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Breast cancer (BC) is one of the most common tumor types and has poor

outcomes. In this study, a ubiquitination-related prognostic signature was

constructed, and its association with immunotherapy response in BC was

explored. A list of ubiquitination-related genes was obtained from the

molecular signatures database, and a ubiquitination-related gene signature

was obtained by least absolute shrinkage and selection operator Cox

regression. The genes, TCN1, DIRAS3, and IZUMO4, had significant influence

on BC outcomes. Patients were categorized into two clusters—a high-risk

group with poor survival and a low-risk group with greater chances of

controlling BC progression. Univariate and multivariate Cox regression

analyses revealed that the risk signature was an independent prognostic

factor for BC. Gene set enrichment analysis suggested that the high-risk

group was enriched in cell cycle and DNA replication pathways. The risk

score was positively linked to the tumor microenvironment and negatively

correlated with the immunotherapy response. The IC50 values for rapamycin

were higher in the low-risk group, whereas those for axitinib, AZD6244,

erlotinib, GDC0941, GSK650394, GSK269962A, lapatinib, and

PD0325901 were higher in the high-risk group. Therefore, the

ubiquitination-related signature is considered a promising tool for predicting

a BC patient’s immunotherapy response.
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Introduction

Breast cancer (BC) is the predominant type of cancer in

women. The incidence rate of BC has risen steadily over the past

decades, affecting nearly 100,000 patients worldwide annually

(Britt et al., 2020; Sung et al., 2021). Currently, BC is commonly

treated with chemotherapy either alone or in combination with

other treatments. However, resistance to the available BC

chemotherapeutic drugs is growing. The TNM staging system

is widely used for assessing drug responsiveness, but it accounts

for only a portion of the survival variation in BC patients (Edge

et al., 2019). High-coverage and next-generation sequencing

technologies are very efficient and sensitive, making it possible

to compare whole-genome sequences of selected patients.

Therefore, a panel of robust genetic biomarkers would be

beneficial for improving the accuracy in estimating the

prognosis of BC patients.

Ubiquitination, the addition of a ubiquitin molecule to the

substrate, is an important function that involves a series of

adaptive mechanisms among strongly invasive, proliferating

cancer cells (Morrow et al., 2015). Ubiquitination regulates a

large repertoire of cellular functions and requires the presence of

an E3 ligase, which transfers ubiquitin (Ub) to substrates. The

control system determining the specificity of the process is closely

associated with carcinogenesis and tumor progression (Sun,

2006). Moreover, the ubiquitylation function may be directed

towards degradation by the proteasome (degradative

ubiquitylation) or towards altering the function (regulatory

ubiquitylation) (Bergmann, 2010). Ubiquitination could be

considered an essential hallmark of cancer; hence, it has been

extensively investigated in previous studies using statistical tests

and machine learning to integrate transcriptomics and

ubiquitination into the underlying molecular mechanisms,

with significant benefits (Popovic et al., 2014; Ge et al., 2018).

Aberrant ubiquitination could underlie some of the

heterogeneity of lung cancer, and drugs that target ubiquitin

could offer effective new cancer treatments (Che et al., 2022).

Thus, it is important to identify robust tumor-associated

ubiquitination biomarkers, which could not only improve BC

diagnosis and prognosis but also help develop novel therapeutic

strategies.

To investigate the impact of genetic alteration of

ubiquitination on BC, we explored the influence of

ubiquitination-related genes (URGs) on BC, identified new

prognostic groups, and constructed a predictive risk signature

based on URG function.

