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Objective: In order to predict the prognosis in patients with clear cell renal cell

carcinoma (ccRCC) so as to understand cancer lipid metabolism and sensitivity

to immune-targeting drugs, model algorithms were used to establish a risk

coefficient model of long non-coding RNAs (lncRNAs) associated with lipid

metabolism.

Methods: The transcriptome data were retrieved from TCGA, and lncRNAs

associated with lipid metabolism were obtained through Pearson correlation

and differential expression analyses. Differentially expressed lipid metabolism-

related lncRNAs and lipidmetabolism-related lncRNA pairs were obtained using

the R language software. The minimum absolute shrinkage method and the

selector operation regression method were used to construct the model and

draw the receiver operator characteristic curve. High-risk patients were

differentiated from low-risk patients through the cut-off value, and the

correlation analyses of the high-risk subgroup and low-risk subgroup were

performed.

Results: This research discovered that 25 pairs of lncRNAs were associated with

the lipid metabolism of ccRCC, and 12 of these pairs were utilized to build the

model. In combination with clinical data, the areas under the 1-, 3- and 5-year

survival curves of ccRCC patients were 0.809, 0.764 and 0.792, separately. The

cut-off value was used to perform subgroup analysis. The results showed that

high-risk patients had poor prognosis. The results of Coxmultivariate regressive

analyses revealed that age and risk score were independent prediction factors

of ccRCC prognosis. In addition, immune cell infiltration, the levels of gene

expression at immune checkpoints, and high-risk patients more susceptible to

sunitinib-targeted treatment were assessed by the risk model.

Conclusion: Our team identified new prognostic markers of ccRCC and

established risk models that could assess the prognosis of ccRCC patients
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and help determine which type of patients were more susceptible to sunitinib.

These discoveries are vital for the optimization of risk stratification and

personalized management.
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Introduction

Renal cell carcinoma (RCC) is one of the most commonly

seen malignancies of the urinary system, taking up 2%–3% of the

entire malignancies (Mao et al., 2021; Mondlane et al., 2021;

Turco et al., 2021). Recently, the prevalence of RCC has been

elevating. In China, the morbidity of RCC increased from

3.96 per 100,000 in 2005 to 9.47 per 100,000 in 2012, and the

incidence of RCC in all stages was elevated as well (Zhang et al.,

2021a; Kubiliute and Jarmalaite, 2021; Xu et al., 2021). ccRCC is

the most commonly seen histologic sub-type of RCC, taking up

75%–80% of all kidney cancer cases (Xiao and Meierhofer, 2019;

Christensen et al., 2021). Surgery is the main therapeutic method

for ccRCC, and the surgical resection of localized ccRCC usually

extends the progression-free survival and OS of sufferers (Curtis

et al., 2016). However, about 20%–30% of sufferers have

metastatic renal cell carcinoma at the time of diagnosis. In

addition, 30% of newly diagnosed locally advanced renal

cancer patients will suffer from metastases (Bindayi et al.,

2018). Even with the remarkable progress in diagnosis and

treatment strategies based on tyrosine kinase inhibitors and

target rapamycin inhibitors, clinical outcomes in patients with

renal cancer are still not satisfactory due to drug resistance and

side effects (Choueiri et al., 2015; Matrana et al., 2016). Hence, it

is vital to reveal the potential molecule-level causal link of

malignant ccRCC and develop new drug targets and

therapeutic strategies.

At present, more and more evidences show that kidney

cancer is a metabolic disease. This kind of metabolic

abnormality not only supports the synthesis of protein, lipid

and nucleic acid macromolecules, but also facilitates the

proliferative and invasive abilities of oncocytes (Wettersten

et al., 2017; Ma et al., 2021). The variations of lipid

metabolism, especially the synthetic membrane compositions

of fatty acid and cholesterol metabolism, are vital for tumor

occurrence, development, fatty acid, cholesterol in the cell lipid

metabolism is a flexible, feedback loops and crosstalk access

network, through the mutual adjustment metabolism of cancer

cells, to meet the increasing demand (Arendowski et al., 2021;

Zhang et al., 2021b).

With the development of biotechnology, the results of the

Human Genome Project show that less than 2% of the nucleic

acid sequence is used to encode proteins, and the rest part doesn’t

express proteins, which are called non-coding RNAs(ncRNA)

(He et al., 2021; Yip et al., 2021; Zhou et al., 2021). ncRNA was

originally thought to be transcriptional noise, but with the

advancement of researches, it is been discovered that ncRNA

is pivotal for normal development and disease progression (Bao

et al., 2021; Chen et al., 2021; Smolarz et al., 2021). ncRNAs

exceeding 200 nt are called lncRNAs. lncRNA can mediate gene

regulation by interacting with DNA, RNA or protein, and its

mechanism involves transcriptional regulation and post-

transcriptional regulation that affect the activity of genes

encoding proteins. It can directly combine with some proteins

to form nucleic acid protein complexes, which plays a regulatory

role by affecting the localization of proteins in cells, and it

involves multiple pathways closely related to cancer

development and progression, such as p53, NF-κB, PI3K/AKT
and Notch (Huang et al., 2021; Baumann, 2022; Reggiardo et al.,

2022). Nevertheless, there are insufficient researches on the

regulation of lipid metabolism by lncRNA in renal cancer.

