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Background: Recent studies demonstrate that N6-methyladenosine (m6A)

methylation plays a crucial role in colorectal cancer (CRC). Therefore, we

conducted a comprehensive analysis to assess the m6A modification

patterns and identify m6A-modified genes in patients with CRC recurrence.

Methods: The m6A modification patterns were comprehensively evaluated by

the NMF algorithm based on the levels of 27 m6A regulators, and tumor

microenvironment (TME) cell-infiltrating characteristics of these modification

patterns were systematically assessed by ssGSEA and CIBERSORT algorithms.

The principal component analysis algorithm based on the m6A scoring scheme

was used to explore the m6A modification patterns of individual tumors with

immune responses. The weighted correlation network analysis and univariable

and multivariable Cox regression analyses were applied to identify

m6A-modified gene signatures. The single-cell expression dataset of CRC

samples was used to explore the tumor microenvironment affected by these

signatures.

Results: Three distinct m6A modification patterns with significant recurrence-

free survival (RFS) were identified in 804CRC patients. The TME characterization

revealed that the m6A modification pattern with longer RFS exhibited robust

immune responses. CRC patients were divided into high- and low-score

subgroups according to the m6A score individually, which was obtained

from the m6A-related signature genes. The patients with low m6A scores

had both longer RFS and overall survival (OS) with altered immune cell

infiltration. Notably, m6A-modified genes showed significant differences
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related to the prognosis of CRC patients in the meta-GEO cohort and TCGA

cohort. Single-cell expression indicated that ALVRL1 was centrally distributed in

endothelial tip cells and stromal cells.

Conclusion: The m6A modification plays an indispensable role in the formation

of TME diversity and complexity. Importantly, the signatures (TOP2A, LRRC58,

HAUS6, SMC4, ACVRL1, and KPNB1) were identified as m6A-modified genes

associated with CRC recurrence, thereby serving as a promising predictive

biomarker or therapeutic target for patients with CRC recurrence.

KEYWORDS

colorectal cancer, m6A methylation modification, tumor immune microenvironment,
recurrence, overall survival

Introduction

Colorectal cancer (CRC) is the most common

gastrointestinal malignancy and remains the main cause of

cancer-related death worldwide (Siegel et al., 2021). Currently,

the 5-year survival rate of CRC patients has been improved

along with the development of new chemotherapeutics and

advanced techniques. However, high recurrence and

unsatisfactory prognosis are still major problems of CRC,

due to delayed diagnosis and adverse drug effects (Sanoff

et al., 2008; Hashiguchi et al., 2020). Currently, it has

been recognized that CRC with recurrence is associated

with genetic, genomic, and epigenetic changes (Lao and

Grady, 2011). Therefore, identifying the crucial tumor

biomarkers to predict the prognosis of CRC is urgently

required.

N6-methyladenosine (m6A), as a reversible epigenetic

reprogramming, is extensively modified in a variety of

RNAs, comprising mRNAs, tRNAs, and snRNAs, as well as

long-chain non-coding RNAs (Dominissini et al., 2012; Liang

et al., 2020). m6A modification on RNA is abundant near the

stop codon and 3-untranslated region (3-UTR) (Meyer et al.,

2012; Ke et al., 2015) and translated near the 5-UTR in a cap-

independent manner (Meyer et al., 2015), thereby regulating

RNA transcription, translation, and metabolism. m6A

modifications occur via signal transduction enzyme,

methyltransferase, and demethylase, which are regarded as

the “reader,” “writer,” and “eraser,” respectively. Specifically,

“writers” can install the methyl to target RNAs, which include

METTL3 (Schumann et al., 2016), METTL5 (Huang et al.,

2022), METTL14 (Liu et al., 2014), WTAP (Ping et al., 2014),

and RBM15/15B (Meyer and Jaffrey, 2017), and “erasers”

mainly include FTO (Jia et al., 2011) and ALKBH5 (Zheng

et al., 2013), which both selectively remove the methyl from

certain RNAs. “Readers” such as YTHDC1, YTHDC2

(Haussmann et al., 2016), YTHDF1, YTHDF2, YTHDF3

(Huang et al., 2022), EIF3A (Meyer and Jaffrey, 2017),

IGF2BP1, IGF2BP2, IGF2BP3 (Huang et al., 2018),

HNRNPC (Huang et al., 2021), HNRNPA2B1 (Jiang et al.,

2021), G3BP1, G3BP2 (Arguello et al., 2017), ELAVL1 (Pan

et al., 2021), PRRC2A (Wu et al., 2019), and FMR1

(Worpenberg et al., 2021) can decipher the m6A

methylation codes.