Methods

Data profiles

Raw transcription statistics (fragments per kilobase of exon

model per million reads mapped [FPKM] and count data) and

corresponding clinical information (age, sex, pathological stage,

TNM stage, survival time, and survival position) were

downloaded from the Cancer Genome Atlas (TCGA, https://

www.cancer.gov, BRCA project). The log2 transformation was

used to normalize the TCGA-BRCA cohort. We downloaded two

microarray datasets (GSE20685 and GSE25066) (Kao et al., 2011;

Baldasici et al., 2022) from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) and used them to

validate the cohorts. Batch effects among the TCGA-BRCA and

GEO datasets were eliminated by using the “ComBat”method in

the sva package from R. The BC models of Tang et al., Wu et al.,

and Hu et al. were used to test and demonstrate the advantages of

our ubiquitination-related prognostic signature (Tang et al.,

2020; Wu et al., 2020; Hu et al., 2022).

Consensus clustering analysis of
ubiquitination-related genes

Seventy-nine ubiquitination-related genes (URGs) were

downloaded from the MSigDB database (http://www.broad.

mit.edu/gsea/msigdb/), including gene symbol, official full

name, ensembl ID, and gene type (Supplementary File S1).

The R package ConsensusClusterPlus was used to conduct an

agreement-unsupervised clustering analysis to sort BCs into

distinct clusters according to the expression of URGs

(Supplementary File S2) (Wilkerson and Hayes, 2010).

Relationship betweenmolecular subtypes,
clinical features, and BC prognosis

To examine the medical value of the two subtypes identified

by harmony gathering, we compared the relationships between

the different molecular subtypes, clinicopathological

characteristics, and prognoses. Patient characteristics included

sex, age, and TNM stage. Differences in overall survival (OS)

between different subtypes were also evaluated using

Kaplan–Meier curves generated by the “survminer” and

“survival” R packages (Rich et al., 2010).
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Tumor microenvironment of
ubiquitination-related clusters

Immune cell infiltration was established using the MCPcounter

algorithm to evaluate the tumor microenvironment (TME) of

ubiquitination-related clusters (Becht et al., 2016). Differences in

immune and stromal cell types were identified using the limma

algorithm and presented with ‘violin’ plots (Ritchie et al., 2015). The

data are shown using the R packages, limma and MCPcounter.

Construction and authentication of a
predictive signature for BC

We normalized raw mRNA expression data from the TCGA-

BRCA project and, based on the differentially expressed genes

(DEGs) among ubiquitination-related clusters, we identified the

downstream genes influenced by URGs using the R limma

package (p < 0.05 and |log2 FC| > 1 denoted statistical

significance) (Ritchie et al., 2015). Univariate Cox regression

analyses were conducted to classify prognostic DEGs (p < 0.05).

Then, least absolute shrinkage and selection operator (LASSO)

regression analysis was performed to classify the prognostic

DEGs and build a predictive signature for BC (Tibshirani, 1997).

prognosis index PI( ) � ∑
n

i�1Coef i( )pExpr i( ).

BC patients fromTCGA-BRCAwere divided into low- and high-

risk subgroups based on the median TCGA-BRCA risk score. The

whole TCGA-BRCA dataset was set as a training subset, then half the

TCGA-BRCA patients were arbitrarily selected as the examination

subset. The R survival package was used to compare the survival

between the two groups using the Kaplan–Meier plotter in the

training and test subsections. In addition, receiver operating

characteristic (ROC) curves with area under the curve (AUC)

standards for 1-, 3-, and 5-year survival were used to evaluate the

prognostic ability of the ubiquitination-related signature for BC

(Hajian-Tilaki, 2013). The survival status of BC patients in the

TCGA-BRCA dataset is presented. Principal component analysis

(PCA) and t-distributed stochastic neighbor embedding (t-SNE)

analysis were used to evaluate the separation of low- and high-risk

BC (Ringnér, 2008; Belkina et al., 2019). To further address the

prognostic attributes of the signature, univariate andmultivariate Cox

regression analyses were performed to determine the independent risk

factors for BC, with covariates such as the risk score, age, and TNM

stages.