Therefore, the present paper intends to establish a risk

coefficient model of lncRNA associated with lipid metabolism

through model algorithm, lncRNA pairing and iteration, so as to

forecast the prognoses of ccRCC sufferers and understand the

lipid metabolism and the sensitivity of targeted drugs.

Materials and methods

Data collection

We used the GDC DataTransfer Kit to acquire publicly

available transcriptomic data of ccRCC and paracancer

normal tissue from TCGA (https://cancergenome.nih.gov/)

(Tomczak et al., 2015), which involved 539 ccRCC specimens

and 72 paracancer normal tissue specimens. Next, our team used

Ensembl (http://asia.ensembl.org) (Yates et al., 2020) to

download the Gene Transfer Format (GTF) files to annotate

and differentiate the mRNAs and lncRNAs in transcriptome

data. The list of lipid metabolism-related genes was download

from the publicly available MSigDB database (Subramanian et al.

, 2005).

Analysis of differentially expressed lncRNA
correlated to lipid metabolism

Based on the coexpression correlative coefficient >0.7 and p <
0.001, the coexpression strategy and Pearson correlative analysis
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were utilized to obtain the lipid metabolism-associated lncRNAs.

Differentially expressed lncRNAs correlated to lipid metabolism

were selected by using the limma package of the R language

software, and we set the parameters as |logFold Change| > 1.0 and

FDR <0.05 (Ritchie et al., 2015). In addition, the visualization of

the obtained lncRNAs was realized by using a HeatMap package.

Construction of lncRNA pairs associated
with lipid metabolism

Multiple rounds of pairing were utilized to identify

differentially expressed lncRNAs correlated with lipid

metabolism, and we took the parameter value 0 or 1 as the

definition value and α as the parametric value. When the

expressing level of lncRNA 1 was higher in contrast to

lncRNA 2 in the lipid metabolism-associated lncRNA pairs,

the α value of the lncRNA pair was 1. Otherwise, the value of

α was 0. When the ratio of lncRNA associated with lipid

metabolism to α value (0 or 1) was less than 80% in all

samples, the lncRNA pairs associated with lipid metabolism

were effectively matched. Otherwise, rematch was required.

Clinical data acquisition and model
establishment

Firstly, our team acquired clinical data of ccRCC from

TCGA, and afterwards we paired lncRNA associated with

lipid metabolism in the previous step via the limma package

from the R program. Afterwards, the intersection was taken,

while duplicate clinical information without follow up time was

removed. Univariate regressive analyses were completed for the

preliminarily obtained lipid metabolism-related lncRNA pairs to

identify the lipid metabolism-related lncRNA pairs associated

with survival status. p < 0.01 was the threshold of significance.

In order to avoid overfitting, we used the glmnet package to

complete the second crossvalidation of lipid metabolism-related

lncRNA pairs obtained from LASSO regression analysis

(Engebretsen and Bohlin, 2019), and a 1000-repeat random

cycle was finished, and the lipid metabolism-related lncRNA

pairs with a matching frequency of over 100 times with p < 0.05.

The optimal pairing combinations were selected to obtain the

lipid metabolism-related lncRNA pairs involved in the

construction of the Cox risk coefficient model. Cox

univariable and multivariable models were constructed to

determine the risk coefficients of each lipid metabolism-

related lncRNA pair associated with outcomes and determine

the risk score of every cancer specimen. The overall risk score for

every specimen equalled the expression level of each lipid

metabolism-associated lncRNA pair in the specimen

multiplied by the sum of risk factors. The equation is as follows:

Risk Score � ∑n

i�1Risk coef f icient × lipid metabolism

− related lncRNA Expression

We visualized the Cox analysis outcomes with the survminer

and survival packages in the R program.

ROC curve was established by risk
coefficient model

We used the survival ROC package of the R program to

construct the 1-, 3-, and 5-year ROC curves, and AUC

values were computed to identify the model-forecasted

values. Our team discovered that the AUC value at 1 year

was the largest. Finding the threshold at which the sum of

specificity and sensitivity maximizes as per the AIC best fit

makes it probable to differentiate riskhigh and risklow
sufferers.

Risk coefficientmodel was used to analyze
clinical correlation

We used the survival and survminer packages of the R

program to contrast survival diversities between riskhigh and

risklow sufferers, and p < 0.001 had significance on statistics.

