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Background: Periodontitis is a chronic inflammatory disease leading to tooth

loss in severe cases, and early diagnosis is essential for periodontitis prevention.

This study aimed to construct a diagnostic model for periodontitis using a

random forest algorithm and an artificial neural network (ANN).

Methods: Gene expression data of two large cohorts of patients with

periodontitis, GSE10334 and GSE16134, were downloaded from the Gene

Expression Omnibus database. We screened for differentially expressed

genes in the GSE10334 cohort, identified key periodontitis biomarkers using

a Random Forest algorithm, and constructed a classification artificial neural

network model, using receiver operating characteristic curves to evaluate its

diagnostic utility. Furthermore, patients with periodontitis were classified using

a consensus clustering algorithm. The immune infiltration landscape was

assessed using CIBERSOFT and single-sample Gene Set Enrichment Analysis.

Results: A total of 153 differentially expressed genes were identified, of which

42 were downregulated. We utilized 13 key biomarkers to establish a

periodontitis diagnostic model. The model had good predictive

performance, with an area under the receiver operative characteristic curve

(AUC) of 0.945. The independent cohort (GSE16134) was used to further

validate the model’s accuracy, showing an area under the receiver operative

characteristic curve of 0.900. The proportion of plasma cells was highest in

samples from patients with period ontitis, and 13 biomarkers were closely

related to immunity. Two molecular subgroups were defined in periodontitis,

with one cluster suggesting elevated levels of immune infiltration and immune

function.

Conclusion: We successfully identified key biomarkers of periodontitis using

machine learning and developed a satisfactory diagnostic model. Our model
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may provide a valuable reference for the prevention and early detection of

periodontitis.
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Introduction

Periodontitis, one of the most common oral diseases, is

associated with plaque biofilms and accompanied by

periodontal attachment loss and alveolar bone resorption

(Kinane et al., 2017). Without proper diagnosis and

appropriate treatment, persistent inflammation can lead to

further tissue destruction, bone resorption, and eventual tooth

loss (Tonetti et al., 2018). In addition, periodontitis is a direct

manifestation of systemic diseases, independently associated

with multiple chronic inflammatory diseases, and may trigger

or exacerbate comorbidities (Genco et al., 2020; Hajishengallis

et al., 2021). Currently, periodontitis diagnosis is based on a

comprehensive examination of the periodontal tissue, including

gingival condition, tooth mobility, probing depth, probing

bleeding, attachment loss, and bone resorption, supported by

radiography (Cafiero et al., 2013). Existing clinical diagnostics for

periodontitis can reflect the disease severity and previous

periodontal destruction rather than current activity and future

progress (Savage et al., 2009). Periodontal treatment strategies

may be reactionary and lag behind disease progress because

clinicians first respond after the infection is present. Therefore,

there is an urgent need to develop better methods for early

diagnosis, improve the accuracy of early detection, and better

assess the grade of periodontitis.

With the rapid development of microarray screening and

high-throughput sequencing, bioinformatics analysis carries

great significance in exploring the mechanisms, diagnosis,

and prediction of prognosis of periodontitis. Biomarkers are

biological indicators with high diagnostic and prognostic value,

indicating various stages of periodontitis and providing help in

its prevention and treatment (Cafiero et al., 2013). Matrix

metalloproteinase-8 (MMP8) and interleukin (IL)-1beta, the

most studied biomarkers in the periodontitis field, demonstrate

convincing clinical diagnostic validity (Arias-Bujanda et al.,

2020). One study identified several biomarkers using

bioinformatics analysis, such as CSF3, CXCL12, IL-1B,

MS4A1, PECAM1, and TAGLN, and they all served as

predictors of diagnosis and prognosis in chronic

periodontitis (Suzuki et al., 2019). The combined use of

multiple biomarkers can significantly improve the accuracy

of classification models compared to using individual

markers (Wu et al., 2018; Jin et al., 2020). Jin et al.

successfully constructed and validated a 17-miRNA

diagnostic signature for periodontitis, showing convincing

sensitivity and specificity (Jin et al., 2020).

