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Background: Androgen insensitivity syndrome (AIS) is an X-linked recessive

hereditary disease caused due to a reduced or absent function of the androgen

receptor (AR) protein encoded by the AR gene (OMIM-Gene# 313,700). Genetic

testing is important in the diagnosis, clinical management, and prevention of AIS

(MIM# 300,068). The AR (HGNC: 644) pathogenic variant detection rate ranges

from 65% to 95% for patients with complete AIS (CAIS) and 40%–45% for

patients with partial androgen insensitivity syndrome (PAIS). Identification of a

pathogenic mutation in the AR confirms the diagnosis of AIS, especially in the

milder forms that may have a phenotypic overlap with other disorders of sex

development. Improvement of the molecular diagnostic rate of AIS is urgently

required in clinical practice. We reported the results of the molecular diagnosis

of a patient with CAIS who failed previously in either the traditional Sanger

sequencing or next-generation sequencing (NGS). Using whole-exome

sequencing (WES) combined with a special polymerase chain reaction (PCR)

and deep sequencing, we successfully identified a pathogenic variant, a

hemizygous mutation (c.1395-1396insGA), in the GC-enriched and unstable

GCC repeat regions of the AR gene of the proband.
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Conclusion: The results may be advantageous for the improvement of the

detection rate of AIS, as well as other inherited disorders whose disease-causing

genes contain GC-enriched and unstable GCC repeat regions.
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Introduction

Androgen insensitivity syndrome (AIS) is the most

common cause of 46, XY disorders of sex development,

ranging from mild AIS (MAIS) and partial AIS (PAIS) to

complete AIS (CAIS) forms of androgen resistance (Liu et al.,

2022). CAIS is characterized by a female phenotype in a

genetically male (46, XY) individual, whereas PAIS ranges

from a predominantly female to predominantly male

phenotype, and MAIS patients have normal external male

genitalia, while they may suffer from infertility due to

defective spermatogenesis (Liu et al., 2022; Zhou et al.,

2022). Mutations of variable severity in the AR, the

X-linked gene encoding the androgen receptor, cause

different forms of AIS, with the total number of public

variants of 1,637, unique public DNA variants of 705,

individuals with public variants of 1,860, and hidden

variants of 47. The establishment of this database was

supported by the European Community’s Seventh

Framework Programme (FP7/2007-2013). The data were

updated on 26 September 2022 (https://databases.lovd.nl/

shared/genes/AR). About 65–95% of CAIS patients were

found to have an AR mutation (Ono et al., 2018). The

identification of a pathogenic mutation in the AR confirms

the diagnosis of AIS, especially in the milder forms, which

have a phenotypic overlap with other disorders of sex

development. Improvement of the molecular diagnostic rate

of AIS is essential in clinical practice.

The AR gene contains two polymorphic trinucleotide

repeat segments that encode polyglutamine and polyglycine

tracts in the N-terminal transactivation domain of its

protein. Expansion of the polyglutamine tracts from the

normal 9–34 repeats to the pathogenic 38–62 repeats

causes spinal and bulbar muscular atrophy (SBMA, also

known as Kennedy’s disease) (Grigorova et al., 2017). All

the three functional regions of the AR gene are likely to be

mutated. Most of the mutations occur in the LBD region,

with mutations in exons 5 and 7 as the most common

mutations, and the majority of the mutations in this

functional region may lead to CAIS. Partial deletion, point

mutation, nucleotide insertion, or deletion of the AR gene

can cause AIS, among which point mutation is the most

common phenomenon, and the deletion type only accounts

for 5–10% of AIS (Batista et al., 2018; Ono et al., 2018).

FIGURE 1
Patient’s pedigree. Proband (II-1) and two subsequent
aborted products II-2 and II-3, both with abnormal genitalia seen
during prenatal ultrasound and both with 46, XY karyotypes
(karyotypes not shown).

FIGURE 2
Patient’s female genitalia showing bilateral subcutaneous
masses indicated by white arrows.
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In the present study, we reported an interesting case of the

identification of a frameshift mutation in the AR GC-enriched and

GCC repeat regions of the AR gene in a patient with CAIS by whole-

exome sequencing (WES) combined with a specific polymerase

chain reaction (PCR) and deep sequencing.

Case presentation

A Chinese family with an X-linked recessive form of 46, XY

disorders of sex development (DSD) was admitted to the Clinic of

the Second Hospital of Hebei Medical University (Shijiazhuang,

FIGURE 3
Ultrasound of the bilateral subcutaneous masses in the genital area consistent with testes.