The Kaplan-Meier (K-M) method was utilized to realize data

visualization. Chi-square test was employed to study the

correlation between risk score and the acquired clinical

indexes (survival, age, gender, tumor grade, tumor stage,

T, N, and M stage). Wilcoxon rank-sum test was utilized

to reveal the correlation between risk score and diverse

subgroups of clinical indicators. We used the limma and

ggpubr packages of the R program to realize data

visualization. For the sake of identifying if risk score can

be utilized as an independent prediction factor for ccRCC

sufferers, our team completed Cox univariable and

multivariable regressive analyses of risk score and clinical

indexes, and evaluated relevant hazard ratios. With p <
0.05 as the discrimination standard, the survival package

of the R program was utilized realize data visualization. To

contrast the accurateness of risk score and clinical indexes in

forecasting OS and results, ROC curves acquired in the 1-year

follow up were contrasted with ROC curves of clinical indexes

in the identical curve.

Association analyses of immune cells

To reveal the association better risky factor score and

immune cell infiltration, the immune cell infiltration data of

ccRCC sufferers in TCGA were computed as per CIBERSORT

Frontiers in Genetics frontiersin.org03

Qu et al. 10.3389/fgene.2022.1040421

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1040421


FIGURE 1
The process flow of the present research.
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(http://cibersort.stanford.edu/), TIMER 2.0 (http://timer.

cistrome.org/), QUANTISEQ (http://icbi.at/quantiseq),

Micro-environment Cell Populations-counter, EPIC

(http://epic.gfellerlab.org), and XCELL (http://xCell.ucsf.

edu/). Our team utilized limma, scales, ggplot2, and ggtext

packages of the R program to study the association between

immune cell infiltration data and risk coefficient score, and

visualized the bubble map with p < 0.05 as the discriminant

standard.

Association analyses of genes

Our team discovered that the expression levels of CD274,

CTLA4, LAG3, LGALS9, PDCD1, PDCD1LG2, HAVCR2 and

TIGIT were high in ccRCC. To identify if those genes differ

between riskhigh and risklow sufferers, we analyzed and visualized

the data using violin diagrams via the limma and GGpubr

packages of the R program.

Association analyses of target drugs

In order to confirmed if there is diversity in reaction to

targeted drugs between riskhigh and risklow sufferers, the drug’s

semi-inhibition rate (IC50) was utilized as an indicator of drug

sensitivity. In addition, we analyzed and visualized the through

the limma, ggpubr, ggplot, and pRRophetic packages.

Results

Figure 1 provides the process flow of the present research.

Differential expression analysis of lncRNAs
associated with lipid metabolism in ccRCC

Transcriptome and lipid metabolism information of ccRCC

was acquired from the TCGA data base. We annotated and

FIGURE 2
DE analysis of lncRNAs associated with lipid metabolism in ccRCC. (A) Heatmap of differentially expressed lipid metabolism lncRNAs. The red
color denotes upregulation, and blue color denotes downregulation. (B) Volcanic map of differentially expressed lipid metabolism lncRNAs. Red
dots: upward regulation with remarkable differential expression; green dots: downward regulation with remarkable differential expression; black
dots: no remarkable diversity. (C) Elucidation of LASSO coefficient profling of those prognosis-related lipidmetabolism lncRNAs. (D) Verification
of tuning parameter selection for LASSO regressive model. (E) Univariable cox regressive analysis of the aberrantly regulated lipid metabolism-
associated lncRNAs which might remarkably influence the OS of ccRCC sufferers. Red: risky factor; Green: protection factor. (F) Multivariable Cox
regressive analysis of promising prognosis lipid metabolism-associated lncRNAs.
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TABLE 1 Lipid metabolism-related lncRNAs acquired posterior to differential expression analyses.

