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Alzheimer’s disease (AD) and vascular dementia (VD) are the twomost common

forms of dementia, share similar symptoms, and are sometimes difficult to

distinguish. To investigate the potential mechanisms by which they differ, we

identified differentially expressed genes in blood and brain samples from

patients with these diseases, and performed weighted gene co-expression

network analysis and other bioinformatics analyses. Weighted gene co-

expression network analysis resulted in mining of different modules based

on differences in gene expression between these two diseases. Enrichment

analysis and generation of a protein-protein interaction network were used to

identify core pathways for each disease. Modules were significantly involved in

cAMP and AMPK signaling pathway, which may be regulated cell death in AD

and VD. Genes of cAMP and neurotrophin signaling pathways, including

ATP1A3, PP2A, NCEH1, ITPR1, CAMKK2, and HDAC1, were identified as key

markers. Using the least absolute shrinkage and selection operator method, a

diagnostic model for AD and VD was generated and verified through analysis of

gene expression in blood of patients. Furthermore, single sample gene set

enrichment analysis was used to characterize immune cell infiltration into brain

tissue. That results showed that infiltration of DCs and pDCs cells was increased,

and infiltration of B cells and TFH cells was decreased in the brain tissues of

patients with AD and VD. In summary, classification based on target genes

showed good diagnostic efficiency, and filled the gap in the diagnostic field or

optimizes the existing diagnostic model, which could be used to distinguish

between AD and VD.
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Introduction

Damage to neuronal structure may cause loss of nervous system

function, which can lead to neurodegenerative disease. Alzheimer’s

disease (AD) is one of themost common neurodegenerative diseases

worldwide (Lane et al., 2018). Alzheimer’s disease is characterized by

the presence of extracellular amyloid plaques caused by abnormal

APP processing, resulting in β-amyloid peptide aggregation

(Calsolaro and Edison, 2016). There is no cure for AD, disease

progression cannot be reversed, and symptoms gradually worsen

until patients lose their ability to care for themselves. Given the

prolonged course of disease progression, AD results in incredible

suffering for patients and their families, and places an enormous

burden on healthcare systems. Previous studies have confirmed that

the pathogenesis of AD can include genetic factors. Mutations in

APP, PSEN1, and PSEN2 have been shown to play key roles in

familial AD (Lanoiselee et al., 2017). Advances in human disease

research have shown that many complex diseases are caused by

multiple genes. These genes interact to form a network that

collectively influences the pathogenesis of diseases (Ding et al.,

2019). Therefore, gene set risk assessment is viewed as a more

accurate and effective method to study the genetic basis and

mechanisms of complex diseases.

Vascular dementia (VD) is also a common form of dementia.

The symptoms of VD are similar to those of AD, which can often

complicate differential diagnosis (Uwagbai and Kalish, 2022). In

some patients, VD and AD may coexist, resulting in a pathological

condition known as mixed dementia. The etiology of dementia is

complex, and treatment is difficult. To data, these biomarkers play a

vital role for diagnosis and prognosis of AD or VD. Studies have

demonstrated that identifying REPS1 as a candidate therapeutic

biomarker in AD and VD (Luo et al., 2022). RBM8A (Zou et al.,

2019) and YKL-40 (Mavroudis et al., 2021) were significantly

associated with AD pathophysiology. Furthermore, toll-like

receptor 2 (TLR2) is the hub gene that may participate in the

course of VD (Wang et al., 2022). Therefore, exploration of the

pathogenesis and biomarkers of VD/AD-induced dementia could

deepen understanding of dementia, which may aid in diagnosis and

improve choice of treatment strategies.

Studies have indicated that the multifactorial

pathophysiology of dementia is not restricted to neuronal

cells, and the immune system may play a key role (Heneka

et al., 2015). For example, during the AD onset, T lymphocytes

may infiltrate into brain tissue via the choroid plexus and

participate in adaptive immune response. CD8 T lymphocytes

were detected in the cerebrospinal fluid (CSF) of 11 patients with

AD (Lueg et al., 2015). Other types of immune cells, including

monocytes, macrophages, neutrophils, and T cells from the

peripheral blood, were found to be broadly involved in the

pathogenesis of AD (Polfliet et al., 2001; Ziegler-Heitbrock,

2007; Baik et al., 2014; Gate et al., 2020). Moreover,

differences in levels of lymphocyte subsets were found in the

brains of patients with different types of dementia, and a T
A
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significant increase in classical natural killer (NK) cells was

observed in VD (D’Angelo et al., 2020).

