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Multiple Sclerosis (MS) is an autoimmune, neurological disease, commonly

presenting with a relapsing-remitting form, that later converts to a secondary

progressive stage, referred to as RRMS and SPMS, respectively. Early

treatment slows disease progression, hence, accurate and early diagnosis

is crucial. Recent advances in large-scale data processing and analysis have

progressed molecular biomarker development. Here, we focus on small RNA

data derived from cell-free cerebrospinal fluid (CSF), cerebrospinal fluid

cells, plasma and peripheral blood mononuclear cells as well as CSF cell

methylome data, from people with RRMS (n = 20), clinically/radiologically

isolated syndrome (CIS/RIS, n = 2) and neurological disease controls (n = 14).

We applied multiple co-inertia analysis (MCIA), an unsupervised and thereby

unbiased, multivariate method for simultaneous data integration and found

that the top latent variable classifies RRMS status with an Area Under the

Receiver Operating Characteristics (AUROC) score of 0.82. Variable

selection based on Lasso regression reduced features to 44, derived from

the small RNAs from plasma (20), CSF cells (8) and cell-free CSF (16), with a

marginal reduction in AUROC to 0.79. Samples from SPMS patients (n = 6)

were subsequently projected on the latent space and differed significantly

from RRMS and controls. On contrary, we found no differences between

relapse and remission or between inflammatory and non-inflammatory

disease controls, suggesting that the latent variable is not prone to

inflammatory signals alone, but could be MS-specific. Hence, we here

showcase that integration of small RNAs from plasma and CSF can be

utilized to distinguish RRMS from SPMS and neurological disease controls.
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1 Introduction

Multiple Sclerosis (MS) is a complex autoimmune and

neurodegenerative disease, which can manifest with clinical

symptoms such as impaired vision, fatigue, sensory

disturbance, spasticity, pain, and depression among others

(McGinley et al., 2021). Due to immune-related attacks on

myelin sheaths in the brain and spinal cord, demyelinating

lesions can be detected by magnetic resonance imaging (MRI)

(Filippi et al., 2019). The majority (85%) of patients presents with

the relapsing-remitting course of MS (RRMS) before eventually

converting to a more severe, secondary progressive state (SPMS)

(McGinley et al., 2021). However, earlier treatment intervention

slows disease progression (Harding et al., 2019), thus early and

accurate diagnosis is important. Individuals with a single

neurological episode are typically classified as clinically

isolated syndrome (CIS), and when lesions are discovered

“incidentally” in asymptomatic individuals, the diagnosis is

referred to as radiologically isolated syndrome (RIS)

(Calabrese et al., 2021).

Molecular biomarkers, such as immunoglobulin G (IgG)

index, oligoclonal bands and neuro-filament light chain in the

cerebrospinal fluid (CSF) are becoming more widely used for

supporting MS diagnosis together with patient medical

history, clinical examination and magnetic resonance

imaging (MRI) emphasizing the importance of moving

towards multidisciplinary approaches in disease

management (Gallien et al., 2014; Ziemssen et al., 2019).

Listed biomarkers are predominantly based on protein and

antibody assays, whereas additional molecular biomarkers

based on nucleic acids detected by more sensitive methods are

also emerging. For example, we previously found evidence

that micro (mi)RNA, miR-150, levels are higher in MS

patients compared to neurological disease controls and in

CIS patients later converting to MS, compared to non-

converters, suggesting miR-150 as a potential biomarker

for early diagnosis of MS (Bergman et al., 2016; Quintana

et al., 2017; Piket et al., 2019). Mature miRNAs are roughly

22 nucleotide long RNAs that regulate gene expression in a

post-transcriptional manner (Filipowicz et al., 2008). Other

classes of small non-coding RNAs (ncRNAs) include small

nucleolar (sno)RNAs, small nuclear (sn)RNAs, transfer (t)

RNAs and YRNAs, which have defined roles in RNA

modifications, splicing, protein synthesis and DNA

replication, respectively (Watson et al., 2019). Emerging

evidence suggests that shorter, processed fragments derived

from snoRNAs, snRNAs, tRNAs and YRNAs, acquire

specific, functional roles. DNA methylation, another

putative epigenetic biomarker for MS (Marabita et al.,

2017; Ewing et al., 2019; Ringh et al., 2021), typically

presented by a methyl group bound to cytosines in a CpG

dinucleotide context (Zemach et al., 2010), can affect

transcription, differential promoter usage or alternative

splicing (Weber et al., 2007; Jones, 2012), and thereby

reflect the status of cells of interest.