lncRNA conMean treatMean logFC p-value FDR

AC067817.2 0.250253 0.993011 1.988419 3.68E-11 4.97E-11

AC104984.5 3.682574 0.462925 −2.99186 3.54E-38 6.55E-37

PTOV1-AS2 0.642868 2.771483 2.108063 1.53E-18 3.78E-18

AC020913.3 0.074073 0.617973 3.060524 1.27E-13 1.98E-13

AD001527.1 0.127594 0.576004 2.174521 4.91E-13 7.11E-13

AC009509.5 0.625893 1.369603 1.12977 3.24E-15 5.81E-15

AL139287.1 2.075307 5.486949 1.40268 2.36E-14 3.95E-14

AC093001.1 0.011144 0.96597 6.437666 2.11E-10 2.79E-10

AC103563.7 5.173696 0.597978 −3.11303 1.51E-36 1.47E-35

HMGA1P4 0.423841 0.952361 1.167984 0.000449 0.000503

AL022328.1 0.488095 1.278296 1.388989 3.64E-15 6.40E-15

PRDM16-DT 13.2686 0.316472 −5.3898 2.97E-40 1.10E-38

AC009090.1 0.253848 0.813873 1.680838 3.89E-14 6.27E-14

AL049555.1 3.540425 0.370258 −3.25732 5.29E-36 4.51E-35

AL021707.7 0.12328 0.576657 2.225772 5.35E-17 1.06E-16

AC007637.1 2.486031 1.112996 −1.1594 1.88E-21 6.31E-21

C1RL-AS1 1.378692 4.238105 1.620119 1.84E-21 6.31E-21

LINC01230 2.447813 0.748823 −1.7088 2.60E-39 5.77E-38

FOXC2-AS1 0.099379 0.724179 2.865338 9.22E-13 1.31E-12

AL031846.2 0.165473 0.609877 1.881926 2.26E-19 5.97E-19

AC015845.2 1.708304 0.836163 −1.03071 1.83E-31 1.13E-30

RUSC1-AS1 0.482382 1.460942 1.59865 1.31E-16 2.50E-16

AL162274.2 0.75212 1.582993 1.073619 1.05E-14 1.79E-14

AC112491.1 0.3593 1.37393 1.935047 3.83E-21 1.22E-20

AL031710.1 10.23424 1.697658 −2.59179 5.68E-33 4.20E-32

AC005253.1 0.241345 0.827065 1.776902 4.04E-20 1.18E-19

AC008735.2 0.609316 3.23721 2.409489 7.61E-20 2.11E-19

MCF2L-AS1 2.411878 0.498238 −2.27525 1.59E-36 1.47E-35

XIST 0.997847 3.059421 1.616367 4.48E-08 5.52E-08

AL662844.3 0.115057 0.989206 3.103922 2.20E-28 1.16E-27

IGFL2-AS1 0.021451 0.82744 5.269534 2.01E-07 2.43E-07

Z99572.1 1.842449 0.321199 −2.52009 1.21E-37 1.92E-36

AL135999.1 0.211246 0.893069 2.079847 7.64E-17 1.49E-16

AP000757.1 8.871118 1.183178 −2.90645 1.56E-36 1.47E-35

STAG3L5P-PVRIG2P-PILRB 0.259378 0.989455 1.931579 1.11E-18 2.88E-18

AC104564.3 0.177313 0.780917 2.138872 7.16E-18 1.56E-17

(Continued on following page)
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TABLE 1 (Continued) Lipid metabolism-related lncRNAs acquired posterior to differential expression analyses.