Research into periodontitis diagnosis based on mRNA

expression has certain limitations; most studies use single-

marker screens, and classification models with multiple

indicators have not yet been constructed (Ji et al., 2022; Song

et al., 2015; Suzuki et al., 2019). In addition, selecting key indicators

or features is a significant challenge for disease diagnosis model

construction. Machine learning algorithms, such as random forest

(RF) and artificial neural networks (ANN), can provide new

insights into this problem. As one of the essential machine

learning algorithms, RF has the advantages of simple operation,

high accuracy, and resistance to over-fitting, which helps to

identify key features (Wu et al., 2022). ANN, another classical

machine learning algorithm, has demonstrated powerful capacities

in the processing of medical data (Grobman et al., 2006). The

combined use of RF and ANN has been reported efficient in the

diagnosis of myocardial infarction, Alzheimer’s disease, and heart

failure (Sun et al., 2022; Tian et al., 2020; Wu et al., 2022).

In this study, we combined RF and ANN to develop a multi-

mRNA diagnostic model using Gene Expression Omnibus

(GEO) periodontitis expression data (see the analysis process

in Figure 1). The diagnostic model had high accuracy and could

serve as a tool for the early diagnosis of periodontitis.

Materials and methods

Data acquisition

Cases with identified periodontitis samples were included in

the experimental group, and healthy samples were included in

the control group. Periodontitis was defined according to the case

definition proposed at the 2017 World Workshop on the

Classification of Periodontal and Peri-Implant Diseases: 1)

interdental clinical attachment loss detectable at ≥
2 nonadjacent teeth or 2) buccal or oral clinical attachment

loss with pocketing >3 mm detectable at ≥ 2 teeth (Tonetti et al.,

2018). First, we searched and downloaded two RNA expression

datasets from the GEO database using the keyword

“periodontitis”. GSE10334 contained 64 healthy and

183 periodontitis samples, and GSE16134 contained

69 healthy and 241 periodontitis samples, all of which were

processed using the GPL570 platform of the Affymetrix Human

Genome U133 Plus 2.0 Array. Based on available literature on

using machine learning in disease diagnosis, we believed that the

sample sizes of these two datasets were appropriate. The obtained

RNA-Seq data were then annotated and normalized using R
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software (v4.1.2). We selected GSE10334 as the training cohort

and GSE16134 as the validation cohort.

Differential expression and functional
enrichment analysis

The differentially expressed genes (DEGs) between the

periodontitis and control groups in the training set were

identified using the “limma” R package, with |logFC| >
1.0 and p-values < 0.05 as the screening criteria (Ritchie et al.,

2015). DEGs were visualized using the “pheatmap” and “ggplot2”

R packages. We then performed Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses on the DEGs using the “clusterProfiler” R package

(Yu et al., 2012). The top enriched functions or pathways

were then displayed in bubble and circle plots.

Key biomarkers screening with random
forest

We employed the “randomForest” R package for further

DEG screening (Lawrence et al., 2006). First, the error rates using

1–500 trees were calculated. We comprehensively evaluated the

error rates and stability to select the optimal tree number, usually

that with the lowest error rate and the best stability. Next, an RF

model was constructed with the optimal tree number, and

potential periodontitis biomarkers were identified based on

the mean decrease in Gini coefficient. We defined genes with

importance greater than 2 as key biomarkers, which is a common

screening criterion in RF algorithms and has been used in similar

studies (Tian et al., 2020; Wu et al., 2022). Finally, we performed

unsupervised hierarchical clustering on the above biomarkers.