An increasing number of studies have revealed the

relationship among the m6A modification, tumor

microenvironment (TME) (Li et al., 2021), and

chemotherapy resistance (Gu et al., 2021). Depletion of

YTHDF1 in dendritic cells significantly enhances antigen

presentation, resulting in CD8+T cell activation (Han et al.,

2019). Macrophage-specific METTL14 knockout drives

CD8+T cell differentiation in a dysfunctional direction,

impairing the ability of CD8+T cells to eliminate tumors

(Dong et al., 2021). METTL3 mediated gemcitabine, 5-

fluorouracil, and cisplatin resistance in non-small-cell lung

cancer and pancreatic cancer (Taketo et al., 2018; Jin et al.,

2019). In addition, the m6A regulator-based methylation

modification pattern led to different TME immune profiles

in colorectal cancer (Chong et al., 2021). In addition, the

relationship between m6A modification and TME

characteristics and clinical prognosis in primary

glioblastomas was elucidated completely by Cai et al.

(2021). Therefore, m6A mRNA regulators and distinct

modification patterns play an important role in the

development or function of immune cells, which

also promote resistance to chemotherapy and recurrence

of the tumor. However, the relationship between m6A

regulation and the recurrence status of CRC remains largely

unknown.

In this study, we performed a comprehensive analysis of the

expression of 27 m6A RNA methylation regulators using

integrated data from the GEO database of patients with CRC.

Afterward, consensus clustering analysis based on the gene

expression of 27 m6A RNA methylation regulators was

utilized to distinguish three different m6A modification

subgroups. Then, the relationship between m6A modification

patterns and immune infiltration related to CRC recurrence was

systematically assessed. Furthermore, m6A regulators related to

targeted mRNAs were screened by WGCNA analysis and
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regression analysis, and we identified a promising m6A-modified

prognostic signature that can effectively predict the clinical

outcomes of patients with CRC. Hence, our study suggests

that the m6A methylation modification pattern contributes to

the tumor immune microenvironment and has clinical

prognostic value for colorectal cancer patients, providing

novel insights into the diagnosis and treatment of CRC.

Materials and methods

Collection of publicly attainable
expression datasets

The gene expression matrix and clinical traits of colorectal

cancer patients were downloaded from the Gene Expression

Omnibus database (https://www.ncbi.nlm.nih.gov/geo/), and a

total of 804 patients were enrolled for analysis, including those

from the GSE39582 (N = 558) (Marisa et al., 2013), GSE72970 (N =

95) (Del Rio et al., 2017), and GSE103479 (N = 151) (Allen et al.,

2018). The ComBat method from the “SVA” R package was widely

used to remove the batch effects between the different GEO datasets

(Dai et al., 2018) to form meta-GEO datasets. Copy number

variations of the TCGA-COAD were obtained from the UCSC

Xena database (https://gdc-hub.s3.us-east-1.amazonaws.com/

download/TCGA-COAD.cnv.tsv.gz). The package “Rcircos” was

employed in R studio to plot the copy number variation

landscape of 27 m6A regulators in human chromosomes. The

clinical information and m6A regulator expression of the meta-

GEO and the TCGA data are listed in Supplementary Tables S1, S2.

Non-negative matrix factorization
clustering

Next, to assess the differences of m6A regulation between

the different CRC clusters, the meta-GEO cohort was used for

non-negative matrix factorization clustering, a method that

can classify samples better than consensus clustering. Also

then, the NMF rank survey and consensus heatmap were used

to evaluate the optimal k value, and the meta-GEO cohort was

divided into three clusters. Kaplan–Meier survival analysis

was used to evaluate recurrence-free and overall survival

between the different clusters.