In this study, the expression profile of brain tissue samples

from the Gene Expression Omnibus (GEO) data set and the

blood expression profile of 3 patients with AD, 6 patients with

VD, and 3 healthy donors were analyzed. The Weighted Gene

Co-Expression Network Analysis (WGCNA) method and least

absolute shrinkage and selection operator (LASSO) model were

used to establish diagnostic gene signatures for AD and VD, and

to identify potential therapeutic targets. Furthermore, we

performed single-sample gene set enrichment analysis

(ssGSEA) to quantify immune cell infiltration to provide a

theoretical foundation for further research.

Methods and materials

Data collection and processing

High-throughput RNA Sequencing data were used to

construct the blood RNA expression profiles of 3 patients

with AD, 6 patients with VD, and 3 healthy donors. The AD

and VD samples related clinical information were shown in

Table 1. Public dataset GSE122063 was obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE122063), which includes brain samples from

56 individuals with AD (44 female and 12 male),

36 individuals with VD (16 female and 20 male), and

44 healthy individuals (24 female and 20 male). The range of

age was 60–91 years for healthy controls, 62–96 years for VD

patients and 63–91 years for AD patients. Gene expression

profiling was performed on frontal and temporal cortex

tissue from patients with VD and AD, and healthy controls

obtained from the University of Michigan Brain Bank. Controls

and patients with AD had no infarcts in the autopsied

hemisphere. In order to unify the different data, the

normalizeBetweenArrays function in the limma package

(Ritchie et al., 2015) was used to normalize the gene

expression profiles. If a gene corresponds to multiple probes,

the average expression value of these probes was chosen as the

expression value of the gene. The workflow of the present study

was shown in Figure 1.

FIGURE 1
Flow chart of study design. AD, Alzheimer’s disease; LASSO, least absolute shrinkage and selection operator; NGS data, Next Generation
Sequencing data; ROC, receiver operating characteristic curve; ssGSEA, Single Sample Gene Set Enrichment Analysis; TF, transcription factor; VD,
vascular dementia.
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All analyses in this study were based on the Bioinforcloud

platform (http://www.bioinforcloud.org.cn), including

expression profiles of GSE122063 and NGS data analysis.

Bioinforcloud platform is a self-developed bioinformation

analysis platform, which is a collection of data download,

analysis and visualization of results, brought together various

data processing and bioinformatics analysis methods.

Furthermore, the DEGs were screened in two comparion-pairs

(AD or VD compared to normal tissues in GSE122063 dataset

and NGS data), which adjusted P values >0.05 were significant.

RNA purification and library preparation

Total RNA was extracted and a library was prepared

according to the reagent manufacturer’s instructions. RNA

purity was verified using a kaiaoK5500®Spectrophotometer

(Kaiao, Beijing, China), and the integrity of the RNA was

evaluated using an RNA Nano 6000 Assay Kit on an Agilent

2,100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

Two micrograms of total RNA from each sample was used as the

input for library construction using a NEBNext® Ultra™ RNA

Library Prep Kit for Illumina® (#E7530L, NEB, USA).

Library clustering and sequencing

Clustering was performed on the HiSeqPE Cluster reagent kit

v4-cBot-HS (Illumina) on the HiSeqPE cluster generation system

according to the manufacturer’s instructions. After clustering

generation, they were sequenced on the Illumina platform of the

library, and 150bp paired-end reads were generated.

Differential expression analysis

The expression profiles of 12 cases from the GSE122063 were

selected using the Intersect function (Chen and Boutros, 2011)

for analysis of co-expressed genes. Differentially expressed genes

(DEGs) between AD and VD were screened using the limma

package in R (Ritchie et al., 2015). Genes with adjusted p <
0.05 were considered to be significantly differentially expressed.

Identification of hub genes using WGCNA

To find co-expressed gene modules, we extracted DEGs

from GSE122063 to perform co-expression network using

WGCNA package in R (Langfelder and Horvath, 2008).

First, the “dist” function was used to calculate the distance

between the variables, and a hierarchical clustering analysis

was performed using the “hclust” function. We calculated the

power parameters using the “pickSoftThreshold” function,

which in turn assessed the average connectivity and

independence between the modules. The power is deemed

proper when the independence exceeds 0.9. Co-expressed

gene modules were identified by dynamic tree cutting

methods, and hierarchical clustering was established.