FIGURE 4
Karyotype of 46, XY in v (9), (p11q13).
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China; Figure 1). The proband (II-1) was a 9-year-old phenotypic

girl who had not had a menstrual period since childhood at the time

of her visit, which could be mainly due to the identification of a

bilateral labia subcutaneous mass at the age of 7 years. Physical

examination revealed the following findings: without the

development of both breasts and armpit hair, girlish vulva, and

without pubic hair distribution. The bilateral labia majora might

touch a bump of approximately 3 × 2 × 1 cm3 in size, which was soft

and could be pushed (Figure 2). A mass was found during a 2-year-

old inguinal hernia repair, while it was not treated. At the age of

9 years, ultrasound revealed a missing uterus with a subcutaneous

mass on both sides of the labia majora resembling an echo of the

gonads (Figure 3). Karyotype: 46 XY, V (9), (p11q13) (Figure 4). Sex

hormones: follicle-stimulating hormone (FSH): 4.61 mIU/ml,

luteinizing hormone (LH): 0.43 mIU/ml, estradiol (E2): 4.00 pg/

ml, progesterone (p): 0.11 ng/ml, testosterone (T): 0.54 ng/ml,

and serum prolactin (PRL): 4.23 ng/ml. Bilateral gonadectomy

was performed (Figure 5A). Pathology confirmed that the mass

was in the testicular tissue (Figure 5B). The definitive diagnosis was

CAIS. Genetic tests on the proband and her parents did not reveal

any abnormality. The proband’s mother later had two pregnancies

(Figure 1II2II3), and the fetus was diagnosed with AIS by

amniocentesis and choriocentesis at 20 and 16 weeks of

pregnancy, respectively. The karyotype of the fetus was 46, XY,

and ultrasound showed that the external genitalia of the fetus were

female. The two fetuses were eventually induced into labor. Prenatal

diagnosis of the two adverse pregnancies was confirmed. All exons of

the AR gene were sequenced for the amniotic fluid (II4) of the first

pregnancy by a well-known molecular diagnostic laboratory in

China. However, no pathogenic gene mutations were found. For

the second pregnancy, the same test was performed at another

better-known molecular diagnostic laboratory. They still did not

detect any disease-causing mutation.

In order to find out the causes of multiple bad pregnancies in

the mother, WES of the AR gene for the proband was carried out

by the PCR and Sanger sequencing, and this experiment was

performed in a prenatal diagnosis hospital of Hunan province in

China (the name of hospital was not mentioned here); however, a

negative result was achieved. The results of Sanger sequencing

were checked, in which between the 1,370 and 1,410 bp of exon 1,

the stray peaks began to appear and the structure of the PCR

product was no longer singular. Then, we continued to perform

WES with next-generation sequencing (NGS). As the two

abortions of pregnancy were not carried out in another

hospital, no fetal tissue sample was available for our testing.

The experiment was performed in Genergy Biotechnology Co.,

Ltd. (Shanghai, China).

Materials and methods

DNA extraction and targeted exome
sequencing

Samples were collected with written informed consent, in

which the study was approved by an Institutional Review

FIGURE 5
(A) It can be seen that the subcutaneous elliptical soft tissue of the bilateral labiamajora is like a gonad, and the section is fish-like. (B) Pathology:
testicular tissue and vas deferens on the left and testicular tissue on the right (magnification, ×2010).
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Board, and the study was performed in accordance with the

principles of the Declaration of the Helsinki. Genomic DNA

was extracted from whole-blood samples obtained from the

proband and her mother. WES was performed for the proband

on exon targets isolated using the Twist Human Core Exome

Enrichment system (Twist Bioscience, South San Francisco,

CA, United States), and sequence capture, enrichment, and

elution were performed, according to manufacturer’s

instructions (Twist Bioscience), without modification except

for library preparation performed using the NEBNext Ultra II

kit (New England Biolabs, Ipswich, MA, United States). For

library preparation, 150 ng of each genomic DNA was

fragmented by sonication and purified to yield fragments of

150–200 bp. Paired-end adaptor oligonucleotides from the

NEB kit were ligated on repaired, a-tailed fragments and

were then purified and enriched by 10 PCR cycles. Next,

500 ng of the purified libraries was hybridized using the

Twist oligo probe capture library for 16 h in a singleplex

reaction. After hybridization, washing, and elution, the

eluted fraction was PCR-amplified with eight cycles, and

purified and quantified by Qubit and qPCR, in order to

obtain a sufficient DNA template for downstream

applications. The eluted-enriched DNA sample was then

sequenced on an Illumina NovaSeq system (Illumina Inc.,

San Diego, CA, United States) as 150-bp paired-end reads.