Gene set variation analysis andGOanalysis

We utilized GSVA analysis to identify underlying

signaling pathways that are differentially stimulated

behind the different m6A modification patterns in the

meta-GEO cohort (Hänzelmann et al., 2013). The well-

defined molecular biological signatures (h.all.v2022.1.

Hs.symbols.gmt) were derived from the Hallmarker gene

set (http://www.gsea/msigdb.org/gsea/msigdb)

(Subramanian et al., 2005). In addition, Gene Ontology, a

functional enrichment analysis, including three components:

cellular components, biological processes, and molecular

functions, was performed for understanding the

underlying biological meaning of key genes extracted by

WGCNA.

Estimation of immune cell infiltration by
the ssGSEA and deconvolution algorithm

Initially, we used single-sample gene set enrichment

analysis (ssGSEA) to quantify the relative abundance of

23 immune cell types behind the tumor microenvironment

among the different m6A-modified clusters. Special feature

gene panels for marking each immune cell type were curated

from a recent study (Charoentong et al., 2017; Jia et al., 2018).

The relative abundance of each immune cell type is

represented by an enrichment fraction in the ssGSEA

analysis and normalized to a uniform distribution.

Afterward, CIBERSORT (Newman et al., 2015) (http://

cibersort.stanford.edu/), a deconvolution approach, was

used to estimate the abundances of 22 distinct leukocyte

fractions with the gene expression profile of colorectal

cancer patients individually, and participants with p

value <0.05 were considered for differential analysis of

leukocyte fraction between the m6A low-risk group and the

m6A high-risk group.

Extraction of mRNAs from transcription
profiles

Three microarray datasets from different platforms were

matched with each GPL annotation file to explore

m6A-targeted mRNAs. The probes for GSE39582 and

GSE72970 are extracted from the Affymetrix HG-U133_Plus

2.0 microarray, and for GSE103479, the probes are extracted

from the Almac Diagnostics Custom Xcel array. Subsequently,

we extracted probe sets annotated with “protein coding” in the

GENCODE project by matching the GENCODE (release 39).

Finally, a total of 16,346 mRNAs in the meta-GEO cohorts were

obtained for subsequent analysis.

Weighted correlation network analysis

First, Pearson’s correlation analysis between 27 m6A

regulators and m6A-targeted mRNAs was performed, and

6,771 m6A-targeted mRNAs were identified (cor > 0.3, p <
0.05). Then, weighted correlation network analysis
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FIGURE 1
Landscape of genetic and expression variation of m6A regulators in colorectal cancer recurrence population. (A) Regulation of m6A regulation
and its biological functions in RNA metabolism. (B) Expression change of m6A regulators in colorectal cancer with recurrence compared with no
recurrence. (C) Expression changes of m6A regulators in colorectal cancer with high stage compared with low stage. *p < 0.05, **p < 0.01, and ***p <
0.001. (D) CNV variation frequency of m6A regulators in the TCGA cohort. The height of the column represented the alteration frequency. The
deletion frequency is represented by a blue dot; The amplification frequency is represented by a red dot. (E) Location of CNV alteration of m6A
regulators on 23 chromosomes using the TCGA cohort.

Frontiers in Genetics frontiersin.org04

Zhu et al. 10.3389/fgene.2022.1043297

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1043297


(WGCNA) was performed to acquire the required gene

modules based on the gene expressions and patient traits

by using the R “WGCNA” package (Langfelder and Horvath,

2008). First, a soft thresholding power value was calculated to

produce a scale-free network topology. Hereafter, one-step

network construction and detection of consensus modules

were executed. Also, the similarity modules were assigned.

Finally, correlations between clinical traits (age, sex,

recurrence events, recurrence-free survival, status, and OS)

and each module were calculated.

Identification of the m6A-modified gene
with prognostic value

Univariable and multivariable Cox regression analyses

were utilized to narrow the gene range and maximize the

accuracy (Huang et al., 2018), Subsequently, we selected the

meaning genes from the multivariate Cox regression analysis

and analyzed the overall survival and recurrence-free survival

probability of these genes in the meta-GEO and the TCGA

cohort.

