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Maize (Zea mays L.) is the most important food security crop worldwide.

Northern corn leaf blight (NCLB), caused by Exserohilum turcicum, severely

reduces production causing millions of dollars in losses worldwide. Therefore,

this study aimed to identify significant QTLs associated with NCLB by utilizing

next-generation sequencing-based bulked-segregant analysis (BSA). Parental

lines GML71 (resistant) and Gui A10341 (susceptible) were used to develop

segregating population F2. Two bulks with 30 plants each were further selected

from the segregating population for sequencing along with the parental lines.

High throughput sequencing data was used for BSA. We identified 10 QTLs on

Chr 1, Chr 2, Chr 3, andChr 5with 265 non-synonymous SNPs. Moreover, based

on annotation information, we identified 27 candidate genes in theQTL regions.

The candidate genes associated with disease resistance include AATP1,

At4g24790, STICHEL-like 2, BI O 3-BIO1, ZAR1, SECA2, ABCG25, LECRK54,

MKK7, MKK9, RLK902, and DEAD-box ATP-dependent RNA helicase. The

annotation information suggested their involvement in disease resistance-

related pathways, including protein phosphorylation, cytoplasmic vesicle,

protein serine/threonine kinase activity, and ATP binding pathways. Our

study provides a substantial addition to the available information regarding

QTLs associated with NCLB, and further functional verification of identified

candidate genes can broaden the scope of understanding the NCLB resistance

mechanism in maize.
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Introduction

Maize (Zea mays L.) is a significant food security crop worldwide, fulfilling human

and animal nutrition requirements (Tilman et al., 2011; Stevens and Madani, 2016; Cole

et al., 2018). The gradual increase in global population is rapidly impacting food demand,

as are the environmental impacts on crops (Tilman et al., 2011). China is among the
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leading maize producer and consumers, with a 21% share in

global maize production (Yang et al., 2019a). The adversities of

climate change tend to increase the intensity of both biotic and

abiotic factors influencing crop yield (Li et al., 2017; Vaughan

et al., 2018; Onyekachi et al., 2019). Maize is prone to multiple

pathogens inducing rust, northern corn leaf blight, southern corn

leaf blight, and leaf streak, which negatively affect photosynthesis

activities. Without effective disease management strategies, the

yield losses can reach about 70% (Romero, 2016). Moreover, host

resistance is considered an effective long-term control compared

to temporary chemical control with potential hazards of chemical

pollution (Johnson, 1981; Venter, 2007; Singh et al., 2016; Nazir

et al., 2021a).

Genetic control in crops can be categorized as qualitative and

quantitative resistance. Qualitative resistance is induced bymajor

resistance genes and is generally genotype-specific with less

durable resistance (Parlevliet, 2002; Darino et al., 2016;

Galiano-Carneiro and Miedaner, 2017). Several studies have

demonstrated the identification of key resistance genes against

rust and northern corn leaf blight inmaize, including Rp andHt1,

Ht2, Ht3, HtM, and HtN genes (Darino et al., 2016; Galiano-

Carneiro and Miedaner, 2017). The effectiveness of qualitative

resistance tends to decline with the rapid evolution of pathogens

(Ji et al., 2010). However, quantitative resistance controlled by

several genes is considered the most durable against biotic

stresses (Miedaner et al., 2020). Quantitative resistance is

predominant in maize, with durable resistance to several races

of pathogens (Wisser et al., 2006; Yang et al., 2017; Navarro et al.,

2021). Therefore, it is pertinent to explore the genetic variation

for effective disease control to attain sustainable crop production.

Northern corn leaf blight (NCLB) is a frequently occurring

disease in maize in humid temperate and tropical climates

(Ceballos et al., 1991). Minute chlorotic flecks generally

characterize NCLB initially, and grey-green elliptical lesions

form irregular areas of dead tissues at the mature stage (Wise,

2011). Exserohilum turcicum, a filamentous hemibiotrophic

fungus, is the causal pathogen for NCLB in maize (Wu et al.,

2014). Several studies have characterized the evolution and mode

of infection and the physiological impact of E. turcicum in maize

(Leonard and Suggs, 1974; Chung et al., 2010; Ohm et al., 2012;

Kotze et al., 2019; Silveira et al., 2019). A study by Wu et al., (Wu

et al., 2014), identified and characterized several miRNAs in

response to E. turcicum in maize. Similarly, another study by

Zang et al., (Zang et al., 2020), identified ERF transcriptions

factor regulating responses against E. turcicum in maize.