Construction and evaluation of artificial
neural networks diagnostic model

For the construction of the ANN diagnostic model, we first

used the min–max method to normalize the input data,

converting the expression data of 13 key biomarkers into gene

scores. The biomarker expression level for each sample was

compared to the median value of all samples. If the

expression level of an upregulated gene was greater than the

median value, its gene score was defined as one; otherwise, it was

0. Similarly, if the expression level of a downregulated gene was

less than the median value, it was defined as 1. We then utilized

FIGURE 1
Flow chart of the present study. DEGs, differentially expressed genes; RF, random forest; ANN, artificial neural network.
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the “neuralnet” R package to calculate the gene weight and

establish the ANN classification model (Guenther et al., 2010).

The ANN model consisted of one input layer, one hidden layer,

and one output layer. To further evaluate the model

performance, we calculated the area under (AUC) the receiver

operating characteristic (ROC) curve of the training set using the

“pROC” R package (Robin et al., 2011). The model was also

validated using another patient cohort, GSE16134.

Immune infiltration analysis

CIBERSORT is a deconvolution algorithm quantifying cell

types based on gene expression profiles and can assess the

distribution of 22 immune cells in tissues (Newman et al.,

2015). We used CIBERSORT to comprehensively analyze the

immune infiltration landscape in the GSE10334 cohort, using

waterfall and violin plots to show the differences between the

control and periodontitis groups. Furthermore, we calculated

enrichment scores for immune cells and functions using single-

sample Gene Set Enrichment Analysis (ssGSEA; Haenzelmann

et al., 2013). Heatmaps were used to show the association of key

periodontitis biomarkers with immune cells and immune

functions, respectively.

Unsupervised clustering of periodontitis
patients

Based on the expression of key biomarkers, we applied the

“ConsensusClusterPlus” R package to perform unsupervised cluster

analysis on the training cohort to identify potential molecular

subtypes. The k-means algorithm with 1,000 iterations and an

80% resampling rate was used to guarantee classification stability.

The t-distributed stochastic neighbor embedding (tSNE) analysis

was utilized to verify the classification accuracy and visualized using

the “ggplot2″ R package.

Statistical analysis

The Wilcoxon signed-rank test was used to analyze

differences in immune scores between the control and

periodontitis groups. The differences between two molecular

subgroups were also analyzed using the Wilcoxon signed-rank

test. Spearman’s rank correlation coefficients were used to

explore the correlation between periodontitis biomarker

expression and immune cells or immune functions. Statistical

analyses were performed using R. Unless otherwise stated, p <
0.05 was considered statistically significant.

Results

Identification of differentially expressed
genes in periodontitis

A flow chart of the study process is presented in Figure 1. All

analysis code is provided in Supplementary Table S1. After

processing the data, a total of 153 DEGs were identified using

the “limma” R package, including 111 significantly upregulated

genes and 42 significantly downregulated genes. As shown in

Figure 2A, these genes were significantly different between the

control and periodontitis groups. Volcano plots further

suggested the expression status and statistical significance of

all DEGs (Figure 2B).

FIGURE 2
Identification of DEGs in the training cohort. (A) The heatmap of the 153 DEGs, including 111 up-regulated and 42 down-regulated ones. (B)
Volcano plots of all DEGs in the GSE10334 dataset. Con, control group; Per, periodontitis group.

Frontiers in Genetics frontiersin.org04

Xiang et al. 10.3389/fgene.2022.1041524

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1041524


Functional enrichment of differentially
expressed genes

We used GO and KEGG enrichment analyses to determine

the functions of these genes. GO analysis revealed that the DEGs

mainly regulated immune-related functions such as

phagocytosis, humoral immune response, activation of the

immune response, and neutrophil migration (Figures 3A,B).

Meanwhile, KEGG analysis suggested that these genes were

significantly enriched in immune pathways such as

cytokine−cytokine receptor interaction, viral protein

interactions with cytokines and cytokine receptors, cell

adhesion molecules, chemokine signaling pathways, and the

IL-17 signaling pathway (Figures 3C,D).