lncRNA conMean treatMean logFC p-value FDR

AC010618.3 0.27074 0.61849 1.191841 4.93E-13 7.11E-13

AC004923.4 0.157851 0.649031 2.039724 3.03E-22 1.16E-21

AC018521.5 1.243989 0.579176 −1.1029 2.72E-32 1.89E-31

LENG8-AS1 1.052021 3.302749 1.650504 3.37E-22 1.25E-21

AC090589.3 0.409017 1.357323 1.73053 4.99E-20 1.42E-19

AL132989.1 0.684699 1.931372 1.496084 3.45E-13 5.18E-13

AC105020.5 0.289828 1.055408 1.864533 2.15E-21 7.02E-21

HCG27 0.202245 1.578451 2.964331 3.72E-32 2.43E-31

AC092119.2 0.153225 0.659499 2.105717 8.33E-15 1.45E-14

AC148477.4 5.974009 0.803678 −2.89401 2.37E-34 1.88E-33

AC010201.2 0.34136 1.024145 1.585056 1.02E-12 1.43E-12

AP006621.2 0.441335 1.854161 2.07082 3.74E-14 6.10E-14

LINC00174 0.635957 1.856051 1.545236 1.25E-17 2.66E-17

LINC01612 3.150561 0.338203 −3.21965 2.61E-46 2.89E-44

AP003392.1 0.517678 1.75965 1.765161 2.38E-14 3.95E-14

AL353152.1 2.991248 0.170474 −4.13313 2.50E-39 5.77E-38

AC007566.1 0.641806 2.095451 1.707051 6.93E-18 1.54E-17

AL035661.1 29.66428 2.555783 −3.53689 1.54E-36 1.47E-35

AC012615.6 0.180508 0.822616 2.188153 7.62E-23 3.02E-22

COLCA1 3.252071 1.055255 −1.62377 7.27E-28 3.67E-27

AC109460.2 0.216085 0.790539 1.87124 7.14E-16 1.32E-15

AC135050.3 0.160602 1.482247 3.206223 1.68E-30 9.31E-30

AC006435.2 0.201304 0.937788 2.219884 2.41E-15 4.39E-15

AC005519.1 0.195832 0.735491 1.90909 9.31E-14 1.48E-13

LINC01094 0.27725 1.963631 2.824262 6.62E-37 9.18E-36

AC130469.1 0.057492 0.584919 3.346804 2.14E-19 5.80E-19

ATP6V0E2-AS1 1.195025 0.498375 −1.26174 1.62E-26 7.82E-26

AC002550.2 0.41261 0.988443 1.260379 1.49E-18 3.76E-18

AC002553.1 0.484197 1.375798 1.506603 2.07E-18 5.00E-18

AC007292.1 0.441184 0.99715 1.176431 2.88E-13 4.39E-13

AC067852.3 0.16725 0.609204 1.864922 6.88E-18 1.54E-17

AC015849.3 0.466717 1.710936 1.874166 3.75E-20 1.12E-19

AC022400.6 0.224677 0.581952 1.37305 2.67E-16 5.02E-16

SCAT2 0.178514 0.607967 1.767957 4.71E-08 5.75E-08

LINC02585 0.269199 0.702718 1.384273 8.69E-11 1.16E-10

SPINT1-AS1 9.524573 3.958528 −1.26669 1.02E-30 5.98E-30

(Continued on following page)
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differentiated transcriptome data through the Ensembl data base.

A total of 111 lncRNAs related to lipid metabolism were

determined via Pearson correlative analyses, with coexpression

correlative coefficient >0.7 and p < 0.001 as the identification

standard (Supplementary Table S1). We adopted differential

expression analyses, with |log a FC| > 1.0 and FDR <0.05 being

the identification standards. Eventually, 75 differentially expressed

lipid metabolism lncRNAs were determined and our team used R

software to generate the gene heat map (Figure 2A). In ccRCC,

20 lncRNAs were regulated downward and 55 lncRNAs were

regulated upward (Figure 2B and Table 1).

lncRNA pairs and risk coefficient score
models related to lipid metabolism

By virtue of an iterative loop and 0-or-1 matrixes, 1,510

aberrantly regulated lipid metabolism-associated lncRNA pairs

were determined (Supplementary Table S2). As revealed in

univariable cox regressive analysis, 25 lncRNA pairs could

remarkably influence the OS of ccRCC patients. The aforesaid

pairs were selected via a LASSO modeling method (Figures 2C,

D). Consequently, 12 aberrantly regulated lipid metabolism-

associated lncRNA pairs such as AC067817.2|AD001527.1,

AD001527.1|COLCA1, AC093001.1|MCF2L-AS1, AL022328.1|

AC002553.1, PRDM16-DT|IGFL2-AS1, AC009090.1|AC092119.2,

AL031846.2|AC012615.6, AC015845.2|AC022400.6, AL162274.2|

AC090589.3, AL031710.1|Z99572.1, AL662844.3|AC092119.2, and

AC012615.6|SCAT2 were put into this risk model. Cox univariable

regressive and Coxmultivariable regressive analyses were completed

on these 12 pairs of lipid metabolism-related lncRNAs (Figures 2E,

F), and the risk coefficients of each pair of lipid metabolism-related

lncRNA were acquired (Table 2).

Assessment of the prognosis prediction
ability of risk models

We used the above 12 pairs of prognostic lipid metabolism

lncRNAs to construct the patient’s 1-, 3-, and 5-year ROC

TABLE 1 (Continued) Lipid metabolism-related lncRNAs acquired posterior to differential expression analyses.

lncRNA conMean treatMean logFC p-value FDR

AL022328.2 0.6408 2.063639 1.687244 2.97E-17 6.23E-17

MIR200CHG 2.760587 0.476474 −2.53451 1.27E-41 7.06E-40

SNHG20 1.119142 2.61343 1.223552 3.19E-25 1.36E-24

Abbreviations: logFC, log fold change; FDR: false discovery rate.

TABLE 2 Analyses of regressive coefficients of 12 pairs of lipid metabolism-related lncRNAs to Cox associated with results.

lncRNA pairs Coefficient HR HR.95L HR.95H p-value

AC067817.2|AD001527.1 −0.40245 0.668677 0.479532 0.932428 0.017674

AD001527.1|COLCA1 0.454706 1.575711 1.124176 2.208608 0.008305

AC093001.1|MCF2L-AS1 0.602433 1.826557 1.335812 2.497592 0.000161

AL022328.1|AC002553.1 −0.4151 0.660275 0.464762 0.938035 0.020503

PRDM16-DT|IGFL2-AS1 −0.42025 0.656885 0.48153 0.896096 0.007993

AC009090.1|AC092119.2 −0.45111 0.636923 0.457398 0.886909 0.007576

AL031846.2|AC012615.6 −0.48138 0.617933 0.393264 0.970952 0.036814

AC015845.2|AC022400.6 −0.4714 0.624128 0.42308 0.920714 0.017483

AL162274.2|AC090589.3 −0.35901 0.69837 0.507372 0.961267 0.027645

AL031710.1|Z99572.1 −0.42583 0.65323 0.475359 0.897657 0.008647

AL662844.3|AC092119.2 −0.27368 0.760574 0.540994 1.069277 0.115351

AC012615.6|SCAT2 −0.44327 0.641931 0.446515 0.922871 0.016696

Abbreviations: HR, hazard ratio; HR.95L: 95% CI, lower limit; HR.95H: 95% CI, upper limit.
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curves (Figure 3A), and discovered that the 1-year AUC was the