Subsequently, we calculated module-disease correlation

using Pearson correlation analysis to obtain relevant

modules with disease status (AD; VD). Furthermore,

associations between genes and modules were defined as

module memberships (MM), and gene significance (GS)

was determined by a combination of phenotypic feature

information and the co-expression. A gene was defined as a

hub gene in the module if it had GS > 0.2 and MM > 0.9.

Functional enrichment analysis

The module eigengene were analyzed using Gene

Ontology (GO) function and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analysis by the

clusterProfiler package (Yu et al., 2012) in R. Results with p <
0.05 were considered significant. We screened biological

processes (BP) and KEGG pathways related to AD or VD

using Gene Set Enrichment Analysis (GSEA) (Subramanian

et al., 2005) by the MSigDB c2.cp.kegg.v7.2.symbols.gmt

gene set collection (Liberzon et al., 2015), P

value <0.05 with the pathways were considered statistically

significant.

Gene set variation analysis

We performed gene set variation analysis (GSVA) of the

expression profile data sets GSE122063 and NGS data using the

GSVA package in R (Hanzelmann et al., 2013). Individual

samples were scored with the gene set using GSVA, and

GSVA scores were obtained for each sample. The GSVA

scores for gene sets were calculated for the GSE122063 and

NGS data.

Construction of the protein–protein
interaction network

Based on the interactions of human transcription factor

(TFs) with their target genes in the TRRUST v2 database (Li

et al., 2018), the hypergeometric test was used to predict

potential TFs regulating functional modules. In addition,

complex cellular functions were performed through the

interactions between proteins. The PPI network was

constructed using Cytoscape software (http://cytoscape.

org/) (Shannon et al., 2003) according to STRING

database (Szklarczyk et al., 2017).
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Construction of LASSO model and
receiver operating characteristic curve
analysis

We used LASSO as predictive tool to select the best features of

high-dimensional data (Ding et al., 2019).We extracted key genes to

construct LASSOmodels to distinguish between AD and VD. Then,

we calculated gene expression values for the regression coefficient, in

which the formula weighted the expression of gene expression:

signature index = ExpGene1*Coef1 + ExpGene2*Coef2 +

ExpGene3*Coef3+. . . ."Coef” is the regression coefficient of the

gene, “Exp” represents the expression value of the gene. In addition,

we randomly assigned samples in the GSE122063 dataset to the

training set (75%) and to the test set (25%). To verify that the LASSO

model could discriminate between AD and VD, ROC curve analysis

was performed on the training and test sets using pROC package

(Robin et al., 2011). To further validate the diagnostic efficiency of

LASSO model, we validated the results in sequencing data.

Prediction of miRNA-target gene
interactions

Interactions between the top 3 miRNAs with the largest |log

FC| values and target genes were predicted using the TargetScan

(Http://www.targetscan.org/vert_72) database (Lewis et al.,

2005). Cytoscape software (Shannon et al., 2003) was used to

visualize the network.

Single-sample gene set enrichment
analysis

Relative immune cell infiltration levels in single sample were

quantified using ssGSEA in R package GSVA (Hanzelmann et al.,

2013). The degree of infiltration of the immune cells in the AD and

VD samples were determined. Immunity network analysis was used

to explore the correlation between immune cells. We also determined

the correlation between feature genes and immune infiltration. The

CIBERSORT algorithm (https://cibersort.stanford.edu/) was used to

infer cell type proportions in the data from AD samples.

Results

Identification of differentially expressed
gene in AD and VD

A total of 18,019 overlapping genes were detected between the

profiles in the GSE122063 data set and our sequencing data

(Figure 2A). These overlapping genes were further used for

differentially expressed gene (DEG) analysis (Figure 2B). In the

GSE122063 data set, there were 5,340 DEGs observed between the

AD and VD groups, including 2,234 up-regulated genes and

3,106 down-regulated genes. In our NGS sequencing data set,

there were 587 DEGs between the AD and VD groups, including

291 up-regulated genes and 296 down-regulated genes. These DEGs

were able to discriminate between AD and VD (Figures 2C,D).