Image analysis and base calling were performed by Illumina

Real-Time Analysis software with default parameters. At least,

10 G raw data were obtained, with an exome depth of 100X.

Exome analysis

Sequence reads were mapped to the human genome build

(hg19) using the Burrows–Wheeler Aligner tool. The duplicate

reads were removed. Then, GATK and SAMtools were applied to

create a VCF file containing all the sites with potential variants.

The VCF file was filtered based on the two criteria: depth of

coverage and Fred score quality (DP > 4 -’QUAL >25). After
calling the list of variants, the ANNOVAR software was used to

annotate screened variations and connect the three annotation

modes, according to the type of gene, region, and filter. However,

no pathogenic variant or variant of uncertain significance (VUS)

was identified.

Manual check and reanalysis

We downloaded the original FASTQ and BAM files, then

manually checked the original BAM file with the SAMtools

command, and found a heterogeneous 2-bp insertion in the

GCC repeat region (Figure 6); however, only two reads contained

this insertion mutation, with a total of 10X coverage for this

FIGURE 6
Snapshot of the SAMtools tview command for the BAM file. It shows a 10X coverage in the target region, and two reads (indicated by arrows)
show a GA insertion in the GCC repeat region.
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region. Then, we reset the filter, with DP ≥ 2, regenerated the

VCF file, and finally found a heterogeneous frameshift mutation

(c.1395_1396insGA:p.G465fs) in exon 1 of the AR gene.

Special PCR and Sanger sequencing

Sanger sequencing was used to confirm the results (AR:

c.1395_1396insGA: p.G465fs) and to indicate whether the

mutation is inherited from the proband’s mother. Primers for

the target region of the AR variants were designed by Primer

3.0 online software (http://primer3.ut.ee/) based on the human

genome reference sequence and synthesized by Sangon Biotech

Co., Ltd. (Shanghai, China). A total of five pairs of primers were

designed and synthesized to amplify the DNA template; however,

only one works.

Forward primer: ACACTCTCTTCACAGCCGAA.

Reverse primer: CAAGTGGGACTGGGATAGGG.

Afterward, genomic DNAs of both the proband and her

mother were amplified with primer pairs, and the PCR products

were then sequenced by Sangon Biotech Co., Ltd. The data were

analyzed by Chromas 2.6.6 software.

Deep sequencing

The target mutation (AR: c.1395_1396insGA) for both

gDNA of the proband’s blood (marked sample A), mother’s

blood (marked sample B), and mother’s saliva (marked sample

C) was amplified using a specially designed primer, which

contained a target-specific sequence at the 3′-end, and a

sequence that is commonly used in subsequent clonal

amplification and sequencing reactions at the 5′-end.
First forward primer:

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

-ACACTCTCTTCACAGCCGAA.

First reverse primer:

GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-

CAAGTGGGACTGGGATAGGG.

For each sample, using the aforementioned primers, PCRwas

performed on 10–25 ng of genomic DNA via the High-Fidelity

PCR system (NEB) in standard thermocycling conditions on a

PTC-200 thermocycler. The amplified PCR product was purified

using Ampure XP beads. Subsequently, low-cycle amplification

was carried out to add the Illumina sequence adapters and

indices.

Nested forward primer:

AATGATACGGCGACCACCGAACAC [NNNNNNNN]

ACACTCTTTCCCTACACGACGCTCTTCCGATCT.

Nested reverse primer:

CAAGCAGAAGACGGCATACGAGAT [NNNNNNNN]

GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA.

[NNNNNNNN] represents 8-bp indices.

Afterward, these three amplicons were purified and

quantified and were subsequently normalized and pooled. The

pooled library was sequenced byMiSeq, using a PE300bp read kit

(Illumina Inc.). All samples were required to pass a quality

control step of 10000X coverage. Then, FASTQ files were

analyzed using a Python-based script.

Results

For the NGS sample, 11.7 Gbp of raw data were obtained by

WES, with a mean coverage of 141-fold. A negative result was

obtained under the routine analysis and the filter parameters. We

manually checked the BAM files, then reset the filter parameters,

and after reanalysis, a heterogeneous frameshift mutation in the

AR gene (exon1:c.1395_1396insGA:p.G465fs) was finally found

by filtering synonymous SNVs and 1000G (freq >0.01). This
mutation leads to a frameshift and generates a premature

termination codon. It is a pathogenic mutation according to

the American College of Medical Genetics and Genomics

(ACMG) standards. However, this mutation was of 2X

coverage and was marked as LOW QUAL.