largest (0.809) (Figure 3B). The 3- and 5-year AUC were

0.764 and 0.792, separately, which exhibited prediction

ability as well. According to the optimum fit, the cutoff

value to distinguish riskhigh and risklow sufferers was 1.468

(Figure 3C). We performed Cox univariable and

multivariable regressive analyses on risk score and clinical

indexes. Subsequently, by using the survival package of the R

program, we visualized the data and drew the forest map

(Figures 3D, E). In Cox univariate analysis, our team

discovered that age, tumor grade, tumor stage, TNM stage

and risk coefficient score were correlated with prognosis,

while in Cox multivariable analyses, age and risk coefficient

score were independent prognostic factors. The ROC curves for

clinical indicators were compared with the 1-year risk

coefficient score in the identical chart (Figure 3F). The

results showed that risk coefficient score (AUC = 0.809) and

tumor stage (AUC = 0.868) exhibited the greatest prediction

ability.

Risk models were used to analyze the
correlation of clinical indicators

We used the R program to study the association between risk

coefficient score and ccRCC in the risk sub-group of sufferers

(Figure 4A). As per the time process, the association between the

survival status of ccRCC patients and risk coefficient score was

acquired (Figure 4B), and a K-M curve was established on the

foundation of the OS of riskhigh and risklow sufferers (Figure 4C).

The survival rate in risklow sufferers was remarkably better in

contrast to riskhigh sufferers (p < 0.001).

The heat map in Figure 5A depicts the relation between risk

score levels and clinical indexes. The result showed that age (p <
0.05), OS of ccRCC sufferers (p < 0.05), tumor grade (p < 0.05), M

stage (p < 0.05), tumor stage (p < 0.05), T stage (p < 0.05), and N

stage (p < 0.05) were significantly correlated with risk coefficient

score.We can see from the box graph that the mortality of riskhigh
sufferers is greater (Figure 5D). In addition, age (Figure 5B),

tumor grade (Figure 5E), M stage (Figure 5F), N stage

FIGURE 3
The assession of the prognosis prediction ability of risk models. (A) The 1-, 3- and 5-year ROC curves. (B)One-year ROC curve withmaximal
AUC result acquired based on the modeling method. (C) The cutoff value of 1.468 distinguishing riskhigh and risklow sufferers was acquired
through the best fit. (D) Univariable cox regressive analysis of the associations of clinical-related indicators and risk score with the prognoses of
ccRCC. (E)Multivariable cox regressive analysis of the associations of clinical-related indicators and risk score with the prognoses of ccRCC.
(F) Comparison of the AUC values of clinical indicators and risk scores.
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(Figure 5G), tumor clinical stage (Figure 5H), and T stage

(Figure 5I) were higher as well, while gender was not

remarkably associated with risk coefficient score (Figure 5C).

Association analyses of risk coefficient
model and immune cell infiltration

Our team assessed the percentage of immune cells in

specimens from these ccRCC patients via XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT, based on marker genes and deconvolution

algorithms. Meanwhile, the association between the risk

coefficient model and infiltrating immunocytes was analyzed

through the Pearson correlation test, and the screening criterion

was p < 0.05. Data visualization was completed via the R program

(Figure 6). The results indicated that the specimens from riskhigh
sufferers were positively related to NK cells, regulatory T cells and

M1 macrophages infiltration in ccRCC, and related to neutrophil

infiltration in a negative manner.

Association analyses of risk coefficient
model and genes

Targeted immune treatment is one of the most commonly

used methods for treating ccRCC. In addition, our team

investigated the relation between risk coefficient models and

genes, and the result showed that amongst riskhigh sufferers, the

expressing levels of CTLA4 (p < 0.001; Figure 7B), LAG3 (p <
0.001; Figure 7C), LGALS9 (p < 0.001; Figure 7D), PDCD1 (p <
0.001; Figure 7E), and TIGIT (p < 0.001; Figure 7G) were elevated.

The expressing levels of CD274 (p > 0.05; Figure 7A), PDCD1LG2

(p > 0.05; Figure 7F), and HAVCR2 (p > 0.05; Figure 7H) were

slightly elevated. These genes may become potential novel

diagnosis and treatment targets for ccRCC.