Gene modules associated with AD or VD

The WGCNA method was used to identify the core gene

modules that differentiated between AD and VD (Figure 3). The

results showed that when the minimum power was 3, the

independence was greater than 0.90 (Figure 3A). As shown in

Figure 3B, we identified four key gene modules that

discriminated between AD and VD. The turquoise module

was negatively correlated with AD and positively correlated

with VD (r = -0.51, P = 2e-10 for AD and r = -0.19, p =

0.02 for VD). The blue module positively correlated with AD,

but negatively correlated with VD (r = 0.36, P = 2e-05 for AD and

r = -0.49, P = 1e-09 for VD). The brown module negatively

correlated with VD (coefficient = -0.36, P = 2e-05) (Figure 3C). In

the turquoise module, using GS AD > 0.2 and MM > 0.9 as

thresholds, 292 genes were identified as up-regulated hub genes

in AD and 24 genes were identified as down-regulated hub genes

in VD. In the blue module, using GS AD > 0.2 and MM > 0.9 as

thresholds, 4 genes were identified as up-regulated hub genes in

AD and 5 genes were identified as down-regulated hub genes in

VD. In the brown module, using GS > 0.2 and MM > 0.9 as

thresholds, 8 hub genes were identified as poorly expressed in VD

(Supplementary Table S1). The hub genes in the turquoise and

blue modules were associated with both AD and VD, and hub

genes in the brown module was associated with VD (Figure 3D).

Module genes functional enrichment analysis showed that

turquoise module genes were significantly involved in biological

processes related to neurotransmitters and synaptic regulation

such as modulation of chemical synaptic transmission, regulation

of trans-synaptic signaling, synapse organization, and vesicle-

mediated transport in synapse. The blue module genes were

significantly involved in biological processes related to glial cells

and nerve sheath cells such as myelination, glial cell differentiation,

ensheathment of neurons, and glial cell differentiation. The two

modules were associated with KEGG pathways related to cAMP

signaling pathway, neurotrophin signaling pathway, GnRH signaling

pathway, and ECM- receptor interaction. (Figures 3E,F). Above all,

the pathways of module genes may be play a vital role and that

promote the development and progress in AD or VD.

Validation of critical pathways in AD
and VD

The overlapping genes among the hub genes and the genes

identified in KEGG pathway analysis were evaluated further
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(Supplementary Table S2). A total of 21 hub genes were selected

as target genes in the data set (Figure 4A). Then, we constructed a

TF-module genes-pathway global regulation network containing

9 TFs and 6 hub genes (Figure 4B). Finally, the mechanisms of

different modules in progression of AD or VD were explored

(Figures 4C,D).

LASSO model can predict AD and VD

Eight target genes were identified with non-zero regression

coefficients as optimal features from 21 target genes in the

training set using the LASSO method and 10-fold cross-

validation (Figure 5A). Principal component analysis (PCA)

showed that the target genes could distinguish AD from VD

(Figure 5B). The accuracy of the 8 feature genes based on

LASSO model was 0.986 in the training set and 0.960 in the test

set. This demonstrated that the model was robust (Figures 5C,D).

The results using our sequencing data agreed with the results from

the GSEA dataset (Figure 5E). Moreover, the expression of the

8 feature genes was significantly higher in patients with VD than in

patients with AD (Figure 5F). The accuracy of the 8 feature genes for

discrimination between AD and VD was 0.845 (Figure 5G). In

conclusion, we screened 8 feature genes for discrimination of AD

and VD by LASSO model, including WNT10B, PPP2CA, NCEH1,

MAP2K4, ITPR1, GRIA4, GABBR2 and ATP1A3.

Immune cells infiltration in AD and VD

The GSE122063 data and our NGS data were used to

investigate the immune cell types in the AD and VD samples.

Dendritic cells (DCs) and plasmacytoid dendritic cells (pDC)

were present at significantly greater levels in the AD and VD

FIGURE 2
Differential expression analysis. (A) The venn diagram showed the genes overlaped in the blood expression profile of GSE122063 data set and
sequencing data. (B)Manhattan map of differential gene expression. (C) The heat map of DEGs in GSE122063 data set. (D) The heat map of DEGs in
Next Generation Sequencing data (NGS). AD, Alzheimer’s disease; VD, vascular dementia.
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samples (Figure 6A). Correlation analysis between the