Previous studies have predominately considered tissue-

specific, single omics data, in search of biomarkers. However,

recent advances in omics technologies have invited multi-omics

andmulti-tissue biomarkers to the scene, which allows diagnostic

biomarkers and treatment response evaluation to be multi-

layered (Olivier et al., 2019). Bioinformatics approaches for

integrative analysis are concurrently expanding with sequential

and simultaneous method designs (Subramanian et al., 2020).

These methods allow the discovery of complex patterns that

would otherwise not be detectable using a single data type,

potentially leading to higher diagnostic accuracy (Herman

et al., 2018) and data-driven molecular subtyping (Jiangzhou

et al., 2021).

In this study, we applied a multi-omics, multi-source

integration approach to showcase MS biomarker discovery.

We profiled small RNAs in CSF (cell-free and cells) and blood

(plasma and mononuclear cells) with Small-seq methodology

(Faridani et al., 2016; Hagemann-Jensen et al., 2018).

Furthermore, CSF cells were profiled with Post-Bisulfite

Adaptor Tagging (PBAT), a whole-genome bisulfite

sequencing approach (Smallwood et al., 2014; Han et al.,

2021). For integration, we applied multiple co-inertia

analysis (MCIA), an unsupervised, multivariate method,

which allows for simultaneous, unbiased data integration

(Meng et al., 2014).

2 Materials and methods

2.1 Sample collection

Blood and CSF were collected from people with MS (nRRMS =

20, nSPMS = 5 (+1), nCIS = 1, nRIS = 1) and neurological controls

(nNINDC = 9, nINDC = 5) as previously described (Zheleznyakova

et al., 2021). MS was diagnosed according to the 2017 revised

McDonald’s criteria (Thompson et al., 2018) and detailed cohort

characteristics are given in supplementary Table S2. The study

was approved by the Regional Ethical Board (2009/2107–31/2)

and patients signed the informed consent form. In short, blood

samples were centrifuged at 1500 g for 15 min at room

temperature (RT), followed by plasma phase aspiration. CSF

was centrifuged immediately after collection at 440 g for 10 min

at RT to separate cells from supernatants. All samples were stored

at −80°C until further processing.

2.2 Small-seq

RNA extraction, Small-seq library preparation, data pre-

processing and normalization were conducted as previously

described (Zheleznyakova et al., 2021). In short, RNA was
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extracted from 300 μl of plasma and cell-free CSF using the

miRCURY RNA isolation kit (Exiqon, Product #300112,

Vedbaek, 2950 Denmark), whereas RNA from CSF cells

and PBMCs was extracted using the miRNeasy micro kit

(Qiagen, Cat. No. 74004, Germantown, MD 20874,

United States). Small-seq libraries were constructed

pooled, purified and size selected as previously described

(Faridani et al., 2016; Hagemann-Jensen et al., 2018;

Zheleznyakova et al., 2021). Libraries were sequenced on

HiSeq2500 (Illumina) with read length of 51 nt, single-end.

Adapter sequences and CA were removed with Cutadapt

v1.8.1 (Martin, 2011). Trimmed reads were subsequently

mapped to hg38 using STAR v2.4.0 (Dobin et al., 2013)

and annotated using miRbase v21 (Kozomara and

Griffiths-Jones, 2014), GtRNAdb v1 (Chan and Lowe,

2009) and Gencode v22 (Frankish et al., 2019) of which

the latter was further stratified into biotypes using the getBM

function of biomaRt v.2.50.3 (Durinck et al., 2009). Small-

seq transcripts with less than 100 Unique Molecular

Identifiers (UMI) counts across all samples were filtered

out and subsequently normalized using the trimmed mean

of M values (TMM)-method from EdgeR (Robinson et al.,

2010). TsRNAs were profiled and normalized with

MINTmap v1.0 (Loher et al., 2017) and transcripts

covered by less than 2/3 of samples in either the RRMS or

control groups were filtered out. A standard deviation filter

of 0 was also applied to both Small-seq and MINTmap

derived transcripts.

2.3 PBAT

The post-bisulfite adaptor tagging (PBAT) protocol was

conducted as previously described (Smallwood et al., 2014;

Han et al., 2021) on lysate from approximately 5000 CSF

cells. Library pools were sequenced on a HiSeq2500 in High

Output mode (8 lanes/run) at the Babraham Institute Next

Generation Sequencing Facility with a sequencing length of

100 nt, single-end reads.