Moreover, ERF genes are involved in several critical pathways,

such as ethylene, salicylic acid, and jasmonic acid regulating

disease resistance (Xu et al., 2007; Xie et al., 2019).

Climate change, cultivation patterns, susceptible genotypes,

and strong pathogenicity of E. turcicum are the major reasons for

the increased occurrence of NCLB (Xia et al., 2020; Ma et al.,

2022). Improving genetic makeup to develop more resistant

cultivars is necessary to overcome food security challenges.

With the advancement in technology, several methods have

been extensively utilized to identify and characterize QTLs

(quantitative trait loci) associated with biotic and abiotic

phenomena. Moreover, next-generation sequencing

technologies have accelerated the conventional breeding for

robust identification of key biological regulators associated

with the specific trait (He et al., 2020; Nazir et al., 2020; Nazir

et al., 2021b). However, bulk segregant analysis (BSA) remains

popular for its effectiveness and robustness in identifying key

differences between two distinct characters (Karim et al., 2020).

The present study focused on the identification and

characterization of major QTLs associated with NCLB in

maize by utilizing a segregating population (F2) developed

from GML71 (resistant parent) and Gui A10341 (susceptible

parent). The genomic DNA from 30 plants of each category

resistant and susceptible (identified after inoculation) was pooled

for downstream analysis. QTLs with candidate genes related to

Corn spot resistance were identified and annotated by combining

the phenotype with genotype to provide a genetic basis for NCLB

disease in two contrasting parental genotypes using Next-

generation sequencing (NGS)-based bulked-segregant

analysis (BSA).

Materials and methods

Plant material

Segregating population F2 was developed using two parental

lines, GML71 and Gui A10341. GML71 is resistant to NCLB,

while Gui A10341 is highly susceptible to NCLB. In spring 2019,

two parental lines were planted in theMingyang base and crossed

to obtain F1 and sampled in two replicates to extract DNA during

the jointing period. In the autumn of 2019, F1 was planted, and

283 fruit ears were obtained. In the spring of 2020, F2 was planted

with a total of 283 individuals, and the disease resistance was

investigated after artificial inoculation of E. turcicum (Pass.)

LeonardetSuggs. Samples from 30 high-sensitive and

30 resistant lines were collected and bulked for each extreme

for resequencing and BSA (bulk segregant analysis).

Pathogenicity tests using colonized
sorghum grains as inoculum

White sorghum grains, soaked overnight in a 250 ml flask,

were used for inoculum preparation. After 24 h, water was

drained, and flasks were covered with cotton and aluminum

foils and autoclaved at 121°C. Spores of E. turcicum isolate

NGIB16-13 were harvested and adjusted to a concentration of

105 spores ml−1. Flasks containing the sterilized sorghum were

aseptically inoculated with 4 ml spore suspension and incubated

at room temperature for 5 days. After incubation, the colonized
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grains were stored in a refrigerator (4°C) and later used for the

inoculations.

The whorl of 21-day-old maize plants was inoculated with

three colonized sorghum grains and covered with clean nylon

bags for 48 h. Control plants were inoculated with sterile, non-

inoculated sorghum. Four plants from two pots were evaluated

for disease severity using the 1 to 9 (where 1 indicates no

occurrence of disease, and nine indicates 100% incidence of

disease) scale described earlier (Galiano-Carneiro et al., 2021).

DNA extraction, library construction, and
sequencing

Allele frequency estimates in BSA analysis depend on the

variation in segregant samples and sequencing technology. The

variation due to segregant samples can be minimized by either

increasing the number of segregants or bulk size (Magwene et al.,

2011). In this study, a total of 60 young leaves of F2 individuals

(30 from resistance and susceptible pool each) along with two

parental lines were collected, and genomic DNA was extracted

using the cetyltrimethylammonium bromide (CTAB) method.