Establishment and verification of the
nomogram

To improve the prognostic value of the signature,

ubiquitination-related genes and new characteristics were used

to build a nomogram with the “rms” and “regplot” R packages

(Iasonos et al., 2008). The nomogram was used to predict the 1-,

3-, and 5-year survival rates of patients, and calibration curves

were used to assess the accuracy of the nomogram (Austin et al.,

2020). ROC and DCA analyses were performed to evaluate the

stability of the prognostic nomogram (Van Calster et al., 2018).

DEG identification and functional
annotation

To explore the potential cellular functions and enriched pathways

of genes downstream of URGs, functional enrichment analyses,

including GO and KEGG, were performed on the DEGs using the

“clusterprofiler” R package (Yu et al., 2012). Gene set enrichment

analysis (GSEA)was conducted for differentially enriched pathways in

low- and high-risk BC (Yu et al., 2012).

Subgroup analysis of low- and high-
risk BC

To determine the correlation between the ubiquitination-

related signature and the clinical characteristics, risk differences

between low- and high-risk BC were assessed in subgroups by

age, sex, clinical stage, tumor grade, and TNM stage. In addition,

the survival differences of low- and high-risk BC in different

subgroups were analyzed using Kaplan–Meier survival analysis.

The results are presented with significance set at p < 0.05.

TME and immunotherapy response
analysis of low- and high-risk BC

The correlation between ubiquitination-related signatures and

immunoregulatory genes, immune checkpoint genes, and various

types of immune cells was evaluated using Pearson’s coefficient. A

heatmap of immune cell infiltration in high- and low-risk BC was

generated using Timer, Xcell, Quantiseq, MCPcounter, EPIC, and

Cibersort procedures (Becht et al., 2016; Aran et al., 2017; Li et al.,

2017; Chen et al., 2018; Plattner et al., 2020; Racle and Gfeller, 2020).

Expression of the immunotherapy targets CD47 and CTLA4 was

determined, and TIDE and MSI scores were calculated to predict the

immunotherapy response. Potential anti-PD-1 treatment efficiency

was evaluated using the IMvigor 210 cohort (Balar et al., 2017).

Drug sensitivity evaluation of low- and
high-risk BC

The R package “pRRophetic” was used to predict drug

sensitivity in high- and low-risk BC patients (Geeleher et al.,

2014). The data were extracted from the GDSC database (https://
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www.cancerrxgene.org/), and the half-maximal inhibitory

concentration (IC50) was used as the index.

Cells and cell culture

Normal breast epithelial cells (MCF-10A) and cancer cells

(BT-549) were acquired from the American Type Culture

Collection (Manassas, VA, United States). The cells were

incubated with RPMI-1640 medium (Gibco, Carlsbad, CA,

United States), containing 10% fetal bovine serum (Gibco,

Carlsbad, CA, United States) and 1% penicillin-streptomycin

(Gibco, Carlsbad, CA, United States). All cells were cultured at

37°C with 5% CO2.

RT-qPCR

Total RNA was extracted from MCF-10 A and BT-549 cells

using TRIzol reagent (Invitrogen), and reverse-transcribed into

cDNA using PrimeScript® RT master mix (Perfect Real Time,

Takara Bio, Shiga, Japan). RT-qPCR was performed using the

qPCR master mix (Promega, Madison, WI, United States).

Reactions were performed in triplicate, and Ct values were

normalized to the endogenous housekeeping gene, β-actin,

using the 2−ΔΔCT method.

The primer sequences were as follows: 5′-GATTACCGC
GTCGTGGTAGTC-3′ (forward) and 5′-TCAATGGTCGGC
AGGTACTCA-3′ (reverse) for DIRAS3; 5′-GGAGCGACG
ACACGATGAAG-3′ (forward) and 5′-CAGCTCGTTGGG
GAAATACCC-3′ (reverse) for IZUMO4; 5′-CCCCTAGTG
GGGCTCTTACT-3′ (forward) and 5′-CAGAGGTTTTAG
GCGGATGTAG-3′ (reverse) for TCN1; and 5′-TGACGTGGA
CATCCGCAAAG-3′ (forward) and 5′-CTGGAAGGTGGA
CAGCGAGG-3′ (reverse) for β-actin.