Reads were trimmed 9bp from their 5′end (--clip_rl 9) using

Trim Galore version 0.4.1 (http://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/). Quality (-q 20) and

adapter (-a AGATCGGAAGAGC) trimming were performed

using Cutadapt 1.8.1 (Martin, 2011) with a minimum required

adapter overlap of 1bp (−O 1) and a maximum trimming error

rate of 0.1 (−e 0.1). The minimum required sequencing length

after trimming was set at 20bp.

Trimmed and filtered sequencing reads were aligned to

GRCh38 with the –pbat option of Bismark 0.14.4 (Krueger

and Andrews, 2011) using Bowtie 2 (Langmead and Salzberg,

2012) and the following specified options: -q–phred33 –score-

min L, 0,−0.2 –ignore-quals. Alignments with a unique best hit

were taken for further processing. Duplicated reads were

removed using the deduplicate_bismark function and

subsequently top and bottom strands were merged into single

CpG dinucleotides using the –merge_CpG option of the Bismark

coverage2cytosine module.

The BSmooth function from bsseq v.1.20.0 (Hansen et al.,

2012) was applied to the Bismark-derived coverage

files with default settings (1 kB window, 70 CpGs) to

estimate DNA methylation levels for each sample and

each CpG site. Sites with robust coefficient of variation

(RCV) (RCV(xi) = median (xi - median(x))/median(x))

lower than one and standard deviation of 0 across samples

were filtered.

2.4 Multi co-inertia analysis

For integration, we performed multi co-inertia analysis

(MCIA) (Chessel and Hanafi, 1996) by applying the mbpca

function of the mogsa Bioconductor package v.1.22.1 (Meng

et al., 2019) with the following parameters: method =

"blockLoading”, option = “inertia”, center = TRUE, scale =

T, moa = TRUE, svd. solver = “fast”, maxiter = 1000, k = "all”.

In brief, each dataset was first centered by mean and

standardized by its standard deviation followed by another

division by its inertia:

Xk � (Xk(n, p) −Xpk)/σpk�����������∑n
i�1∑p

j�1X
2
i,j

√
Where Xk refers to expression matrix X from dataset K. Xpk is the

mean of the column p and σpk is the standard deviation of

column p. The resulting standardized datasets were then

combined followed by singular value decomposition (SVD) to

calculate the first eigenvectors:

X � [X1X2 X3 ...Xk]
X � UΣVT

Where U is the global latent scores and V is the eigenvectors. The

deflation of the matrix was performed using partial

eigenvectors as:

Xk � Xk −Xk.V
T
k

Where Vk
T refers to the eigenvectors for variables from dataset k.

The collection of all UΣ (after all iterations) is referred to as

global latent scores and is referred to as Tglobal. The partial

contributions for each subtype were divided by the

contributions of the complete dataset to make fractions and

percentages.

contrib � ⎛⎝Tpartial.Tglobal

TT
global.Tglobal

⎞⎠2

× TT
global.Tglobal
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For projection and estimation eigenvalues for subtypes, we

used only the corresponding eigenvectors to estimate latent

scores and variance contribution. More specifically, the

projections were calculated by:

Tprojected � Xnew.V
T

Where Xnew is the new unseen standardized dataset (all sub-

datasets have been concatenated) and VT is the SVD weights.

The variance contribution for each omics was calculated as:

Tk � Xk.V
T
k

Tpartial � [T1T2 T3 ... Tk]

2.5 Clustering and accuracy

Clustering was performed using k-means with k = 2. We

calculated the accuracy using the split-join distance (van

Dongen, 2000) and the area under the ROC curve. To

calculate the area under the Receiver Operating

Characteristics (ROC) curve we used an iterative approach

(Lee and Fujita, 2007) as follows:

1.Apply k-means clustering with k = 2

2.Compute the fractions RRMS (RRRMS) and Controls

(Rcontrol) detected in cluster one and cluster two

3.Determine the true positive cluster by comparing RRRMS

and Rcontrol such that cluster one is true positive if RRRMS >
Rcontrol otherwise cluster two is the true positive