The isolated DNA was quantified using a Qubit2.0 Fluorometer

(Thermo, CA, United States). Equal amounts of DNA from the

resistant and susceptible individuals were mixed to prepare the

resistant pool (named D3) and susceptible pool (named D4). The

DNA extracted from parental lines was also prepared for library

construction, named D1 (GML71) and D2 (Gui A10341). The

samples were sonicated to generate ~350-bp fragments using an

M220 instrument (Covaris, Woburn, MA, United States). Then

DNA fragments were end-polished, A-tailed, and ligated with the

adapter for PCR amplification (Lybaybio, Tianjin, China).

Finally, PCR products were purified and analyzed for size

distribution by an Agilent2100 Bioanalyzer and quantified

using real-time PCR. Libraries, after quality inspection, were

loaded onto an Illumina sequencing platform (Illumina, Inc., San

Diego, CA, United States) for Hiseq X10 PE150 sequencing.

Data processing and analysis

Sequencing data were aligned to previously published

genome B73 using BWA (Li, 2013). Before alignment, raw

data were processed for quality control by removing reads

with ≥10% unidentified nucleotides, Phred quality <5, and not

aligned >10reads. GATK pipeline was used for SNP calling (do

et al., 2016). The read-depth information for the SNP index was

estimated according to the method of Takagi et al. (Takagi et al.,

2013) using a sliding window. The difference in the SNP index of

the two pools was calculated as the delta SNP index.

We used some commonly used BSA analyses with multiple

testing using SNP-index, Euclidean Distance (ED) (de la Fuente

Cantó and Vigouroux, 2022), and G-statistics (Magwene et al.,

2011). If there is an apparent major QTL that controls the

corresponding trait, the significant effect intervals obtained by

each method should not differ much; If there is no apparent

major effect site, the results obtained by each analysis method

may be different. SNP index (ΔSNP) refers to the subtraction of

the alternate allele frequency value of the low bulk from the high

bulk (ΔSNP) (Takagi et al., 2013). G-statistics takes advantage of
a log-likelihood statistic LOD between allele frequencies (Zhang

et al., 2019), while Hill et al., predicted Euclidean distance (ED)

between two vectors defined by the frequencies of the alternate

and the reference alleles in the high and low bulks to identify the

region of interest (Hill et al., 2013). We estimated the overlapping

QTLs from each test for quality results, and only common QTLs

were carried out for further analysis.

Based on ΔSNP, G-statistics, and ED, we narrowed down the

candidate region associated with NCLB resistance, and to further

understand the genes in candidate regions; we conducted GO

enrichment analysis on genes (http://www.geneontology.org/).

Candidate gene identification and qRT-
PCR based verification

Candidate genes concerning NCLB were further screened

from each QTL interval using GO and KEGG enrichment

information. Candidate genes with GO terms associated with

disease resistance were subjected to qRT-PCR to check their

expression pattern in contrasting genotypes (resistant and

susceptible). Total RNA was extracted from fresh leaves and

roots using TRIzol® Plus RNA Purification Kit (Invitrogen, CA)

based on the manufacturer’s instructions. Approximately 1 μg

RNA was reversely synthesized into cDNA using the iScriptTM

Synthesis Kit (Quanta BioSciences, MD). The qRT-PCR was

carried out in an Eppendorf real-time PCR equipment using a

5 μl cDNA template (diluted 1/100), 5 μl primers (2.4 M), and

10 μl SYBR green mixture (Promega, Madison, WI). Histone

3 was used as the internal control, and the relative expression

levels of the ORP gene were calculated by the 2−ΔΔCt method

(Livak and Schmittgen, 2001).

Results

Genotyping and SNP filtering

To comprehend NCLB regulatory mechanisms in maize, we

utilized two advanced lines, GML71 and Gui A10341 (Mo et al.,

2019), to develop an F2 segregating population. GML71 is

resistant, while Gui A10341 is highly susceptible to NCLB

(Figure 1). The segregating population consisted of

283 individuals and was further categorized for both extremes,

i.e., resistant and susceptible. The bulked samples from both

resistant (D3) and susceptible (D4) groups, along with parental
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lines (GML71 as D1 and Gui A10341 as D2), were re-sequenced

using Hiseq x10 technology. A total of 37.56 Gb of clean data was

obtained, with 95.84% of reads showing an average score of

Q20 and 89.78% of the reads showing an average score of Q30

(Supplementary Table S1). The GC contents in D1, D2, D3, and

D4 were 47.94%, 47.98%, 55.82%, and 53.09%, respectively. The

sequenced samples were aligned to the reference genome B73.