Screening for diagnostic biomarkers

To screen for reliable diagnostic biomarkers of periodontitis,

we entered the DEG gene scores into the RF model. According to

the relationship between the RF tree number and the model error

rate, we chose the tree number corresponding to the lowest error

rate (n = 34; Figure 4A). Figure 4B shows the top 30 genes in the

RF classifier; CSF3 was the most important biomarker. Finally,

we obtained a total of 13 key periodontitis biomarkers using

importance >2 as the screening criterion. The heatmap revealed

that NSG1 and NEFL were downregulated genes in the

periodontitis group, and the remaining 11 were upregulated

(Figure 4C). Each marker exhibited excellent diagnostic

performance, with the lowest AUC of 0.831 and the highest of

0.916 (Supplementary Figure S1).

Artificial neural networks diagnostic
model construction and validation

We used ANN to analyze the weights of the 13 biomarkers

based on gene scores. The ANN diagnostic model consisted of

13 input, five hidden, and two output parameters (Figure 5A).

The weights of each biomarker are shown in Supplementary

Table S2. The entire training was performed for 2,304 steps,

and the absolute partial derivative of the error function was

less than 0.01. We then evaluated the model performance

using the “pROC” R package, with an AUC of 0.945 in the

training cohort, indicating that the model had excellent

classification accuracy (Figure 5B). In addition, the ANN

model also demonstrated superior performance in the

validation cohort, GSE16134; the AUC was 0.900

(Figure 5C). As shown in Supplementary Table S3, we

adjusted the importance threshold of RF to determine the

optimal model. The results suggested that our model

performed optimally, possessing the lowest AUC reduction

with AUCs greater than 0.90.

Immune infiltration assessment

We used CIBERSORT to assess the distribution of

22 immune cells, and plasma cells were the main cell type in

periodontitis samples (Supplementary Figure S2). The relative

immune cell scores for each sample are displayed in

Supplementary Table S4. As shown in Figure 6A, the

proportions of plasma cells, resting natural killer cells, and

neutrophils in the periodontitis group were significantly

higher than in the control group. Looking at the heatmap of

the correlation between biomarker expression and immune cell

scores, we found that NEFL and NSG1 differed from other

biomarkers (Figure 6B). The expression of NEFL and

NSG1 was significantly positively correlated with T follicular

helper cells, resting mast cells, M1 macrophages, and resting

dendritic cells, while it was significantly negatively correlated

with plasma cells. Notably, these biomarkers were all associated

with immune infiltration in periodontitis.

Immune function analysis

We employed ssGSEA to calculate immune function

enrichment scores (Supplementary Table S5). The enrichment

score of the periodontitis group was significantly higher than the

control group, indicating that periodontitis had more active

immune processes (Figure 7A). NEFL and NSG1 were

negatively correlated with the 14 immune function scores,

while other biomarkers were positively correlated (Figure 7B).

The results suggested that NEFL and NSG1 may be negative

immune regulators in periodontitis, while other biomarkers may

be active immune regulators.

Identification of immune characteristics in
periodontitis subgroups

Patients with periodontitis were classified using consensus

clustering to gain better insight into the roles of biomarkers in

disease development. The results suggested that, when the

number of clusters (k) was 2, the periodontitis samples in the

consensus matrix obtained the best clustering, with the highest

intra-omic correlation and the least inter-omic interference

(Figures 8A–C). Therefore, we divided the periodontitis group

into two subgroups, defined as cluster A (n = 76) and cluster B

(n = 107). tSNE analysis further demonstrated a significant

distribution difference between the two subgroups

(Figure 8D). A heatmap revealed differences in biomarker

expression between the two subgroups, with active immune

genes highly expressed in cluster B (Figure 8E). Interestingly,

NSG1 and NEFL were again distributed differently from other

markers and more likely to be drivers of consensus clustering.

Furthermore, we observed alternations in immune infiltration
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between cluster A and B, and cluster B had a higher distribution

of immune cells (Figure 8F). Most immune activation,

inflammatory responses, human leukocyte antigens, and

immune checkpoints were also significantly enhanced in

cluster B (Figure 8G). These results suggested that cluster B

had high immune system activity, which may potentially benefit

from immunosuppressive therapy.