4.Calculate true positive and false positive fractions

5.Relocate a sample xi from cluster one to cluster two such

that the change in the k-means objective function is minimum

6.Calculate true positive and false positive fractions

7.Repeat steps five to six until cluster one becomes an empty

cluster

8.Reinstate the k-means clustering results

9.Relocate a sample from cluster two to cluster one such that

the change in the k-means objective function is minimum

10.Calculate true positive and false positive fractions

FIGURE 1
Cohort and sample overview. (A) Samples were collected from people with Multiple Sclerosis (MS) in relapse (MS-rel), remission (MS-rem),
secondary progressive (SPMS), clinically and radiologically isolated syndrome (CIS/RIS) stages, inflammatory (INDC) and non-inflammatory
neurological disease controls (NINDCs). (B) Blood and cerebrospinal fluid (CSF) were collected from the same individual and separated into
peripheral blood mononuclear cells (PBMCs), plasma, CSF cells and cell-free CSF. (C) Work flow. Upon DNA and RNA extraction, sequencing
libraries were constructed using Small-seq and PBAT methodology, respectively. Sequencing reads were pre-processed, which includes QC,
filtering, mapping, deduplication, and coverage count, using the standard Small-seq andMINTmap pipelines for small RNAs, whereas themethylome
data was profiled using Bismark. After normalization and variance filtering, multiple co-inertia analysis (MCIA) was applied, SPMS samples were
projected, and latent variables were subsequently extracted. Lasso regressionwas applied for feature selection followed by evaluation of the reduced
feature model. (D) Overview of features included in MCIA. The number of features for each source and methodology is given, as well as the total
number of features included in downstream integration with MCIA.
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11.Repeat steps 9–10 until cluster two becomes an empty

cluster

2.6 Variable selection and statistical
testing

Variable selection was performed using Lasso regression

(Friedman et al., 2010) (glmnet package in R v 4.1–1) with 5-fold

cross-validation to estimate λ. We used the global scores fromMCIA

as the dependent and the features as the independent variable. The

features with shrunk ß = 0were removed. If no variable from a dataset

was left, the entire dataset was removed before performing MCIA on

the reduced dataset. The statistical inference was performed using

Mann-Whitney test. p-values lower than 0.05 were considered

statistically significant.

Additional computational details are given in Supplementary

Information 1.

3 Results

3.1 Multi-omics and multi-source
approach: Cohort and feature description

Samples from CSF cells, cell-free CSF, plasma and peripheral

blood mononuclear cells (PBMCs) were collected from RRMS in

relapse (n = 11), RRMS during remission (n = 9), SPMS (n = 5 +

1 from same individual sampled a year later), as well as

inflammatory (INDC, n = 5) and non-inflammatory

neurological disease controls (NINDCs, n = 9). Furthermore,

samples from two individuals classified as RIS and CIS at the time

of collection, were also included (Figures 1A,B). Blood- and CSF-

derived biofluid and cellular samples were profiled for small

RNAs using Small-seq methodology (Faridani et al., 2016;

Hagemann-Jensen et al., 2018) with detailed tRNA-derived

small RNAs (tsRNAs) profiled using MINTmap (Loher et al.,

2017) (Figure 1C, Supplementary Table S1). For PBMCs, which is

the most abundant cellular compartment, 21615 features derived

from the Small-seq pipeline and 3645 MINTmap-derived

features passed the filtering criteria, whereas for plasma,

which is extracellular, 1535 Small-seq and 323 MINTmap-

derived features passed (Figure 1D, Supplementary

Information 2–10). From the CNS compartment, fewer cells

were extracted, which resulted in 1638 and 818 features

derived from the Small-seq pipeline and 515 and 250 features

derived from MINTmap from CSF cells and cell-free CSF,

respectively. CSF cells were furthermore profiled for genome-

wide DNA methylation using PBAT technology of which

143013 features with a coefficient of variation (CV) > 1 were

identified (Figure 1D, Supplementary Information 2–10).

In total, 173352 features across multi-omics and multi-fluid

and cellular sources from 42 overlapping individuals with MS

and other neurological diseases were considered for downstream

analysis.

3.2 Unbiased, simultaneous integration of
small RNAs and methylation profiles from
cellular and fluid sources to classify RRMS
status

For simultaneous data integration, we applied multiple co-

inertia analysis (MCIA), which is an unsupervised and thereby

unbiased method (Meng et al., 2014). MCIA is based on a

covariance objective function that attempts to summarize

shared patterns among multiple datasets into lower-

dimensional latent variables. We initially focused on RRMS,

CIS, RIS and control samples due to their diagnostic

relevance. Up to ten latent variables (L1-L10), derived from

the MCIA analysis applied on RRMS, CIS, RIS, NINDC and

INDC samples were considered. Latent variables are ranked

according to percentage of variation captured, hence,

L1 captures more variance than L10 (Supplementary Figure

S1). To evaluate our clinical phenotype of interest, i.e., RRMS

and CIS/RIS, across latent variables, Area Under the Receiver

Operating Characteristics (AUROC) analysis, was applied. The

first MCIA latent variable, L1, distinguished RRMS from all

neurological disease controls jointly with an AUROC value of

0.82, with none of the remaining latent variables (L2-L10) having

a higher score (Figure 2A). Furthermore, we conducted k-means

(k = 2) clustering and subsequently evaluated clusters with a split

and join method, which measures the number of moves needed

to transform the observed clusters to the ground truth (lower

numbers are preferable). Taken together, L1, explaining the

majority of variation, was the top choice for prediction of

RRMS disease status (Figure 2A, Supplementary Figure S1).