24 immune cell types showed that increased infiltration of

B cells was significantly correlated with AD, and infiltration of

aDCs was significantly correlated with VD (Figure 6B). We

performed correlation analysis on immune cells using

CIBERSORT (proportion). The results showed that pDCs

were positively associated with neutrophils (Figure 6C). In

addition, we also clustered immune cells based on abundance,

FIGURE 3
Weighted Gene Co-Expression Network Analysis. (A) Definition of power related to modules. (B) Recognition module. (C) The turquoise
module negatively correlated with AD and positively correlated with VD, blue module was positively correlated with AD, but the opposite of VD,
brown module was negatively correlated with VD. Red, positive correlstion; Blue, negative correlation. (D) Module membership and gene
significance strongly correlatedwith each other within eachmodule. (E) Biological processes involving genes of the differentmodules. (F) KEGG
pathways involving genes of the different modules. AD, Alzheimer’s disease; VD, vascular dementia; KEGG, Kyoto Encyclopedia of Genes and
Genomes.
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resulting in four clusters (Figure 6D). As shown in Figures 6B,E

cells and T follicular helper (TFH) cells were correlated with

seven featured genes. We found that plasma cells represented the

highest proportion of infiltrated immune cells (Figure 6F).

Discussion

Progress in modern biotechnology and big data analysis has

resulted in expansion of biomedical research of diseases beyond

clinical symptoms and manifestations. Research has increasingly

targeted the regulatory mechanisms of diseases at the molecular

level. Previous studies have shown that onset and progression of

AD were not caused by a single gene or a few mutations, but by

disruption of a comprehensive gene regulation network (Raikwar

et al., 2018; Ding et al., 2019).

In this study, using module mining analysis of data sets, we

built a module-related biological network. Module mining using

WGCNA resulted in identification of three modules associated

with AD and VD. Among these, turquoise module genes were

up-regulated in AD and down-regulated in VD. Blue module

genes were down-regulated in AD and up-regulated in VD.

Brown module genes were down-regulated in VD. The results

showed that the blue module was enriched in biological processes

associated with glial cells and nerve sheath cells, and the

turquoise module was associated with cell cycle, synapse, and

neurotransmission. Abnormal glial cell function has been shown

to play an important role in the pathophysiology of AD

(Herculano-Houzel, 2014). Under certain conditions,

microglia express proinflammatory factors that may accelerate

development of AD (Heppner et al., 2015). In AD, oxidative

damage results in changes in cell cycle regulation. Cell cycle

dysfunction may play an important role in neuronal dysfunction

in AD, and may represent a potential therapeutic target (Bonda

et al., 2010). These findings have been shown to be associated

with development of AD and VD (Ding et al., 2019). In general,

FIGURE 4
Integrated regulation of AD or VD by change in hub gene expression of modules. (A) The expression of target genes in the GSE122063 data set.
The thick black bar in the middle indicates the interquartile range, and the black line extending from it represents the 95% confidence interval. (B)
Integrated regulatory network of cAMP signaling pathways and Neurotrophin signaling pathways. (C,D) Maps of gene-pathway correlations in both
blue and turquoise module. AD, Alzheimer’s disease; VD, vascular dementia.
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the genes of modules were involved in pathways play a vital role

and which may promote the occurrence of disease course in AD

and VD.

We identified six hub genes that regulate key cellular

signaling pathways. According to previous studies, ATP1A3

(Shrivastava et al., 2020), PP2A (Wang et al., 2019), NCEH1

(Ding et al., 2019), ITPR1 (Uddin et al., 2018), and CAMKK2

(Sabbir, 2018) have been shown to be associated with onset of

AD. The target genes identified in GSE122063 data set were

highly expressed in VD, except for HDAC1. In addition, reduced

FIGURE 5
Assessment of models for identification of Alzheimer’s disease (AD) and vascular dementia (VD). (A) 10-fold cross-validation for tuning
parameter selection in the LASSOmodel. (B) PCA prior to and after LASSO variable reduction. LASSO, least absolute shrinkage and selection operator;
PCA, principal component analysis. (C,D) ROC curve for patients with AD and patients with VD in the training and test sets. (E) ROC curve for patients
with AD and patients with VD in the NGS dataset. (F) Gene expression levels in patients with AD and patients with VD in the NGS and
GSE122063 data sets. The thick black bar in the middle indicates the interquartile range, and the black line extending from it represents the 95%
confidence interval. (G) ROC curves for patients with AD and patients with VD in the NGS and GSE122063 data sets.
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FIGURE 6
Correlation between immune cells in AD and VD. (A) Expression of differentially abundant immune cells in the GSE122063 and NGS datasets. (B)
Correlation between immune cell types in AD and VD. Red and purple represent positive correlations, and green and yellow indicate negative
correlations. (C)Correlation between immune cells. The blue section indicates activation, and the orange section indicates inhibition. (D)Network of
immune cell types (abundance). Circles represents the prognostic effect of the cell type, and the thickness of the line indicates the strength of
correlations between the cell types. (E) Correlation between immune cell types and the eight featured genes. (F) Estimated proportions of immune
cell types in AD. AD, Alzheimer’s disease; VD, vascular dementia.
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cAMP signaling through PKA has been shown to be a key feature