The alignment details have been provided in Supplementary

Table S2.

BSA mapping

To explore and identify the molecular markers associated with

NCLB disease resistance in maize, SNP-indices of each locus in

D3 and D4 bulks were estimated using quality-filtered SNPs. The

high-quality SNPs were classified as having a quality score ≥100 with
a read depth ≥10. The average SNP-index in D3 and D4 bulks were

estimated using a 2-Mb genomic interval with 10-Kb sliding

windows. The Δ (SNP-index) between D3 and D4 bulks was also

estimated and plotted for all the chromosomes of the maize genome

(Figure 2). Similarly, Fisher’s exact test was also performed for the

D3 and D4 bulks at each SNP locus, and the average p-values for

SNPs located in each sliding window were calculated and log-

transformed (Figure 3). Moreover, Euclidean distance and G

statistics were also performed to further verify identified peak

signals, and both produced similar QTL detection plots (Figures

3B,C). G-statistics indicate the allelic effect on quantitative traits (de la

Fuente Cantó and Vigouroux, 2022).

Based on the Δ (SNP-index) statistics, we identified multiple

peaks on Chr 2, Chr 5, Chr 6, Chr 9, and Chr 11. However, the

most significant variation was observed on Chr 2 (Figure 2C).

Therefore, we considered regions on Chr 2 as a hotspot for NCLB

control in maize. To identify the significant QTLs and genes

present in the QTLs, we set criteria of 99% confidence interval

and identified a total of eight QTLs associated with D3 bulk on

Chr 1, 2, and 3 (Supplementary Table S3). We named these QTLs

as Q-Chr-number. For instance, Q2-1 denotes the first QTL

identified on Chr 2. Similarly, we identified two QTLs on Chr five

associated with D4 bulk (Supplementary Table S4). Q2-3, Q2-4,

and Q2-5 were identified with interval size greater than 24 Mb,

while the remaining QTLs were identified with less than 5.5 Mb

intervals. Detailed SNPs statistics have been provided in

Supplementary Tables S1, S2. Q1-1 spanned a 2.012 Mb

region on chromosome 1 starting from 3,05,020,001 to

307,041,717. The region contained 48 genes. Five QTLs Q2-1,

Q2-2, Q2-3, Q2-4, and Q2-5 were 5.45Mb, 3.09Mb, 24.01Mb,

85.19Mb, and 73.01Mb, respectively (Table 1).

FIGURE 1
Morphological description of parental lines (A) GML71 (Resistant) and (B) Gui A10341 (susceptible).
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Candidate genes and enrichment analysis

We further characterized each QTL and identified genes

residing in the QTL regions. A total of 48, 131, 74, 405, 716,

1844, 19, 36, 82, and 69 genes were identified in Q1-1, Q2-1,

Q2-2, Q2-3, Q2-4, Q2-5, Q3-1, Q3-2, Q5-1, and Q5-2,

respectively. The identified genes were further subjected to GO-

term ontology and KEGG pathways analysis (Supplementary

Figures S1, S2). GO terms, including Signal transduction,

hormone regulation, and pathogenesis, were enriched in D3 bulk

(Supplementary Figure S1), while phosphorylation, phosphorus

metabolic process, protein phosphorylation, and signal

transduction were enriched in D4 bulk (Supplementary Figure

S2). KEGG pathways enriched in D3 bulk were identified as

MAPK signaling, sulfur metabolism, ABC transporters, and

phenylalanine metabolism, while MAPK signaling, phosphonate

metabolism, signal transduction, and sugar metabolism were

enriched in D4 bulk. We identified 99,481 and 3,924 significant

SNPs in D3 and D4 bulk, respectively. The identified SNPs were

further screened for non-synonymous SNPs as candidate sites.