Group separation (relapse, remission and CIS/RIS versus

INDC and NINDC) based on L1 was evaluated with line,

box- and density plots (Figure 2B). Wilcoxon signed-rank

test confirmed a significant difference (p < 0.001) (Figure 2B).

Partial eigenvalues (i.e., the relative contribution of variance to

the selected latent variable) revealed a relatively even

contribution across compartments and datasets, apart from

DNA methylation and PBMC transcripts, which contributed

less to L1 (Figure 2C).

Subsequently, we projected the six samples from five SPMS

individuals onto L1 (Figure 1D). Interestingly, SPMS samples

seemed to locate between RRMS and control samples, although a

significant difference in L1 was only detected between SPMS and

RRMS (p < 0.001) based on Wilcoxon signed-rank test

(Figure 2B). We further examined whether stratifying the

RRMS group into relapse and remission would reveal

additional differences between MS subgroups, but this was not

the case (Supplementary Figure S2). Neither did we detect

significant differences between the NINDC and INDC
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control groups (Supplementary Figure S2), suggesting that L1 is

not solely picking up inflammatory cues, but could be MS-

specific.

In summary, the top latent variable, L1, derived from

simultaneous, unbiased integration of multi-cellular and

fluid sources of small RNA and methylome profiles,

distinguished RRMS from other neurological disease

controls and SPMS.

3.3 Lasso regression reduces the number
of features for classification of RRMS

To reduce the number of input features for MS

classification based on L1 from the full model, we applied

Lasso regression. Lambda parameter tuning with 5-fold cross-

validation and a filter of 1 standard deviation were applied for

each compartment and dataset, which reduced the feature

count from 173,352 to 44 (Figure 3A). Comparison of ranks

showed that the 44 features in the reduced model were present

in the top 800 (of 173,352) ranked features in the full model

with a Spearman’s correlation coefficient of 0.90 (Figure 3B).

When evaluation methods were re-applied to L1 of the

“reduced” model, the AUROC value decreased marginally

from 0.82 to 0.79 and the split/join value increased by 2,

from 10 to 12 compared to the full model (Figure 3C). Hence,

the 44 selected features still provided a robust classification of

RRMS compared to controls, which was confirmed by line,

density and boxplots of the “reduced” L1 as well as the

Wilcoxon signed-rank test (p < 0.001) (Figure 3D). Selected

FIGURE 2
Integration of omics data from cellular and fluid sources separates RRMS from controls and SPMS. (A) Multiple co-inertia analysis (MCIA)
methodwas used for simultaneous, unsupervised integration. A total of 10 latent variables (L1-L10), illustratedwith different colours and dashed lines,
were evaluated using Area Under the Receiver Operating Characteristics (AUROC) analysis and k-means clustering (k = 2) followed by split and join
method as indicated by “AUC” and “S/J”, respectively. TPR: true positive rate, FPR: false positive rate (B) Separation of controls (green),
secondary progressive multiple sclerosis (SPMS, blue) and relapsing–remitting MS (RRMS, red) based on L1, was evaluated with line, density and
boxplots as well as Wilcoxon signed-rank test (***: p-value < 0.001. NS: not significant). In the line plot MS subtype: relapse (MS-rel), remission (MS-
rem) and secondary progressive (SPMS), control subtype: inflammatory (INDC) and non-inflammatory neurological disease controls (NINDCs) and
clinically or radiologically isolated syndrome (CIS and RIS) are distinguished by colour and shape. (C)Contribution of small RNAs derived by the Small-
seq pipeline, Mintmap and methylome derived data to L1.
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FIGURE 3
RRMS separation from controls and SPMS remains after feature reduction. (A) Lasso regression. Lambda parameter tuning of small RNA data
processed through Small-seq and MINTmap pipelines from cell-free cerebrospinal fluid (CSF), CSF cells, plasma and peripheral blood mononuclear
cells (PBMCs) as well as methylome data from CSF cells processed through the Bismark pipeline, which were included in the initial, full multiple co-
inertia analysis (MCIA) model. (B) Scatter plot comparing ranks of the 44 selected features with ranks of the full model (limited to 800). Dots are
color-coded and shaped according to cellular and fluid compartment (CSF: cerebral spinal fluid, CSF cells and plasma) and Small-seq and transfer (t)
RNA fragments (tRFs)), respectively. (C) Area Under the Receiver Operating Characteristics (AUROC) and k-means clustering (k = 2) followed by split

