic variation for two necroptosis subtypes
	Necroptosis subtypes of OV showed different immune microenvironment and immunotherapeutic responses
	Identification of necroptosis subtype related gene modules
	Construction of necroptosis-related risk score model based on hub gene in blue module
	Single nucleotide variation and biological characteristics of necroptosis-related risk score model
	Construction of a decision tree model and a nomogram to improve the risk stratification of OS for OV patients

	Discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