of AD pathology, and local increases in cAMP signaling may

contribute to AD pathology (Kelly, 2018). Neurotrophin plays an

important role in central and peripheral neuron survival and

differentiation. Inhibition of axonal neurotrophin transport may

also contribute to development of AD (Wu et al., 2009). Our

results showed that 9 TFs regulated these pathways through six

interacting hub genes. A comprehensive regulatory landscape

network map was constructed. ATP1A3, PP2A, NCEH1, ITPR1,

CAMKK2, and

Eight feature genes were identified using LASSO

regression that may be involved in development of AD.

Studies have shown that the AMPA receptor (GRIA4) was

significantly up-regulated in the hippocampus of patients with

AD (Jacob et al., 2007). MAP2K4 was exhibited brain-specific

gene and to play essential roles in the regulation of cell

proliferation in AD (Wu et al., 2021), while MAP2K4 was

related with the condition and prognosis of endometrial

carcinoma (Zhang et al., 2022). ITPR1 (Seo et al., 2020)

and GABBR2 (Yin et al., 2021) may be associated with AD,

and prostate cancer (Choi et al., 2022). Furthermore, PPP2CA

as a candidate gene that it may affect the risk of AD (Vazquez-

Higuera et al., 2011). NCEH1 and WNT10B, and

ATP1A3 have been rarely reported to be associated with

AD, but WNT10B has an important role in progression of

colorectal cancer (Shi et al., 2019) and hepatocellular

carcinoma (Zhou et al., 2020). Therefore, suggesting that

WNT10B, ITPR1, GABBR2, ATP1A3, NCEH1, MAP2K4,

PPP2CA, and GRIA4 may play a vital role in AD and VD,

while also need more studies to further validate the expression

of hub genes. Furthermore, the LASSO model based on target

genes showed good diagnostic value, which was validated

using our sequencing data.

Studies have reported that age-related immunoadaptive

recombination causes lymphocyte immunity as a whole to

begin having a role in an intermediate metastable state, and

the dominant role of immune factors in the pathogenesis of

VD and AD (Nuvakhova and Rachin, 2020). In the present, to

quantify the extent to which the immune cells infiltrated into

brain tissue, we used ssGSEA. The results showed that

infiltration of B cells and TFH cells was significantly higher

in AD and VD. Nuclear factor of activated B cells has been

shown to be involved in physiological inflammatory processes,

and was a promising target for treatment of AD (Seo et al.,

2018). We also detected decreased levels of B and T

lymphocytes in AD and VD, though the decreases were not

statistically significant (Busse et al., 2017). Follicular helper

CD4 T cells are specialized helpers of B cells (Crotty, 2011).

Regulatory T cells were significantly reduced in VD patients,

and the T cells were significantly increased in AD patients,

possibly due to the inflammation triggered by Aβ (Ziegler-

Heitbrock, 2007). Recently, neuroinflammation and tissue-

resident immune cells are increasingly recognized as key

factors in the pathogenesis of AD (Guzman-Martinez et al.,

2019; Lutshumba et al., 2021). Therefore, we speculated that

immune cell interactions may promote development of AD

and VD.

In conclusion, we used WGCNA analysis to mine modules

related to AD and VD, and identified target genes that may

regulate AD and VD. Using LASSO modeling, we showed that

these target genes could distinguish between AD and VD.

Furthermore, modules of WGCNA were significantly involved

in cAMP signaling pathway, suggesting genes of pathways may

be promote the cell death in AD andVD. However, this study had

some limitations. First, the study was based primarily on

bioinformatics analysis, while the experiments were not

validated, so we only offer theoretical conclusions. Second,

our sequencing data can discriminate was validated between

AD and VD, while the samples size was relatively small, so

studies with large sample sizes are warranted to affirm our

findings. Therefore, this study provided a theoretical basis for

discrimination between AD and VD, and provided new insight

for future studies.
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