(Continued )
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features were solely based on small RNAs derived from CSF

cells (Quintana et al., 2017), CSF (Weber et al., 2007) and

plasma (Herman et al., 2018) (Figure 3E). Hence, the

contribution from DNA methylation of CSF cells and

Small-seq derived transcripts from PBMCs were no longer

considered in L1.

FIGURE 3 (Continued)
and join (S/J) method. (D) Separation of relapsing–remitting Multiple Sclerosis (RRMS, blue) and other neurological disease controls (C, red)
based on latent variable 1 (L1) of the MCIA analysis derived from reduced variable numbers, was evaluated with line, density and boxplots as well as
Wilcoxon signed-rank test (***: p-value < 0.001, NS: Not significant). In the line plot MS subtype: relapse (MS-rel), remission (MS-rem) and secondary
progressive (SPMS), control subtype: inflammatory (INDC) and non-inflammatory neurological disease controls (NINDCs) and clinically or
radiologically isolated syndrome (CIS and RIS) are distinguished by colour and shape. (E)Contribution of various features derived from the Small-seq
and MINTmap pipelines to MCIA L1 eigenvalues of the reduced model.

FIGURE 4
Transcript biotype and source contribution to the reduced model. (A) Plotting of ranked multiple co-inertia analysis (MCIA) loadings color-
coded according to the source (cell-free CSF: light blue, CSF cells: dark blue and plasma: orange), and line type according to analysis pipelinewith full
line representing Small-seq and dashed representing MINTmap, respectively. Transcript biotype, gene name and transcript IDs are given. (B)
Overview of #transcripts from different biotypes derived from plasma (orange), CSF cells (dark blue) and CSF (light blue), which are included in
the reduced model. Transcripts were divided into Small-seq and MINTmap pipelines, respectively. (C) Heatmap illustrating the contribution of
different biotypes and sources, with dark purple illustrating most, and lighter color illustrating less contribution. (D) Explanation of various biotypes
modified from https://m.ensembl.org/info/genome/genebuild/biotypes.html.
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In summary, Lasso regression reduced the number of

input features to 44, while consistently allowing for

classification of RRMS. Hence, we here demonstrate that

data from multi-cellular and fluid sources can be reduced

to few features, which is important for future biomarker

potential.

3.4 Misc- and miRNAs from CSF cells and
3′-tRFs from plasma have major
contribution to the RRMS classification

Ranking of individual MCIA loadings from the 44 selected

features revealed that among top 15, 12 were tsRNAS derived from

MINTmap profiling with the majority derived from the CNS

compartment and down-regulated in RRMS compared to

controls (Figure 4A, Supplementary Figure S4). However, the

top feature, tRF-36-PJB7MNLE308HP1B, derived from plasma

was up-regulated in RRMS. The second top-ranked feature was

classified as a miscRNA, 7SK small nuclear pseudogene 118

(ENST00000364331.1), which, like the third top-ranked small

RNA, hsa-miR-371a-5p, was found to be dysregulated in RRMS

in CSF cells. MiRNA was the only biotype represented in all

sources, i.e., CSF, CSF cells and plasma, in the reduced model.

Other biotypes, such as tRNA, lncRNA, protein coding and

processed transcripts were predominantly represented in

plasma, whereas snoRNA, rRNA and rRNA pseudogene were

represented in cell-free CSF only (Figure 4A). Overall, more

than half, 59.4% (19/32), of the features derived from the Small-

seq pipeline were derived from plasma, 34.4% (11/32) from CSF

and 6.3% (2/32) from CSF cells, in contrast to MINTmap-derived

features, where half, 50% (6/12) were derived fromCSF cells, 41.7%

(5/12) from CSF and only 8.3% (1/12) from plasma (Figure 4A).