Discussion

Periodontitis is not only a common cause of severe tooth loss

but also a driver and direct manifestation of several diseases, such

as diabetes, cancer, cardiovascular disease, and rheumatoid

disease (Genco et al., 2020). Early diagnosis of periodontitis

can preserve teeth and chewing ability and significantly

improve patient outcomes. Periodontitis is determined by the

clinical status of the periodontal tissue and supplemented by

imaging features (Tonetti et al., 2018). However, the early

detection of periodontitis is unsatisfactory due to the

inevitable error in periodontal exploration using measurement

of clinical attachment. When using periodontal probing for

diagnosis, sustained clinical attachment loss must occur before

a site can be considered periodontitis. This approach is an

assessment of accumulated past disease and requires following

the patient for several years, which may miss the optimal timing

for early diagnosis and treatment (Korte et al., 2016). In addition,

imaging examinations based on alveolar bone loss are not specific

enough, and mild and moderate periodontitis is missed (Tonetti

et al., 2018). Therefore, objective and quantitative methods for

the early diagnosis of periodontitis are urgently needed.

Advances in machine learning have enabled the development

FIGURE 3
Figure 3, Functional enrichment analysis results. (A) Top five enriched GO terms in biological process (BP), cell components (CC), andmolecular
function (MF). (B) Top eight enriched GO terms difference in periodontitis. (C) Top 15 enriched KEGG signaling pathways. (D) Top eight enriched
KEGG pathways difference in periodontitis.
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of using biomarkers for disease diagnosis and prognosis (Duan

et al., 2022; Wu et al., 2022).

Papantonopoulos et al. first applied an ANN algorithm to

develop a classification model for chronic and aggressive

periodontitis based on immune parameters (Papantonopoulos

et al., 2014). Shimpi et al. analyzed five machine learning

methods, including RF and ANN, and developed a clinical

feature-based periodontitis risk assessment model (Shimpi

et al., 2020). The above two models can assist clinical

treatment decisions, but they are not useful for early

diagnosis. Furthermore, these studies focused on key

phenotypic characteristics, whereas the current study further

explored the diagnosis of periodontitis at the molecular level.

We also established larger discovery and validation cohorts to

ensure generalizability and accuracy of the biomarkers. Previous

literature suggested that combing multiple biomarkers can

improve model accuracy (Jin et al., 2020); therefore, we

constructed a model for periodontitis diagnosis with multiple

mRNA markers using two machine learning algorithms, RF

and ANN.

The present study first identified 153 DEGs between

periodontitis and healthy samples from the GEO dataset.

Gene enrichment analysis showed that these genes were

mainly involved in phagocytosis, humoral immune response,

immune response activation, neutrophil migration, cytokine

interaction, cell adhesion molecules, and the IL-17 signaling

pathway. These results suggested that the DEGs are actively

involved in inflammatory processes in periodontitis and may

be critical for its development. The RF classifier screened

34 potential markers and obtained 13 key periodontitis

biomarkers. We found that these key markers were associated

with periodontitis, immune cells, or apoptosis. CSF3, ICAM2,

and MMP7 serve as diagnostic and prognostic biomarkers for

periodontitis (Ji et al., 2022; Lundmark et al., 2017; Suzuki et al.,

2019). C3, C4A, and ENTPD1 are closely associated with

periodontitis severity and may regulate periodontitis

FIGURE 4
Screening periodontitis biomarkers by random forest. (A) The correlation plot between the RF trees number and error rate. The x-axis is the
number of trees, and the y-axis is the error rate of cross-validation. The red curve represents the treat group, the green curve represents the control
group, and the black curve represents all samples. (B) The Gini coefficient method in random forest modeling of the training cohort. The importance
index is on the x-axis, and the genetic variable is on the y-axis. (C) Heatmap of the 13 key periodontitis biomarkers.
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occurrence and development. C3 mediates Porphyromonas