Statistical analysis

We used the R software (version 4.0.3) to perform all

calculations and produce the statistical data. A p < 0.05 was

considered statistically significant.

Results

Data

The expression ranks of 79 URGs, obtained from the

Molecular Signatures Database (MSigDB) in the GSEA

database, were measured in BC and normal breast samples

from TCGA database using the Wilcoxon signed-rank test

(Supplementary File S1).

Identification of ubiquitination-related
clusters in BC

To understand how URGs are involved in tumorigenesis, we

used an agreement clustering algorithm to classify BC based on

the mRNA expression of 79 URGs (Supplementary File S2). In

our dataset, k = 2 was considered the best choice for organizing

the cohort into clusters 1 and 2 (Figure 1A). The consensus CDF

of consistent clustering (k = 2-9) is shown in Figure 1B. The

Kaplan–Meier curve revealed longer survival in cluster 1 BC than

in cluster 2 BC (p = 0.005; Figure 1C). In addition, the

clinicopathological topographies of the different BC subtypes

exhibited important differences in URG expression and

clinicopathological characteristics (Figure 1D). As shown in

Figure 1D, cluster 1 was preferentially related to a lower N

(p < 0.001) and T stage (p < 0.05) than cluster 2. The

MCPcounter study showed that immune cell infiltration,

including T-cell neutrophils, monocytic lineage cells, myeloid

dendritic cells, fibroblasts, and endothelial cells, was significantly

enriched in cluster 1 compared to that in cluster 2 (Figure 2).

Identification of gene clusters using DEGs

To determine the biological function of a ubiquitination pattern,

we identified ubiquitination subtype-connected DEGs using the R

package, limma.We examined the prognostic value of DEGs through

BC progression using univariate Cox regression analysis to determine

the potential relationship between the gene expression levels of the

patient and two clusters in terms of survival. The results confirmed

that 17 DEGs were associated with survival (p < 0.01) (Figure 3A).

Thus, PRAME,RAD54B, PXDNL,ACTL8, and JPH1were considered

high-risk genes (HR > 1), whereas NEK10, TPRG1, PLD4, IGFALS,

TCN1, CALML3, SPEF1, DIRAS3, SLC7A4, IZUMO4, VSIG2, and

NPAS1 were considered protective genes (HR < 1). We then used

LASSO Cox regression to classify the best risk score model for

predicting survival in patients with BC (Figures 3B, C). The

median risk score of patients with BC was identified as the

threshold. As the training subset, all the patients with BC

in TCGA-BRCA were divided into high- and low-risk groups.

There was a significant difference in OS between the high- and

low-risk groups according to the Kaplan–Meier curve (p < 0.001)

(Figure 3D). Similarly, for the test set, the randomly selected patients

(half of the total) with BC in TCGA-BRCA were divided into high-

and low-risk groups according to the median risk score. Consistent
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with the OS in the training set, a high survival probability was

observed in the low-risk group in the test set (Figure 3E).

ROC curve analysis of the BC prognosis
risk scoring model

To determine whether the BC signature was predictive, ROC

curves were generated. ROC curve analysis revealed a significant

prognostic effect for BC based on the risk model group, the AUC

values for 1-, 3-, and 5-year survival being 0.632, 0.628, and

0.614 in the training set and 0.643, 0.668, and 0.645 in the test set,

respectively (Figures 4A, B). Our survival and risk status maps

showed that the high-risk groups had more deaths than the low-

risk groups (Figures 4C,D). In addition, an important

difference was observed between the two clusters in terms of

ubiquitination-related transcription profiles through PCA and

t-SNE analysis (Figures 4E,F).