250 non-synonymous and frameshift SNPs were identified in

D3 bulk, and 15 non-synonymous SNPs were identified in D4 bulk.

After SNP screening, we identified 6, 6, 30, 52, 151, 2, 4, 11,

and 4 non-synonymous SNPs in Q2-1, Q2-2, Q2-3, Q2-4, Q2-5,

Q3-1, Q3-2, Q5-1, and Q5-2, respectively. ZmWAK-RLK1 gene

has been previously characterized for involvement in NCLB in

maize (Hurni et al., 2015; Yang et al., 2017; Yang et al., 2019b;

Yang et al., 2021a). The annotation information regarding

ZmWAK-RLK1 suggested involvement in several pathways,

including protein phosphorylation, cytoplasmic vesicle, protein

serine/threonine kinase activity, and ATP binding pathway in

this study (Li et al., 2020). Therefore, we further screened genes

associated with non-synonymous SNPs using annotation

information and identified 27 genes on chromosomes 2 and 5

(Table 2). Q2-5 contains 14 annotated genes associated with

pathways related to protein phosphorylation, cytoplasmic vesicle,

protein serine/threonine kinase activity, and ATP binding

pathway. Q2-5 genes associated with disease resistance encode

cyclin11, receptor-like kinase, Putative leucyl-tRNA synthetase,

Protein kinase superfamily protein, leucine-rich repeat receptor-

like serine, Protein kinase superfamily protein, LRR receptor-like

serine/threonine-protein kinase, Serine/threonine-protein kinase

UCNL, ATP-dependent DNA helicase, Probable inactive receptor

kinase, CHROMATIN REMODELING 5, ATP-dependent DNA

FIGURE 2
Genome-wide distribution of SNP-index in (A) D3 bulk and (B) D4 bulk (C) Delta (SNP-index) between De bulk and D4 bulk. The abscissa is the
chromosome name, the colored dots represent the calculated SNP-index (or ΔSNP-index value, and the black line is the fitted SNP-index or ΔSNP-
index value. The red line represents the threshold line with a confidence level of 0.99; the blue line represents the threshold line with a confidence
level of 0.95.
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helicase chloroplastic, Wall-associated kinase 2-like protein, and

ATP-dependent DNA helicase. Mitogen-activated protein kinase

9, Mitogen-activated protein kinase 9, Atypical receptor-like

kinase MARK, and DEAD-box ATP-dependent RNA helicase

21 were identified in Q5-1. Moreover, QTLs Q2-4, Q2-5, and

Q5-1 were identified with multiple genes associated with disease

resistance pathways; therefore, we consider these QTLs as

candidates for further functional verification. Further

molecular insight into the functions of genes associated with

candidate QTLs can provide a comprehensive overview of

quantitative disease resistance against NCLB in maize.

Expression profile of candidate genes

To understand the regulation patterns of candidate genes in

two contrasting parental genotypes (GML71 is resistant, while

Gui A10341), we performed qRT-PCR for all the candidate

FIGURE 3
The results of the (A) -log10(P), (B) Euclidean distance (ED), and (C) G-statistics algorithm. The abscissa is the chromosome name; the colored
dots represent the calculated SNP-index index (or ΔSNP-index value, and the black line is the fitted SNP-index or ΔSNP-index value. The red line
represents the threshold line with a confidence level of 0.99; the blue line represents the threshold line with a confidence level of 0.95.

TABLE 1 Statistics for QTLs identified with a 99% confidence interval.

No QTLs Chr Start (Mb) End (Mb) Interval (Mb) Genes SNPs

1 Q1-1 1 305.02 307.04 2.02 48 21

2 Q2-1 2 30.82 36.28 5.46 131 1,332

3 Q2-2 2 36.92 40.02 3.10 74 739

4 Q2-3 2 40.66 64.68 24.02 405 9,027

5 Q2-4 2 65.22 150.42 85.20 716 37,138

6 Q2-5 2 162.06 235.08 73.02 1844 49,230

7 Q3-1 3 164.44 166.84 2.40 19 167

8 Q3-2 3 171.06 172.74 1.68 36 1,588

9 Q5-1 5 10.48 12.90 2.42 82 2,405

10 Q5-2 5 13.52 15.20 1.68 69 1,519
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genes. The primers for each candidate gene are listed in

Supplementary Table S5. The expression profile of each

parent was considerably different when the expression was

compared after the inoculation of NCLB. Among 27 candidate

genes, 14 depicted up-regulated expression patterns under

disease inoculation in tolerant genotype Gui A10341, while six

showed down-regulated expression patterns (Figure 4).