Single-cell RNA-seq analysis

To explore the tumor microenvironment affected by

m6A-modified signatures, we downloaded the cell plots of

single-cell sequencing of colorectal tumor samples and

adjacent non-tumor samples from Single-Cell Expression

Altas ((https://www.ebi.ac.uk/gxa/sc/home), and the

parameters of drawing path are as follows: plot type: UMAP,

ploy options: n_neibors:100, color plot by: ontology labels, gene

names: by ALVRL1 and HAUS6.

Statistical analyses

Statistical analyses in this study were performed using R-

4.1.2. Student’s t-test or Wilcoxon rank-sum test was used to

estimate the quantitative data for normally distributed or non-

normally distributed data, respectively. The Kruskal–Wallis

test and one-way analysis of variance were used for the

comparison of the three distinct groups for the non-

parametric and parametric data, respectively. The

association between the m6A cluster and prognosis, risk

group, and prognosis was analyzed by Kaplan–Meier

survival analysis and the Cox proportional hazard model

with the R package “Survminer” (0.4.9). The survival-cutoff

function from the “survival” package in R studio was applied

to stratify CRC patients into low-risk and high-risk subgroups.

The alpha level for all comparisons was 0.05, and the

Benjamini–Hochberg method was applied to control for the

false discovery rate for multiple hypothesis testing procedures

(Hazra and Gogtay, 2016).

Results

The landscape of expression variation of
m6A regulators in colorectal cancer
recurrence patients

In this study, we investigated the differential expression of

27 m6A RNA methylation regulatory genes, including “writes,”

“readers,” and “erasers” (Figure 1A), between the recurrence

group and no recurrence group, low-stage group (stage I/II), and

high-stage group (stage III/IV) of colorectal cancer tissue by

using a dataset from the meta-GEO cohort. We found that some

m6A RNAmethylation regulators were significantly linked to the

recurrence and stage status in patients with CRC (Figures 1B,C).

Then, in the TCGA COAD cohort, we performed the copy

number variation (CNV) analysis alterations of m6A

regulators in CRC patients with recurrence. For CNV events,

approximately 59% (16/27) of m6A regulators lost DNA copy

number, with YTHDC1 having the highest degree of copy

number loss. Eleven m6A regulators gained copy number,

among which YTHDF1 had the highest percentage increase

(Figure 1D). The m6A regulator CNV alterations and

locations on chromosomes are shown in Figure 1E.

Determining the relationship between
m6A-modified patterns and prognosis of
CRC patients

Three GEO datasets (GSE39582, GSE72970, and

GSE103479) with gene expression and available relapse-free

survival time, overall survival time, and clinical traits were

enrolled in our meta-GEO cohort. The comprehensive

network of interactions of the 27 m6A regulators and the

recurrence status of CRC patients is shown in Figure 2A. The

results firmly indicate that these regulators played a critical role

in the recurrence of CRC. Then, the NMF algorithm was used to

divide 804 patients into different m6A clusters, according to the

expression of 27 m6A regulators. Then, we adopted three clusters

as an acceptable criterion according to the results of the NMF

rank survey (Figures 2B,C), and then, the meta-GEO cohort was

divided into three distinct clusters according to the expression of

27 m6A regulators by using the NMF algorithm, including

105 cases in “cluster 1,” 313 cases in “cluster 2,” and

386 cases in “cluster 3” (Supplementary Table S2).

Importantly, the Kaplan–Meier survival analysis revealed that

cluster 1 had better recurrence-free probability (p = 0.019) than

cluster 2 and cluster 3 (Figure 2D). However, cluster 1 also

showed longer overall survival than the other two clusters, but
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there was no significant statistical difference (p = 0.081)

(Figure 2E).

Immune profiles among the distinct m6A
methylation-modified patterns

The aforementioned findings confirmed that the different

clusters were significantly associated with the outcomes of CRC

patients. Then, GSVA enrichment analysis was performed to

explore the underlying molecular mechanisms behind three

different clusters. Intriguingly, we found that cluster 2,

compared with cluster 1, was highly enriched in beta-catenin

signaling, DNA repair, MYC target, and E2F targets pathway,

whereas it was downregulated in androgen response and TGF

beta signaling transduction. In addition, cluster 3 was

significantly upregulated in beta-catenin signaling and the

myogenesis-related pathway. Remarkably, cluster 3 showed

that the IL6 JAK STAT3 signaling pathway was activated

when compared to cluster 1 and downregulated in interferon-

gamma response when compared to cluster 2 (Figures 3A–C).