The majority of MINTmap-derived features were classified as i- (4/

12, 33.3%), 5′-(3/12, 25%) and 3′-tRFs (4/12, 33.3%), which are

cleaved at the D- and T-loops of mature tRNAs, whereas only 8.3%

(1/12) was classified as the longer 3′half, cleaved at the anticodon

loop (Figure 4A). The contribution of each biotype to the latent

variable of the reduced model, estimated based on the magnitude

and number, showed that among CSF cells, miscRNAs and

miRNAs were major contributors, whereas, for CSF and

plasma, the contribution was more widespread across different

biotypes (Figures 4B,C). For MINTmap-derived features, the

overall major contributor was 3′-tRNA-derived fragments

(tRFs) from plasma, i-tRFs from CSF and 5′-tRFs from CSF

cells (Figures 4B,C). Hence, it is interesting to observe that,

although plasma only has one MINTmap-derived feature

included in the reduced model, it has a major contribution to

L1. Boxplots visualizing selected features grouped into RRMS (+

CIS and RIS), SPMS and controls are given in Supplementary

Figure S4.

In summary, a mix of transcript biotypes and sources

contribute to the latent variable of the reduced model with

major contributions coming from misc- and miRNAs from

CSF cells and CSF and a 3′tRF from plasma.

4 Discussion

In the current study, we utilized an unsupervised approach,

based on simultaneous integration of omics data from fluids and

cells from the same individuals to distinguish MS from controls.

Samples are derived from blood or CSF, which are both of

biological relevance to MS due to the immunological

component of the disease and proximity of CSF to the target

organ. Furthermore, blood and CSF are routinely collected in MS

diagnostic evaluation emphasizing their biomarker potential. We

focused on small RNAs and DNA methylation and found that

small RNAs from cell-free CSF, CSF cells and plasma played a

major role in distinguishing MS from controls. Lasso regression

selected 44 small RNAs from three sources with just a slight

reduction in AUROC (from 0.82 to 0.79) and split/join (from

10 to 12). Hence, we showcase an integrative approach with input

of multi-omics data derived from multiple compartments

combined with feature reduction for classification of MS.

The majority (12 of 15) of top-ranked features in the reduced

model were derived from MINTmap profiled plasma or cell-free

CSF small RNAs, predominantly classified as tRFs, which include

i-, 5′- and 3′-tRFs, cleaved at the D- and T-loops of mature

tRNAs. 3′ and 5′tRFs are 14–30 nucleotides long and have

previously been shown to interact with Argonaute complexes,

suggesting that tRFs might have post-transcriptional regulatory

potential (Kumar et al., 2014; Kuscu et al., 2018) and may also be

protected from degradation in extracellular compartments

similar to miRNAs (Arroyo et al., 2011; Turchinovich et al.,

2011). Bioinformatic tools for prediction of tRF targets genes are

starting to emerge, however, we did not manage to predict targets

for our 15 candidates using either trftars (Xiao et al., 2021),

miRanda (Betel et al., 2008) or TargetScan (Agarwal et al., 2015),

of which the latter two, were originally designed for miRNAs, but

have previously been utilized for tRF target prediction as well

(Wang et al., 2019). However, tRF target prediction is still in its

early days, and future tools might include target genes for tRFs

identified in our study as well, which could potentially also give

insight into molecular mechanisms. Currently, MINTmap

(Loher et al., 2017) supports 125,285 tRNAs (based on

genomic location), corresponding to 28,824 tRFs. Although,

tRFs have previously been linked to diseases including

neurological disorders, such as Alzheimer’s (Wu et al., 2021)

and Parkinson’s (Magee et al., 2019) disease, as well as immune-

related disorders such as Rheumatoid Arthritis (Ormseth et al.,

2020) and inflammation (Liu et al., 2018a), specific roles of

individual tRFs are still to be elucidated. Noteworthy, tRFs

can be excreted through exosomes to recipient cells (Chiou

et al., 2018), which could also be the reason, we detect them

in plasma and cell-free CSF of MS patients and controls. Other

Frontiers in Genetics frontiersin.org09

Needhamsen et al. 10.3389/fgene.2022.1042483

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1042483


studies have indeed documented enrichment of extracellular

tRFs compared to other sncRNA classes in urine, blood

serum, saliva or cerebrospinal fluid (Torres and Marti, 2021).

Hence, studies on tsRNAs will likely grow in the coming years

due to their high prevalence and stability making them excellent

biomarker candidates, which might also give insight into

molecular mechanisms by target gene prediction.