Zm00001d003209, Zm00001d003266, Zm00001d003430,

Zm00001d004592, Zm00001d004635, Zm00001d005829,

Zm00001d006017, Zm00001d006695, Zm00001d006917,

Zm00001d007417, Zm00001d013418, Zm00001d013423, and

Zm00001d013430 were among the 14 up-regulated genes in

resistant genotype. Zm00001d013453In comparison,

susceptible genotype GML71 was observed with up-regulated

expression pattern of only four genes (Zm00001d005986,

Zm00001d006695, Zm00001d013423, Zm00001d013453). The

differential expression pattern after inoculation is highly

suggestive that these genes are excellent candidates for further

function verification and use in breeding programs for NCLB

resistance.

Discussion

NCLB, caused by Exserohilum turcicum, is a frequently

occurring foliar disease of maize, threatening more than 50%

yield losses in tropic and sub-tropic environments (Blandino

et al., 2012). Resistant cultivars are the effective control for NCLB

(Technow et al., 2013). Multiple studies have depicted chemical

control as an effective measure for NCLB control (Blandino et al.,

2012; Zhang et al., 2013; Camera et al., 2019; De Rossi et al.,

2022). However, chemical and biological control increase the cost

of production along with environmental hazards (Alabouvette

et al., 2006; Fry, 2012; Hirooka and Ishii, 2013). Recent advances

in omics with high-density molecular markers have enabled plant

breeders to successfully understand and manipulate molecular

markers to the genetic architecture of modern cultivars (Collard

and Mackill, 2008; Nazir et al., 2021b; Sarfraz et al., 2021). The

present study successfully utilized bulk segregant analysis to

identify molecular markers associated with NCLB.

Previously reports suggested a complex genetic architecture

of NCLB with multiple QTLs spanning multiple chromosomes

TABLE 2 Distribution of candidate genes associated with resistance to NCLB on Chr 2, and five