Furthermore, to better-understand the association between

immune profiles and m6A modification, we compared and

visualized the relative abundances of 23 immune infiltrating

cell subpopulations among three m6A modification patterns

by using the ssGSEA algorithm. By contrast, cluster 1 was

markedly enriched in innate and adaptive immune cell

infiltration, including activated CD4 T cell, activated

CD8 T cell, activated dendritic cell, CD56 dim natural killer

cell, type 17 helper cell, and gamma delta T cell (Figure 3D).

FIGURE 2
Relationship between the m6A methylation modification pattern and prognostic characteristics. (A) Interaction of expression on 27 m6A
regulators in colorectal cancer. The m6A regulators in three RNAmodification clusters were depicted by circles in different colors. Readers, orange;
writers, gray; erasers, red. The lines connecting m6A regulators represented their interaction with each other. The size of each circle represented the
recurrence effect of each regulator and was scaled by the p-value. Inhibitory factors for patients’ recurrence were indicated by a green right
semicircle and motivating factors indicated by a purple right semicircle. (B) NMF rank survey result. (C) NMF analysis identification of the three m6A
modification clusters. (D,E) Kaplan–Meier curves of recurrence-free survival (D) and overall survival (E) for 804 CRC patients in themeta-GEO cohort
with different m6A cluster patterns. The numbers of patients in m6A-cluster 1, m6A-cluster 2, and m6A-cluster 3 three phenotypes are 105, 313, and
386, respectively.
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Construction of the m6A score and
exploration of its clinical relevance

For the assessed m6A score of each CRC patient, a total of

195 differential expression genes were extracted among the

distinct m6A clusters, and then univariable Cox regression

analysis was performed to screen key genes, which were

related to the recurrence-free survival (Supplementary

Table S3). Subsequently, the m6A score of each patient was

calculated according to the PCA algorithm (Supplementary

Table S2). The KM survival plot was performed to evaluate

the relationship between the low-/high-m6A score group and

prognosis. Importantly, patients in the low-m6A score group

exhibited significantly longer recurrence-free time and

survival time than those in the high-m6A score group

(Figures 4A,B).

FIGURE 3
Immune profiles among the different m6A methylation modification patterns. (A–C) GSVA enrichment analysis shows the activation states of
biological pathways in the three clusters. The biological processes are visualized with the bar plot: orange represents activated pathways; blue
represents inhibited pathways. (D) Fraction of tumor-infiltrating lymphocyte cells in three m6A clusters using the ssGSEA algorithm. Within each
group, the scattered dots represented TME cell expression values. The thick line represented themedian value. The bottom and top of the boxes
were the 25th and 75th percentiles, respectively (interquartile range). The statistical difference between the three gene clusters was compared
through the Kruskal–Wallis H test. *p < 0.05; **p < 0.01; ***p < 0.001.
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TME immune cell infiltration
characteristics in distinct m6A risk groups

Furthermore, to better-understand the underlying

immune regulatory mechanisms of the different m6A score

groups, hierarchical clustering was performed to explore the

distinct patterns of tumor immune cell infiltration based on

the immune cell fractions of CRC samples with CIBERSORT

p < 0.05 between the high-m6A risk group and the low-m6A

score group, and the tumor immune cell proportions by two

clusters are shown in Figure 4C. We compared the fractions

of 22 immunocytes between the high-m6A score group and

low-m6A score group, and 13 immunocytes were altered in

the low-m6A score group, including eight increasing

immunocyte fractions (B cell naïve, T cells CD4 memory

resting, T cells CD4 memory activated, T cells gamma–delta,

eosinophils, neutrophils, M1 macrophage, and dendritic cells

activated) and five decreasing immunocyte fractions (plasma

cell, T cell CD8, T cell CD4 naïve, T cells regulatory, and NK

cell resting) (Figure 4D).