Association analysis of risk coefficient
model and targeted treatment medicines

Target treatment is the first-line therapy for advanced ccRCC

sufferers. The collection of risk coefficient score model and drug

susceptibility of target treatment was analyzed. The curative

effect of drugs was assessed through IC50. The lower the

IC50, the higher the sensitivity of drugs. The result showed

that riskhigh sufferers were related to greater susceptibility to

sunitinib (Figure 8E), which displayed statistical significance (p =

2.4e-10), while the sensitivity to axitinib (p = 0.66; Figure 8A),

bevacizumab (p = 0.66; Figure 8B), pazopanib (p = 0.66;

Figure 8C), and sorafenib (p = 0.5; Figure 8D) was not

significantly different in riskhigh and risklow sufferers.

Discussion

lncRNAs are non-coding RNAs that lack meaningful open

reading frames and do not translate proteins, and their length is

FIGURE 4
Correlation analysis of risk models and clinical indicators. (A) Computation of the risk score of every sufferer, so as to distinguish riskhigh and
risklow sufferers as per the threshold. (B) Scatter plot of risk score and result for every sufferer. Red: high risk; Green: low risk. (C) K-M curve of OS
between riskhigh and risklow sufferers.
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usually more than 200 nucleotide (Winkle et al., 2021). A large

number of lncRNAs are transcribed by RNA polymerase Ⅱ and

usually contain a poly adenosine tail structure with a complex

spatial architecture (Liu et al., 2021). lncRNAs are widely

distributed in the nucleus and cytoplasm, mostly expressed

in the nucleus, and their surface is characterized by histological

heterotropy (Li et al., 2021). Studies have shown that lncRNAs

extensively participate in cell biological processes and regulate

gene expression at multiple levels, including pre-transcription

and post-transcription levels (Munteanu et al., 2021). lncRNAs

have various biological functions, and their abnormal

expressions are tightly associated with embryonic

development and diseases, especially tumors (Ghafouri-Fard

et al., 2021).

Recently, substantial researches have suggested that

metabolic factors, such as obesity, dyslipidemia, and

abnormal local lipid metabolism of tumors, are related to the

onset and developmental process of RCC, especially the

correlation between metabolic factors and the classification

of renal clear cell carcinoma (Zhao et al., 2016; Lucarelli

et al., 2020; Bobulescu et al., 2021). In previously finished

researches, lncRNA-associated models of ccRCC were

established as per the expressing levels of transcriptomic

data. Herein, lipid metabolism-associated lncRNA pairs were

used to establish a risk coefficient model to evaluate the

prognosis of ccRCC sufferers, rather than according to the

expressing levels of lncRNAs. TCGA was first utilized to obtain

lncRNA and gene data related to lipid metabolism in ccRCC

FIGURE 5
Collection of prognostic lipid metabolism-associated lncRNA hallmark and clinicopathologic features of ccRCC. (A) Heat maps of
clinicopathologic features: survival status, age, gender, grade, stage, T, N and M in riskhigh and risklow sufferers. *p < 0.05; **p < 0.01; ***p < 0.001.
Comparison of risk score in diverse clinicopathologic features: (B) age≤ 65 and> 65. (C) gender. (D) survival status (0: dead; 1: alive). (E) grade. (F)M.
(G) N. (H) stage. (I) T.
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patients, and afterwards the R program was used to determine

lncRNA associated with lipid metabolism. Subsequently, the

differential expression of ccRCC and healthy neighboring

specimens was analyzed to obtain the pairs of lncRNAs

associated with lipid metabolism. Cox univariable analyses,

multivariable regressive analyses and LASSO regressive

analyses were used to obtain the risk coefficients of ccRCC

patients in every specimen and establish the risk coefficient

model. Based on the ROC curve, our team discovered that the 1-

year AUC was the largest, and Akaike Information Criterion

(AIC) was utilized to optimize fitting to acquire the cutoff value

so as to distinguish riskhigh and risklow sufferers. The results of

survival analyses of riskhigh and risklow sufferers revealed that

the OS of risklow sufferers was remarkably better in contrast to

riskhigh sufferers (p < 0.001).

In addition, our team assessed the relationship between risk

coefficient score and clinical indicators for every specimen. Cox

multivariate regressive analyses showed that age and risk

coefficient score were independent prediction factors of

prognosis. At the same time, ROC curves of clinical indexes

were drawn to compare the ROC curves of 1-year risk factor

scores in the identical chart. Our team discovered that 1-year risk

factor score and were the optimum prediction factors of ccRCC,

which revealed the dependability of our modeling method. There

are also several models related to lipid metabolism. For example,

Lu et al. (2022). have built a prognosis signature of lipid

metabolism-related lncRNA in cervical cancer. The results

showed that such lipid metabolism-related lncRNA model

could facilitate the generation of new potential therapeutic

targets for cervical cancer patients in clinical treatment and

FIGURE 6
Relationship of risk score and immune cell infiltrations of ccRCC samples via: XCELL; TIMER; QUANTISEQ; MCPCOUNTER; EPIC; CIBERSORT-
ABS and CIBERSORT.
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FIGURE 7
Associations between risk model and genes in ccRCC. Comparison of the expressing levels of (A) CD274. (B) CTLA4. (C) LAG3. (D) LGALS9.
(E) PDCD1. (F) PDCD1LG2. (G) TIGIT. (H) HAVCR2. Ns: not signifcant; *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 8
Associations between risk model and the susceptibility to chemomedicines. Comparison of the IC50 results of (A) axitinib. (B) bevacizumab.
(C) pazopanib. (D) sorafenib and (E) sunitinib in riskhigh and risklow sufferers.
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improve personalized treatment strategies, but the model was