chr QTLs Start End GeneID Symbol Description

2 Q2-1 30,820,001 36,280,000 Zm00001d003209 AATP1 AAA-ATPase ASD mitochondrial

2 Q2-2 36,920,001 40,020,000 Zm00001d003266 At4g24790 Protein STICHEL-like 2

2 Q2-3 40,660,001 64,680,000 Zm00001d003430 EMB2768 Tyrosine--tRNA ligase chloroplastic

2 Q2-4 65,220,001 1,50,420,000 Zm00001d004592 BI O 3-BIO1 -

2 Q2-4 65,220,001 1,50,420,000 Zm00001d004635 ZAR1 Leucine-rich repeat protein kinase family protein

2 Q2-4 65,220,001 1,50,420,000 Zm00001d004707 SECA2 thylakoid assembly1

2 Q2-4 65,220,001 1,50,420,000 Zm00001d004762 ABCG25 ABC transporter G family member 25

2 Q2-4 65,220,001 1,50,420,000 Zm00001d004905 LECRK54 OSJNBa0027H06.10 protein

2 Q2-5 162,060,001 235,080,000 Zm00001d005293 CYCD3-2 cyclin11

2 Q2-5 162,060,001 235,080,000 Zm00001d005298 At4g37250 receptor-like kinase

2 Q2-5 162,060,001 235,080,000 Zm00001d005558 At1g09620 Putative leucyl-tRNA synthetase

2 Q2-5 162,060,001 235,080,000 Zm00001d005682 PBL28 Protein kinase superfamily protein

2 Q2-5 162,060,001 235,080,000 Zm00001d005776 XA21 leucine-rich repeat receptor-like serine

2 Q2-5 162,060,001 235,080,000 Zm00001d005829 STY17 Protein kinase superfamily protein

2 Q2-5 162,060,001 235,080,000 Zm00001d005986 RGI3 LRR receptor-like serine/threonine-protein kinase

2 Q2-5 162,060,001 235,080,000 Zm00001d006017 UCNL Serine/threonine-protein kinase UCNL

2 Q2-5 162,060,001 235,080,000 Zm00001d006695 -- ATP-dependent DNA helicase

2 Q2-5 162,060,001 235,080,000 Zm00001d006917 At5g10020 Probable inactive receptor kinase

2 Q2-5 162,060,001 235,080,000 Zm00001d007089 CHR5 Protein CHROMATIN REMODELING 5

2 Q2-5 162,060,001 235,080,000 Zm00001d007417 At3g02060 ATP-dependent DNA helicase chloroplastic

2 Q2-5 162,060,001 235,080,000 Zm00001d007474 WAK3 protein; Wall-associated kinase 2-like protein

2 Q2-5 162,060,001 235,080,000 Zm00001d007562 ESD4 ATP-dependent DNA helicase

5 Q5-1 10,480,001 12,900,000 Zm00001d013418 MKK7 Mitogen-activated protein kinase 9

5 Q5-1 10,480,001 12,900,000 Zm00001d013423 MKK9 Mitogen-activated protein kinase 9

5 Q5-1 10,480,001 12,900,000 Zm00001d013430 RLK902 Atypical receptor-like kinase MARK

5 Q5-1 10,480,001 12,900,000 Zm00001d013453 Os03g0708600 DEAD-box ATP-dependent RNA helicase 21

5 Q5-2 13,520,001 15,200,000 Zm00001d013527 CPK9 Calcium-dependent protein kinase 30
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(Wisser et al., 2006; Poland et al., 2011; Van Inghelandt et al.,

2012). Poland et. al., identified 29 QTLs related to NCLB

throughout the genome (Poland et al., 2011). However, each

QTL depicted a minor effect in contribution towards NCLB

resistance. Recently, with the advancement of technology, the

BSA method supported by genomic and transcriptomic data has

been proven to be a robust and efficient platform identification of

molecular markers and associated genes related to a particular

trait in several crops, including rice, maize, brassica, wheat, and

cotton (Mansfeld and Grumet, 2018; Gyawali et al., 2019; Mu

et al., 2019; Yang et al., 2021b; Wang et al., 2021). In the present

study we did not perform a phenotypic evaluation on the

complete F2 population. This would have allowed a chi-square

analysis to predict the number of QTLs responsible for the

variation of disease score in the population. We instead

utilized resistance and susceptible bulks as plant materials and

identified 10 QTLs potentially associated with the NCLB

resistance mechanism in maize. These QTLs were identified

on Chr 1, Chr 2, Chr 3, and Chr 5. A similar work by Li et.

al., (Li et al., 2020), reported 502 non-synonymous SNPs in six

QTLs related to NCLB on Chr eight and identified seven putative

candidate genes involved in NCLB control. We identified

27 candidate genes in seven QTLs combined with SNP-index

and annotation information.

Both qualitative and quantitative inheritance patterns of

NCLB resistance have been reported in maize (Galiano-

Carneiro and Miedaner, 2017). Identification and utilization

of NCLB resistance controlled by a single gene, such as Ht1,

Ht2, and Ht3, is ineffective for long-term resistance. Several

physiological phenomena have been confirmed associated with

the functions of these genes, including inhibition of chlorotic

spots, epiphytotic control, and signal transduction (Welz and

Geiger, 2000; Hurni et al., 2015; Wang et al., 2018). Moreover,

several biological pathways associated with disease resistance in

maize have been identified, such as protein phosphorylation,

cytoplasmic vesicle, protein serine/threonine kinase activity, and

ATP binding pathway (Li et al., 2020). Quantitative resistance

with the cumulative effect of several genes is necessary for

durable resistance against NCLB (Li et al., 2020). Three genes,

AATP1 (AAA-ATPase ASD mitochondrial), At4g24790

FIGURE 4
Expression profile of candidate genes in two contrasting parental genotypes, GML-71 and Gui A10341. The expression pattern was estimated
before (check = CK) and after NCLB inoculation (NCLB) in both genotypes.
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(STICHEL-like 2), EMB2768 (Tyrosine--tRNA ligase

chloroplastic), were identified as candidate genes in Q1-1, Q1-

2, andQ3-2, respectively. A previous study by Liu et al., (Liu et al.,

2020), reported activation of OsAAA-ATPase1 during blast

infection in rice, suggesting a key role of OsAAA-ATPase1

salicylic acid-mediated defense responses against fungus M.