Independent validation of the signature’s
stability and advantages

To further corroborate the advantages and stability of our

ubiquitination-related signature, three breast cancer models

were selected for comparison. The models of Tang et al., Wu

FIGURE 1
Clinical pathology and prognostic value of two distinct subtypes of patients divided by consistent clustering. (A) Consensus matrix heatmap
defining two clusters (k = 2) and their correlation area. (B) Consensus CDF in consistent clustering (k = 2–9). (C) Survival curve showing overall
survival between C1 and C2. (D) Differences in clinical pathology features between the two clusters. C1, cluster 1; C2, cluster 2.

Frontiers in Genetics frontiersin.org05

Guo et al. 10.3389/fgene.2022.1038207

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038207


et al., and Hu et al. showed a lower C-index than our

signature (0.509, 0.598, and 0.645-0.646) (Supplementary

Figure S1). Consequently, we determined the K-M survival

and performed ROC analyses on the GSE20685 and

GSE25066 datasets. The results confirmed that the low-

and high-risk groups had a significantly different

prognosis in GSE20685 and GSE25066 (p = 0.006; p =

0.037). The two ROC analyses showed acceptable stability

for 1-, 3-, and 5-year OS (0.687, 0.647, and 0.636; 0.641,

0.656, and 0.632) (Supplementary Figure S1).

Structure and validation of the analytical
nomogram

The risk scores were identified as independent analytical

indicators using multivariate and univariate Cox regression

analyses (Figures 5A–D). Based on several clinical parameters

and risk scores, separate numerical probabilities for OS were

generated using a prognostic nomogram (Figure 5E). Through

calibration curves, the nomogram predicted 1-, 3-, and 5-year OS

well compared to the ideal model (Figure 5F). ROC curves were

FIGURE 2
Immune cell infiltration in the two clusters. Violin plot of endothelial cells, CD8+ T cells, cytotoxic lymphocytes, fibroblasts, monocyte lineage,
myeloid dendritic cells, neutrophils, NK cells, and T cells in the two clusters. C1, cluster 1; C2, cluster 2.
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used to evaluate the prognostic accuracy of the nomogram and

the other signatures. A high prognostic value was indicated by an

area under the ROC curve of 0.888 (Figure 5G). Compared to

risk, age, and stage, the nomogram produced a greater net benefit

in forecasting OS according to DCA (Figure 5H). Furthermore,

the nomogram demonstrated a better net benefit than age and

tumor stage, indicating its reliability and predictability.

Clinical utility and functional enrichment
analysis of the predictive signature

We also examined the association between ubiquitination-

related predictive factors and medical variables. A heatmap was

constructed to display the expression levels of the three signature

URGs in the high- and low-risk groups (Figure 6A). The low-risk

group had high expression levels of TCN1, DIRAS3, and

IZUMO4. Genes associated with ubiquitination-related

prognostic signatures were significantly enriched in biological

processes related to homeostasis (Figure 6B). KEGG analysis

revealed pathways related to immune function and cancer

(Figure 6C), suggesting that ubiquitination plays a pivotal role

in the immune regulation of the TME. To further explore this

mechanism, GSEA plots showed the presence of metabolic, cell

cycle, cell communication, and DNA replication pathways in the

high- and low-risk groups (Figures 6D, E).

The function of the important risk scores in disease progression

was assessed by evaluating the relationship between the risk score in

the predictive signature and clinicopathological features. High-risk

scores were associated with advanced M1 stages, T stages, and high-

grade tumors, suggesting a strong correlation between risk scores and

low prognosis in BC.High-risk scores were seen in themost advanced

clinicopathological stages, T4, stage IV, andM1 (Figure 7A). Next, we

performed survival examinations stratified by age, TNM stage, and

clinical stage to better estimate the survival consequences and

determine the broad applicability of the predictive signature

(Figure 7B). Patients in the high-risk group had significantly

shorter OS than those in the low-risk group for cases with N0

(p = 0.044), N1+3 (p = 0.001), clinical stages I and II (p = 0.001),

clinical stages III and IV (p = 0.024), T1+2 (p = 0.001), T3+4 (p =

0.015), age ≤65 (p < 0.001), and M0 (p < 0.001) (Figure 7B).