The frameshift mutation was confirmed by Sanger

sequencing of the entire coding region using a specific PCR.

A total of more than five pairs of primers were designed and

tested; however, only one works; furthermore, only the reverse

Sanger sequencing results could be distinguished. The results

showed that the proband had a hemizygous mutation

(c.1395_1396insGA) (Figure 7). The insertion of GA occurred

between the eighth and ninth GCC repeats (Figure 6) and caused

the frameshift mutation, resulting in the truncation of the AR

protein and abolishing its function (Figure 8). However, her

mother was negative for this mutation by Sanger sequencing

(Figure 7). Furthermore, the results of Sanger sequencing

indicated that the number of GCC repeats in the AR gene of

the proband was significantly higher than that of her mother. The

mother had 15/16 heterozygous repeats, while the proband had

about 25 repeats.

Deep sequencing of the mother’s blood revealed that the

mother was a mosaic, with a proportion of the mutant less than

30%. In addition, the mother had 15/16/17 heterozygous GGC

repeats, while the proband had 24/25/26 repeats.

Discussion and conclusion

AIS is an X-linked recessive genetic disease. At present, it is

widely accepted that AIS is closely correlated with the

abnormality of the androgen receptor, which is caused by the

mutation of the androgen receptor gene (Poon et al., 2021).

Because of the completely feminized phenotype of CAIS, it is

difficult to diagnose and treat AIS patients as soon as possible

through clinical surgery; thus, genetic testing is particularly
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important. More than 50% of the relatives of CAIS patients may

have the same disease. Genetic testing can confirm a clinical

diagnosis, on one hand, and distinguish carriers on the other.

When a family has a patient with CAIS, identifying the type of

mutation and prenatal diagnosis is the only way to avoid birth

and reduce the risk of recurrence. Although different AIS-

associated AR mutations have been reported, providing

genetic counseling for patients with DSD or couples may

FIGURE 7
Capillary electrophoresis electropherogram of the AR gene revealed the existence of different mutations (red arrow): C.1395_1396insGA:
p.G465fs. Sanger sequencing peak map. The electropherogram at the top corresponds to the mother (I-2), while the bottom electropherogram
corresponds to the proband (II-1).

FIGURE 8
Insertion of the GA base leads to a frameshift mutation in the AR gene and stop codon mutation at codon 479 (TAG), resulting in a truncated
protein.
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remain challenging. Only few cases of AIS with the AR gene

mutations have been diagnosed prenatally.

This patient was diagnosed with CAIS when her mother was

in the second trimester of pregnancy. In order to avoid the birth

of children with AIS, we performed genetic testing in time, while

no abnormal mutation was found. Similarly, when the patient’s

mother became pregnant for the third time, the results of genetic

testing showed no abnormality. Regarding its rarity and being

under research, for the importance of early diagnosis and

treatment and how to diagnose genetic problems more clearly,

we attempted to share our cases.

Patients with theARmutationsmay present a genital phenotype

ranging from ambiguous genitalia in partial AIS (PAIS) to female

genitalia in CAIS (1). In terms of genetic counseling, most of the new

mutations in AIS patients are germline mutations; thus, they may

originate from a single germ cell or germ cell chimerism. In 70% of

the cases, mutations are germline mutations and are transmitted in

an X-linked manner through the carrier mothers. In about 30% of

the cases, mutations appear de novo in the patient. De novo

mutations may originate from the mother either in a single germ

cell or as a germ cell mosaicism and then, present as hemizygous

germline mutations in the 46, XY offspring (Farah et al., 2021).

Because the mother transmitted the mutation twice, germ cell

mosaicism could be assumed, while the germ cells of the mother

could not be profoundly studied.

The AR gene is located on the long arm of the X chromosome

(Xq11~12). The AR contains four domains: (I) the amino

terminal activation domain (NTD), (II) the DNA-binding

domain (DBD), (III) the hinge region (HR), and (IV) the

carboxyl ligand-binding domain (LBD) (4). AR exon

1 encodes the entire N-terminal domain (NTD) (a.a. 1–556),

which comprises the bulk of the AR and is the least conserved of

the four domains. To date, more than 500 mutations in the AR

have been described, including point mutations, frameshift

mutations leading to premature termination of transcription,

and gross deletions, as well as small deletions or insertions

scattered around the entire sequence of the gene (Gottlieb

et al., 2004; Birgit et al., 2005). Mutations in the AR gene are

mostly missense and enriched in the LBD of protein (Ono et al.,

2018), and about 65–95% of CAIS patients were found to have a

mutation in the AR gene because some deep intronic mutations

would be missed by the WES method (Känsäkoski et al., 2016).