oryzae. Moreover, ATPase genes are known for their active

role in hypersensitive response (HR) toward plant pathogens

(Dmitriev et al., 2017; Weiß and Winkelmann, 2017; Waititu

et al., 2021). Nitric oxide (NO) regulates developmental and

stress-mediated responses in plants by activating NO-signaling

pathways (León, 2022) associated with Tyrosine-protein.

Similarly, STICHEL-like 2 has been reported to be involved in

response to biotic and abiotic stress responses (Hu et al., 2015;

Wang et al., 2015; Hejri et al., 2021).

We identified four candidate genes in the QTL Q2-4,

including BI O 3-BIO1, ZAR1, SECA2, ABCG25, and

LECRK54. BI O 3-BIO1 regulates biotin synthesis, an essential

cofactor for enzymes catalyzing carboxylation, decarboxylation,

and transcarboxylation reactions (Wang et al., 2020). Functional

characterization of bio2 mutant in Arabidopsis thaliana

suggested biotin decreased ROS (reactive oxygen species)

accumulation under stress conditions (Wang et al., 2020).

ZAR1-RKS1 complex, through direct interaction with RKS1,

triggers ZAR1 activation and disease resistance in A. thaliana

(Wang et al., 2019a). Several reports suggest a resistance response

mediated by ZAR1 (Lewis et al., 2010; Wang et al., 2019b; Hu

et al., 2020; Chen et al., 2021). For instance, Wang et al., (Wang

et al., 2019b), characterized the ZAR1-RKS1 complex, which

causes terminal cell death and mediates rapid stress-induced

transcriptional activation of defense genes in plants.

Characterization of Q2-5 identified 12 genes associated with

disease resistance response. These genes included At4g37250,

At1g09620, PBL28, XA21, STY17, RGI3, UCNL, At5g10020,

CHR5, At3g02060, WAK3, and ESD4. While, MKK7, MKK9,

RLK902, Os03g0708600, and CPK9 were identified as candidate

genes from two QTLs on Chr 5. The annotation information

suggested the involvement of these genes in disease resistance

responses. Numerous QTL studies have reported QTLs

associated with NCLB in maize. In the present study, the

resolution was significantly improved by using high-density

SNP markers, and the improved resolution can facilitate a

comparison of our results with disease-associated QTL and

genes reported previously. For example, Poland et al., (Poland

et al., 2011), identified four QTLs on Chr 5 with one putative

candidate gene GRMZM2G024612 associated with NCLB

resistance. Our results comprehend quantitative resistance

response towards NCLB by identifying several QTLs spanning

three chromosomes with multiple genes associated with the

NCLB resistance mechanism. Another study by Chen et al.,

(Chen et al., 2016), identified a stable QTL on chromosome

8 with one putative candidate gene. Xie et al., (Xia et al., 2020),

reported five QTLs associated with NCLB resistance on

chromosomes 1, 2, 4, 8, and 9. Another genomic region

important for NCLB resistance was identified in chromosome

8, where two associated genes (Ht2 and Htn1) were identified

(Zaitlin et al., 1992; Hurni et al., 2015).

We identified ten QTLs on Chr 1, Chr 2, Chr 3, and Chr 5 with a

99% confidence interval associated with NCLB resistance. Moreover,

we screened 265 non-synonymous SNP-containing genes and

narrowed them down to 27 candidate genes with differential

expression patterns in NCLB contrasting genotypes (susceptible

and resistant). Our study provides a genetic basis for quantitative

disease resistance against NCLB in maize. Further functional

characterization of candidate genes based on the provided

information can yield significant insights into the NCLB

resistance mechanisms in maize.
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