Functional enrichment and WGCNA
analysis in m6A-related genes

A total of 6,770 m6A modified genes were obtained by

Pearson’s correlation analysis (cor > 0.3, p < 0.05)

(Supplementary Table S4). Then, these genes were used for

weighted gene co-expression network analysis, which is

commonly used to analyze the relationship between co-

FIGURE 4
Construction of m6A signatures and TME cell infiltration analysis. (A,B) Kaplan–Meier curves of recurrence-free survival (A) and overall survival
(B) for 804 CRC patients in the meta-GEO cohort with different m6A scores. (C) Bar plot visualizes the relative percent of 22 immune cells in each
sample. (D) Boxplot of all 22 immune cells differentially infiltrated fraction. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 5
Weighted gene correlation network analysis of m6A methylation regulators. (A,B) Analysis of network topology to determine soft-thresholding
power. (C) Eigengene dendrogram identified groups of correlatedmodules. (D)Gene dendrogramwas obtained by clustering the dissimilarity based
on consensus topological overlap with the corresponding module colors indicated by the color row. Each colored row represents a color-coded
module that contains a group of highly connected genes. (E) Heatmap of the correlation between the module eigengenes and clinical traits of
colorectal cancer. We selected the module red, cyan, gray60, dark turquoise, and dark gray blocks for subsequent analysis. (F) Gene Ontology
analysis of genes in module red, cyan, gray60, dark turquoise, and dark gray.
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FIGURE 6
Identification of key genes modified by m6A. (A) Multivariable Cox regression analyses in the meta-GEO cohort by using the RFS model. (B)
Survival plot of the significant genes obtained bymultivariable Cox regression, including ACVRL1 and HAUS6. (C)Overall survival of the signature was
obtained by multivariable Cox regression from themeta-GEO cohort in the TCGA cohort. (D,E)Gene expression of ACVRL1 and HAUS6 in the TCGA
cohort. (F) Thirty Q21 clusters of the single-cell RNA-seq analysis. (G,H) Distribution of ACVRL1 and HAUS6 in colorectal cancer patients.
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expression modules and external sample traits (Hazra and

Gogtay, 2016). In our research, value “8” was selected as a

soft thresholding power value because it produced a high

similarity with a scale-free network and contributed to gene

clustering (Figures 5A,B). Then, a one-step network to estimate

the relationship between modules and clinical characteristics

(sex, age, RFS events, RFS, status, and OS) was constructed.

Here, a clustering dendrogram of m6A-related genes (Figures

5C,D) and 18 modules were obtained. Remarkably, module

red, cyan, gray60, dark turquoise, and dark gray were

significantly correlated to the recurrence-free survival and

positively linked to the recurrence event in colorectal

cancer, and these modules were adopted for further regression

analysis (Figure 5E). These significant modules were shown

upregulated in chromosome segregation, RNA localization,

and mRNA 5′-UTR binding by using Gene Ontology analysis

(Figure 5F).

Identification of m6A- and recurrence-
related genes

Initially, m6A-modified and recurrence-related genes were

screened by WGCNA, then the univariable Cox analysis was

carried out to attain the genes that were significantly

correlated to recurrence and overall survival, and we

acquired 225 genes (Supplementary Table S4).

Subsequently, the multivariable Cox regression was adopted

to determine the final prognostic factors by using

37 significant genes from the univariable Cox regression

(p < 0.01) (Figure 6A), and six genes were recognized

linked to CRC patient prognosis, namely, TOP2A, LRRC58,

HAUS6, SMC4, ACVRL1, and KPNB1. We also found that

ALVRL1 and HAUS6 were significantly related to the

prognosis of CRC patients, including recurrence-free

survival and overall survival (Figure 6B). Next, to evaluate

the accuracy of the signatures obtained by the multivariable

Cox regression analysis from the meta-GEO cohort, we

downloaded the overall survival of these genes of CRC

patients in the TCGA cohort from the GEPIA database.