In the present study, we found some mutations in exon regions

that were missed byWES. The exon 1 of the AR gene, the CDS from

1,370 to 1,420, is a GC-enriched region, which contains five GGT

repeats and 15 GGC repeats, coding 25% glycine, and this region is

hard to be disrupted in the fragment steps of the WES library

construction. Thus, this region is always associated with a low

coverage in WES, resulting in a negative result. Second, the

number of GGT or GGC repeats may increase, expanding as the

gene is passed from the mother to the child, and the PCR steps may

also cause the number of repeats to be unstable. In the present study,

we found that the number of proband’s GGC repeats was from 25 to

27; one side of the frameshift mutation included 15–16 GGC repeats

and caused a terrible mismapping (Figure 6), and these unstable

repeats might also cause great difficulty in the determination of the

results of Sanger sequencing, in which the GGC repeatsmaymislead

to a frameshift mutation.We tested several pairs of PCR primes, and

the stray peaks always appeared to disturb us to manually identify

this frameshift mutation in Sanger sequencing. In addition, the low

chimerical rate may also lead to a negative result of Sanger

sequencing (Figure 7). To eliminate these deficiencies, we used

WES combined with special PCR and deep sequencing, in order

to identify a hemisphere pathogenic frameshift mutation in the

proband, while her mother was a carrier with chimerical

reproduction. Furthermore, we also found that the GGC repeats

were 15/16 chimeric in themother, while there were 25/26 repeats in

the proband; however, no study has reported whether the increase in

the number of GCC repeats is correlated with the incidence of the

disease. These results perfectly explained the proband and the two

abnormal fetuses of her mother. The proband and her mother will

both benefit from these results, and the mother should pay attention

to prenatal diagnosis or the preimplantation genetic test (PGT-M) in

the next pregnancy. However, we did not achieve the specimens of

the induced labor, and hence, it could not be further verified.

In this study, when the AR gene mutation was passed on to

the next generation, the repetition number of the offspring

increased and GA insertion was introduced, resulting in a

frameshift mutation. The insertion or deletion of a single

nucleotide or a pair of nucleotides can lead to a reading frame

frameshift mutation, which often leads to protein truncation. The

purpose of Deping NGS is to verify that the mother is Sanger-

negative and speculates on possible reproductive chimerism

(rather than new mutations). The process of finding the cause

of the disease is difficult and bumpy, but this result explains the

cause of the disease in the family. More specific genetic

counseling is provided for mothers who are carriers. It has a

clear guiding significance for the second pregnancy. Efficient and

accurate gene detection can detect families with abnormal sexual

development and their genetic carriers as early as possible. In this

case, the family genetic analysis of AIS and prenatal diagnosis of a

high-risk fetus, combined with clinical data to indicate whether

the fetus is sick or not, are also of great significance to avoid the

recurrence of AIS in families (Birgit et al., 2005). When you

highly doubt the possibility of missed diagnosis in genetic testing,

you should boldly make a decision to retest and reanalyze. We

successfully identified a pathogenic variant, a hemizygous

mutation (c.1395-1396insGA), in the GC-rich and GCC

repeat region of the AR gene of the proband by WES

combined with the specific PCR and deep sequencing, and her

mother was a carrier with a germline mosaic. Because this

mutation is very special, with a high GC content, and it is a

GCC repeat region, it is difficult to accurately identify it by

Sanger sequencing. We conjectured the same frameshift

mutation that would be verified in these two induced

products with the same clinical features. Therefore, if the
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result of Sanger sequencing is negative, it should be retested with

NGS. Regrettably, the specimens are unavailable to us as the

procedures were performed at another hospital.

In conclusion, a case of AIS was diagnosed, while high-

throughput NGS or Sanger sequencing did not find pathogenic

mutations, which should be analyzed manually, especially

mutations that are hidden in repeat regions, such as GCC. Manual

analysis can compensate for the deficiency of high-throughput NGS.

For cases of suspected reproductive chimerism or cases where

pathogenic mutations in mothers cannot be found by Sanger

sequencing or high-throughput NGS, targeted, high-depth, NGS

can be considered for verification.
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Nomenclature

AIS androgen insensitivity syndrome

WES whole-exome sequencing

NGS next-generation sequencing
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