gingivalis-induced periodontal inflammation and bone loss

(Maekawa et al., 2014). C4A encodes the classical

complement factor C4, and patients with C4 deficiency are

more prone to severe chronic periodontitis (Seppanen et al.,

2007). High expression of ENTPD1 (CD39) relieves the growth

inhibition of periodontal ligament cells by ATP (Kawase et al.,

2007). Furthermore, MME was upregulated, and the neuron-

related gene NEFL was downregulated in periodontitis

(Andriankaja et al., 2012; Kim et al., 2016). Periodontal

pathogens have been reported to cause neuroinflammation

and neurodegeneration in mice (Ilievski et al., 2018). In

addition, periodontitis was shown to significantly alter

neural consequences when comorbid with diabetes (Flores-

Tochihuitl et al., 2021). Therefore, we believe that the

decreased expression of NEFL may be due to neural

consequences caused by periodontal pathogens.

CRCR4, CXCL1, and SAA1 regulate immune cell

distribution and induce inflammatory cell recruitment in

periodontal diseases (Hirai et al., 2019; Kim et al., 2022;

Korbecki et al., 2022). The machine learning algorithms here

detected several recognized periodontitis biomarkers or

inflammatory factors, including C3, C4A, CRCR4, and

CXCL1, confirming the algorithms’ accuracy. Among the

13 periodontitis biomarkers, BTG2 and NSG1 were identified

for the first time. BTG2 and NSG1 play an important role in

apoptosis, and apoptosis is clearly involved in periodontitis and

can serve as a biomarker (Song et al., 2017). BTG2 regulates the

cell cycle and apoptosis and is involved in B cell and thymocyte

progenitor differentiation (Yuniati et al., 2019). NSG1 (NEEP21),

a p53 transcriptional target, plays an essential role in DNA

damage and apoptosis (Ohnishi et al., 2010). Finally, we

established an ANN diagnostic model for periodontitis based

on 13 key biomarkers. The model could reliably discriminate

FIGURE 5
Construction and evaluation of ANN diagnostic model. (A) The visualization of the artificial neural network. (B) ROC curves of the training
group. (C) ROC curves of the test group.
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between periodontitis and healthy samples (AUC ≥0.900) in

exclusive training and validation cohorts.

A growing body of studies has shown that different immune

cell infiltration is seen in the periodontitis inflammatory

microenvironment, which is crucial for its occurrence,

development, and treatment (Yang et al., 2021). We found

that the immune functions were upregulated in periodontitis,

suggesting that immunosuppressant administration is a potential

therapeutic strategy. The present study also showed that plasma

cells were the most predominant immune cells in periodontal

tissue and may play a dominant role in immune regulation.

Previous research has also confirmed this. Plasma cells account

for about 50% of the total leukocytes in periodontitis lesions and

mediate humoral immunity against periodontal pathogens

(Thorbert-Mros et al., 2015). When the balance between

microbiome invasion, host defense, and tissue regeneration is

upset, B cells and plasma cells induce pathological bone

resorption, resulting in insufficient bone tissue and ultimately

tooth loss (Zouali, 2017). A clinical trial has also shown that anti-

B cell depletion therapy significantly reduced clinical periodontal

inflammation and tissue destruction in patients with rheumatoid

arthritis (Harada et al., 2006). Interestingly, we found that 11 key

biomarkers were positively correlated with plasma cell and

immune function enrichment scores, suggesting that the

effects of these genes in periodontitis may be consistent with

the inflammation-promoting role of plasma cells. The expression

of these 11 biomarkers was also negatively correlated with T

follicular helper cells, M1 macrophages, and resting dendritic

cells, and these cells play complex roles in immune regulation in

periodontitis (Ebersole et al., 2021; Parisi et al., 2018; Song et al.,

2018). The immune-related results of NEFL and NSG1 differed

from those of the above 11 biomarkers, indicating that they may

play an inhibitory role or be negatively regulated in inflammatory

processes. However, more evidence is needed to identify the

FIGURE 6
Immune infiltration differences and correlations. (A) Violin plots of the 22 immunocytes differences between control and periodontitis groups.
(B) Correlation matrix of 13 key biomarkers and immunocytes distribution. *p < 0.05, **p < 0.01, ***p < 0.001.
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potential functional link between biomarkers and immune cells,

and the relevance of this association is currently unclear.