Another top-ranked small RNA (RN7SKP118) found to be

up-regulated in CSF cells of RRMS patients is a pseudogene of

7SK snRNA, which is a master transcriptional regulator of

RNA polymerase II (RNAPII), involved in the production of

sncRNAs such as enhancer RNAs (eRNAs), sn/snoRNAs and

also mRNA (Flynn et al., 2016). Genetic variations in genes

coding for proteins in complex with 7SK snRNA, have

previously been linked to neurological disorders. For

example, biallelic LARP7 loss-of-function variants have

been associated with Alazami syndrome characterized by

cognitive disability (Najmabadi et al., 2011; Alazami et al.,

2012) and MEPCE nonsense variants have been reported in a

young boy with developmental delay and seizures

accompanied with frontal white matter lesions identified by

brain MRI (Schneeberger et al., 2019). Hence, impairment of

the 7SK snRNP complex can have neurological implications

and has previously been linked to white matter lesions, a well-

characterized disease hallmark of MS. Furthermore, altered

expression of 7SK snRNA has previously been detected in

serum of MS patients (Santoro et al., 2016). Although,

RN7SKP118 is classified as a miscRNA due to its

pseudogene status, RN7SKP118 has been predicted to also

interact with LARP7 (https://rnact.crg.eu/) and could

therefore have similar functions as 7SK snRNA.

We also identified several miRNAs in the reduced model. For

example, hsa-miR-142–5p, which has previously been found in

brain tissue and CSF from MS patients (Mandolesi et al., 2017),

serum from SPMS (Regev et al., 2018), and animal model of MS

(Talebi et al., 2017). Furthermore, hsa-miR-142–5p has been

suggested to be involved in neurogenic differentiation (Yang

et al., 2018). Hsa-miR-371a-3p we previously showed to be

down-regulated in RRMS compared to NINCs in CFS cells

(Zheleznyakova et al., 2021). Hsa-miR-374, which was

detected in plasma, has previously been linked to

neurodegenerative disorders, such as Amyotrophic lateral

sclerosis (Waller et al., 2017), Alzheimer’s (Unterbruner et al.,

2018) and Parkinson’s disease (Briggs et al., 2015), as well as

immune-related diseases including T-cell acute lymphoid

leukemia (Gimenes-Teixeira et al., 2013; Qian et al., 2015)

and inflammatory processes in diabetes (Doumatey et al.,

2018). Additional miRNAs, identified in the reduced model,

are linked to inflammation, such as hsa-miR-28–3p, which

has been detected in germinal center B cells (Schneider et al.,

2014) and hsa-miR-192–5p, which has been linked to

M1 macrophage activation.

Despite capturing predominantly sncRNAs, we also

detected protein coding and processed transcripts, in

particular in plasma. Interestingly, Unc-51 Like Kinase 4

(ULK4), one of the selected protein coding transcripts in the

reduced model has been proposed as a key regulator of

myelination (Liu et al., 2018b) with ULK4 deficiency

linked with disrupted white matter integrity (Lang et al.,

2014), again a disease hallmark of MS. Furthermore,

Oligophrenin 1 (OPHN1), a protein expressed in the

brain, which is involved in synaptic maturation and

plasticity (Nadif Kasri et al., 2009) was also among the

44 selected transcripts in the reduced model.

Our integrative approach was initially also based on

features from CSF cell methylome data. However, plotting

of MCIA loadings from each dataset for the full model

revealed that the CSF cell methylome had a minor

contribution to the latent variable, L1, separating RRMS

from controls (NINDC and INDC) and no CSF cell

methylome features were included in the final, reduced

model. Noticeably, a smoothing algorithm was applied to

the PBAT methylome data, due to sparse coverage, which

may have compromised the outcome, or perhaps the

DNA methylation signal got diluted due to mixed cell

populations in the CSF cells. It could also be that

extracellular RNAs simply have greater biomarker

potential for MS compared to intracellular DNA

methylation. Future studies are needed for making further

conclusions in this regard.

In summary, we input 378 (42 × 4 × 2 + 42) profiles from

cell-free CSF, CSF, plasma and PBMCs, focusing on small

RNAs processed through Small-seq and MINTmap pipelines

as well as CSF cell methylomes resulting in a total of

173,352 features. All datasets were derived from the same

42 individuals allowing for simultaneous integration.

Although we considerably increased the input data using

this approach, it is important to note that MS is a

heterogeneous disease and that potentially we cover a

subgroup of affected individuals. Future studies are needed

to uncover whether all, some or none of the selected features

separate RRMS from others in independent cohorts and a

larger sample size is needed for final AUROC estimates. Here

the main purpose was to trial a multi-omics integration

approach for future MS biomarker development based on

samples commonly collected from MS patients such as blood

and CSF.
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