based on a single lncRNA rather than lncRNA pairs. Wang et al.

(2022). built a model of metabolism-related lncRNA in

hepatocellular carcinoma. They determined the prognosis

features of nine characteristic lipid metabolism-related

lncRNAs through research and verified the accurate type and

reliability of the model through ROC, DCA and nomograph. The

results showed that the prognostic model could help clinicians to

provide personalized treatment strategies, however, their study

did not analyze immune cell infiltration, immune checkpoint and

drug prediction.

Our team utilized XCELL, TIMER, QUANTISEQ,

MCPCOUNTER, EPIC, CIBERSORT-ABS, and CIBERSORT

along with other methods to study the association between

risky factor score and the data of immune cell infiltration, and

correlation analysis was conducted as well. We discovered higher

infiltration levels of NK cells, regulatory T cells, and

M1 macrophages in riskhigh sufferers.

It has been found that pD-L1+NK cells infiltrating tumor

tissue are highly expressed in ccRCC sufferers. In addition, the

results of in vitro cell experiments showed that NK cells could

significantly inhibit the proliferative ability of CD8+T cells. These

results suggested that NK tumor infiltration cells can weaken

immunoregulation function (Sierra et al., 2021).

In addition, our team studied the association between

immuno-checkpoint genes and the risk model of target

treatment medicines, and discovered that the expressing levels

of CTLA4, LAG3, LGALS9, PDCD1 and TIGIT were elevated in

riskhigh sufferers, while the expressing levels of CD274,

PDCD1LG2 and HAVCR2 were slightly increased. These

genes may become potential novel diagnosis and treatment

targets for ccRCC.

ccRCC is the most commonly seen kidney carcinoma, taking

up approximately 80 percent of all kidney cancers. About 30% of

clear cell carcinoma of kidney is already advanced at the time of

diagnosis, and about 10%–20% of early clear cell carcinoma will

relapse and migrate after treatment (Bi et al., 2021). Currently,

the therapy of advanced ccRCC is not satisfactory, and the 5-year

OS is merely about 11.7% (Bedke et al., 2021). With the

continuous development of various new drugs, the drug

therapy of advanced renal clear cell carcinoma has evolved

from the era of cell factors to the era of target medicines, and

the current era of new immunodrug therapy (Yin et al., 2021).

Targeted therapeutics, including vascular endothelial growth

factor (VEGF) suppressors and mammalian target of

rapamycin (mTOR), have been accepted due to the roles in

treating advanced ccRCC, and have become the standard

treatment (Zhang et al., 2021a). Recently, with the persistent

development of immuno-checkpoint inhibitors (ICIs), the roles

of ICIs in advanced ccRCC have been further confirmed, and it

has become a kind of drug therapy for advanced renal clear cell

carcinoma (Quhal et al., 2021). However, variations in the TME

of ccRCC might be related to the occurrence of ccRCC tolerance

to immunity-targeted medicines. Hence, sensitive medicines are

accepted as they can reduce the cost of treatment and decrease

the adverse effects of immunity-associated medicines. In the

present paper, our team discovered that riskhigh sufferers

evidently displayed more sensitivity to sunitinib in contrast to

risklow sufferers, while the sensitivity to axitinib, bevacizumab,

pazopanib, and sorafenib wasn’t remarkably diverse in riskhigh
and risklow sufferers.

Although we utilized strict approaches and arithmetics to

establish the model, this study still has some limitations. Firstly,

because the lncRNA expression profiles of ccRCC patients with

complete survival time are not available in public databases, this

study did not have an external validation to evaluate the

performance of the risk model. Therefore, it is necessary to

acquire more clinical information and larger sample size to

prove the dependability of the proposed risk coefficient

model. At the same time, according to the results of this

study, we believe that the risk coefficient model constructed

by lipid metabolism-related lncRNAs can be further extended to

other tumors and guide individualized treatment clinically.

Conclusion

In summary, we identified new prognostic markers and

established risk models for ccRCC, which could assess the

prognosis of ccRCC patients and help determine which type

of patients could be benefited from sunitinib. These discoveries

will offer novel enlightenment regarding the diagnoses and

therapies of ccRCC patients.
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