Furthermore, the inflammatory response in periodontitis may

alter immune cell distribution, and the expression of

biomarkers may be associated with this response. Thus, the

causal relationship between immune cell infiltration and

biomarker expression should be considered with care. Finally,

we performed unsupervised clustering to assess molecular patterns

in periodontitis, identifying two distinct molecular subgroups.

Immune infiltration analysis showed that cluster B exhibited

higher immune infiltration and stronger immune function.

Therefore, cluster B may have higher response rates to

immunosuppressant therapy and, ultimately, a better prognosis.

In the present study, we applied an innovative combination

of RF and ANN algorithms to the early diagnosis of periodontitis,

demonstrating excellent diagnostic performance in a large

cohort. Although DNA methylation biomarkers and miRNA-

based models for periodontitis classification have been

developed, these studies used small sample sizes and showed

modest performance (Jin et al., 2020; Wang et al., 2021). In

addition, we analyzed the association of key biomarkers with

inflammatory processes and explained the rationality of marker

selection. We believe that using biometric features and machine

learning is ideal for the early diagnosis and long-termmonitoring

of periodontitis. Point-of-care testing platforms based on saliva,

gingival crevicular fluid, subgingival samples, and subgingival

plaque have shown great potential in the diagnosis of

periodontitis. They are simple to operate, fast, and carry a

low-cost, allowing for easy screening for periodontitis. The

combination of machine learning and big-data analysis can

FIGURE 7
Immune functions differences and correlations. (A) Box plots of the 14 immune function differences between control and periodontitis groups.
(B) Correlation matrix of 13 key biomarkers and immune functions. *p < 0.05, **p < 0.01, ***p < 0.001.
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provide more accurate diagnoses and more effective treatments

(He et al., 2018). The development of microfluidic technology

also has broad application prospects in diagnosing periodontal

diseases and predicting periodontal treatment outcomes (Cafiero

et al., 2013).

The present study also had several limitations. First, the

model input data was provided by gingival tissue samples, and

tissue acquisition presents a challenge in clinical practice. Point-

of-care testing platforms and microfluidic technology may help

identify mRNA signatures in biopsy samples. Second,

mechanistic explanations of the correlations between some

biomarkers and periodontitis are lacking, and further

experimental studies are necessary. Third, a lack of clinical

information prevented further exploration of clusters A and B.

Furthermore, cellular-level characterization is required to

determine whether plasma cells were the predominant cell

population in our findings. Finally, more independent patient

cohorts should be used to evaluate the ANN classification

model’s performance. Our next step is to collect patient tissue

samples from an affiliated hospital for verification.

Conclusion

In summary, we constructed a new periodontitis

classification model using on machine learning algorithms,

demonstrating satisfactory performance in an independent

cohort. In addition, we comprehensively assessed the

association of key biomarkers with immune infiltration. We

believe that the diagnostic model and biomarkers discussed

here may shed new light on the exploration of mechanisms

and clinical diagnosis of periodontitis. However, it is noteworthy

FIGURE 8
Identification of molecular subgroups in periodontitis. (A) Consensus clustering matrix when k = 2. (B) The cumulative distribution function
(CDF) from k = 2 to 9. (C) Relative variation of the area under the CDF region at k = 2–9. (D) The t-SNE diagram for verifying the differences between
two modification subgroups. (E) Heatmap of 13 key biomarkers between two subgroups. (F,G) The differences in infiltrated immune cells and
functions. *p < 0.05, **p < 0.01, ***p < 0.001.
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that further experimental studies and independent patient

cohorts are warranted to validate the present results. (Cai and

Jiang, 2020), (Feres et al., 2018), (Nagashima et al., 2017) and

(Ravida et al., 2020)
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