Importantly, these signatures were also significantly

associated with the survival of the CRC patients (p = 0.034)

(Figure 6C), and we also found that ALVRL1 and HAUS6 were

differentially expressed in COAD and READ patients when

compared to those in the normal sample in the TCGA cohort

(Figures 6D,E). Finally, to confirm the underlying tumor

microenvironment affected by ALVRL1 and HAUS6, the

transcriptomes of single cells from CRC samples were

downloaded from Single-Cell Expression Altas (https://

www.ebi.ac.uk/gxa/sc/experiments/E-MTAB-8410/results/

tsne), and the results indicated that ALVRL1 was centrally

distributed in endothelial tip cells and stromal cells, whereas

HAUS6 did not show central distribution (Figures 6F,G,H).

Discussion

Based on accumulating evidence, dysregulation of m6A RNA

methylation regulators, especially the m6A modification pattern,

assumed an indispensable role in the occurrence and recurrence

of the tumor. As most studies focus on a single regulator, the

integrated patterns to decipher the characteristics of m6A

regulators and underlying TME infiltration are not fully

recognized in CRC patients with recurrence. Therefore, we

explored the relationship between the distinct m6A

modification patterns and CRC recurrence and built an

m6A-based risk model to predict the prognosis of CRC.

In the current study, we analyzed and compared the

expression of 27 key m6A RNA methylation regulators in

CRC tissues with recurrence and no recurrence, and we

observed differential expression levels of m6A regulators

(RBM15, FTO, YTHDF2, YTHDC1, EIF3A, ELAVL1, and

G3BP2) both in the recurrence tissues and in the high-stage

tissues, indicating their potential functions as tumor motivators

in CRC tumorigenesis and recurrence. Next, considering the

universality and importance of the m6A modification pattern, we

performed consensus clustering of 27 m6A RNA regulators and

identified three subgroups: m6A cluster 1, m6A cluster 2, andm6A

cluster 3. m6A cluster subgroups were verified to influence

recurrence-free survival and overall survival. The immune

profile analysis underlying distinct m6A clusters revealed that

immune responses, including innate immunity and adaptive

immunity, were enhanced in m6A cluster 1 with longer

recurrence-free survival, and tumor immune cells were also

enriched in m6A cluster 1.

To quantitatively illustrate the m6A signature, we calculated

the m6A score of CRC patients individually by PCA based on

32 significantly prognostic m6A phenotype-related DEGs

between the three m6A cluster subgroups. Also, the lower

m6A score was significantly associated with better prognosis

both in RFS and OS. Furthermore, the m6A score was

negatively correlated with five of 23 immune-associated cells.

CIBERSORT results also showed that B cell naïve, T cells

CD4 memory resting, T cells CD4 memory activated, T cells

gamma–delta, eosinophils, neutrophils, and dendritic cells

activated elevated significantly in the low-risk group (lower

m6A score group), which indicates a potential mechanism by

which the m6A signature protects against CRC progression is by

positively regulating immune cell infiltration.

Subsequently, WGCNA analysis, indeed, verified the

connection between CRC recurrence and m6A regulator-

related genes. Hence, we identified the prognostic value of

m6A-modified gene signatures (TOP2A, LRRC58, HAUS6,

SMC4, ACVRL1, and KPNB1) which were selected by the

univariable and multivariable Cox regression analyses.

Notably, these signatures also showed a significant relation

to the survival in the TCGA cohort. In addition, the

significant genes (ACVRL1 and HAUS6) obtained from
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multivariable Cox regression could serve as biomarkers for

CRC patient survival. The single-cell expression dataset (Lee

et al., 2020) of colorectal cancer samples demonstrated that

ALVRL1 was centrally distributed in endothelial tip cells and

stromal cells, whereas HAUS6 did not show central

distribution, which also indicates that m6A target mRNAs

affected the tumor microenvironment, thereby influencing

the prognosis of CRC.

Conclusion

We evaluated the m6A modification patterns of 804 primary

CRC patients based on 27 m6A regulators and revealed the

biological mechanism behind the distinct m6A modification

patterns, which will help improve our understanding of the

characteristics of TME cell infiltration and predict clinical

prognosis. The m6A modification plays an indispensable role

in the formation of TME diversity and complexity. Notably,

TOP2A, LRRC58, HAUS6, SMC4, ACVRL1, and KPNB1 were

identified as m6A-modified genes associated with CRC

recurrence, thereby serving as a promising predictive

biomarker panel or therapeutic target for patients with CRC

recurrence.
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