Calculation of TME and checkpoints
between the high- and low-risk groups

We assessed the correlation between risk scores and the

abundance of immune cells. The association of biomarkers of

FIGURE 3
Construction of ubiquitination-related signatures from different clusters in patients with BC. (A) Forest plot of 17 differentially expressed genes
between C1 and C2 identified as prognosis-related using univariate Cox analysis. (B,C) LASSO regression analysis and partial likelihood deviance of
nine differentially expressed genes between C1 and C2. (D,E) Survival curve of high- and low-risk groups (p < 0.001). (D) Training set, (E) test set.
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risk scores and immune cells is illustrated in Figures 8A, B Forty

immune checkpoint genes showed a significant correlation with

risk score. As shown in Figures 8C, D, the risk scores were

positively correlated with the monocytic lineage and negatively

correlated with cytotoxic lymphocytes, the B lineage, neutrophils,

endothelial cells, and fibroblasts. The association between the

proposed model and the numbers of immune cells was

investigated using the Xcell, Cibersort, Cibersort-ABS, EPIC,

MCPcounter, TIMER, and QuantiSeq algorithms, which

showed similar results (Figure 8E). CD47 and CTLA4 were

FIGURE 4
ROC curves and risk scores of the signature in predicting OS of patients with BC. (A,B) 1-, 3-, and 5-year ROC curves to evaluate the accuracy of
our model. (C,D)Distribution of risk scores and patient living status. (E,F) PCA and t-SNE analysis based on the prognostic model. High- and low-risk
patients are represented by red and blue dots, respectively, according to the URG score.
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FIGURE 5
Relationship between risk scores and clinical features. (A,B) Univariate and multivariate Cox analyses considering risk score, age, tumor stage,
and TNM stage in the training cohort. (C,D) Univariate and multivariate Cox analyses considering risk score, age, tumor stage, and TNM stage in the
test cohort. (E) Nomogram combining risk score and clinicopathological factors. (F) Calibration plots established to compare the proposed
nomogram with an ideal model. (G) AUCs showing that this nomogram had higher accuracy in OS than other factors. (H) Net benefit of the
proposed nomogram, risk group, age, and tumor stage.
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highly expressed in the high-risk group compared with the low-

risk group, implying that CD47 and CTLA4 expression strongly

correlated with higher risk (Figures 9A, B). A low-risk score was

also associated with high TIDE, dysfunction, exclusion, TAM

M2, and CAF scores, whereas a high-risk score was associated

with a high MDSC score (Figures 9C–I). Groups with low- and

high-risk samples were significantly correlated with

immunotherapy responses; high-risk BC patients showed

better therapy responses (Figure 9J).

Drug sensitivity analysis of high- and low-
risk groups

We evaluated the sensitivities of patients in the low- and

high-risk groups to chemotherapy drugs currently used to treat

BC. Rapamycin had a low IC50 value in patients in the high URG

score group, whereas axitinib, AZD6244, erlotinib, GDC0941,

GSK.650394, GSK269962A, lapatinib, and PD0325901 had low

IC50 values in patients in the low URG score group. The results

FIGURE 6
Relationship between clinical features and gene expression in high- and low-risk groups. (A) Heatmap of the two clusters along with
clinicopathological characteristics and differentially expressed genes. (B,C) GO and KEGG analyses of differentially expressed genes between high-
and low-risk groups. (D,E) Gene set enrichment analysis in the low-risk (D) and high-risk (E) groups.
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confirmed the validity of the ubiquitination-related signature in

predicting drug sensitivity (Figure 10).

RT-qPCR

Three genes that constituted the ubiquitination-related signature

were confirmed as prognostic biomarkers for BC (Figure 11A). Low

expression of DIRAS3, IZUMO4, and TCN1 correlated with poor BC

prognosis. RT-qPCR was used to measure transcription levels and

compare the mRNA expression of DIRAS3, IZUMO4, and TCN1 in

BC. The results demonstrated thatDIRAS3, IZUMO4, and TCN1 had

a lower expression in tumor cells than in normal breast epithelial cells

(Figure 11B). The present analysis shows thatDIRAS3, IZUMO4, and

TCN1 are suppressor oncogenes.

Discussion

BC is characterized by high heterogeneity, which may affect

its prognosis (Roulot et al., 2016). Early and small BC with

complicated clinical features makes diagnosis and treatment

difficult (Unger-Saldaña, 2014). At present, the major

challenges in treating BC are primary diagnosis, accurate

forecasting of tumor progression, and current treatment.

Therefore, it is essential to examine the biological features of

the disease and identify specific biomarkers that could enhance

the accuracy of prognosis prediction, inform treatment

personalization, and improve survival rates. With the

development of next-generation sequencing technology, we

can effectively study the related genetic characteristics and

determine their effect on risk (Behjati and Tarpey, 2013). This

will facilitate selection of the optimal treatment for individual

patients and help them achieve their treatment goals. To improve

the outcomes of patients with BC, it will be necessary to conduct

clinical trials to evaluate the benefits of incorporation of

preclinical results and application of molecular-guided

treatment. URGs are regulators of tumor cell cycle, gene

expression, and progression (Deng et al., 2020). However,

there is little understanding of the role of protein

ubiquitination in the BC microenvironment. Thus, URG in

the TME needs to be studied further.

FIGURE 7
Clinical correlation and stratification analyses of the signature. (A) Correlation between the risk score and TNM and tumor stages. (B) Stratified
survival analysis between high- and low-risk groups.
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FIGURE 8
Association of immune signatures and immune cell infiltration with risk score. (A,B) Correlation of immune signatures and risk score. (C,D)
Correlation of immune cell infiltration and risk score. (E) Clustering pattern of immune cell type in the high- and low-risk groups.
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Ubiquitination is a post-translational modification that plays

a major role in pathological and physiological processes

(Dougherty et al., 2020). Abnormally expressed genes have

been investigated in several studies. DERL1 acts as a vital

regulator via interaction with UBE2C during oncogenic

activities in BC (Zeng et al., 2020). One study uncovered

pivotal functions of Derlin-1 in the regulation of ER stress-

induced preventive control and ubiquitination by the

HRD1 E3 ubiquitin ligase prior to deprivation, suggesting an

important role of DERL1 in homeostasis (Kadowaki et al., 2018).

The present study showed that DERL1 was significantly

upregulated in BC and corresponded with a poor prognosis.

Furthermore, we found that UBA1, UBE2A, UBE2C, UBE2G1,

UBE2T, and WAC were significantly positively associated with

poor BC prognosis.

In our study, two ubiquitination clusters were constructed

and verified to improve BC outcome prediction. Cluster 1 was

associated with better BC prediction than cluster 2. Higher N and

T stages were observed in cluster 2 than in cluster 1, indicating

that the cluster 2 group may be associated with a higher tumor

stage of BC. Comparing immune cell infiltration in the two

clusters, we found that cluster 1 had the most infiltration of

endothelial cells, T cells, neutrophils, and myeloid dendritic cells.

The robust ubiquitination-related gene signature was then

verified by LASSO Cox regression analysis. Patients with a

low-risk score had better OS than those with high-risk scores;

1-, 3-, and 5-year ROC curves confirmed the positive

performance of the signature. Additional stratified existence

analyses of various medical subgroups also established the

signature’s robust predictive power. Multivariate and

univariate Cox analyses revealed that the signature had

independent predictive value. Using a nomogram model, we

improved the efficacy of the analytical signature by considering

age, risk scores, tumor stage, and TNM. This important model

showed excellent accuracy in predicting the survival rates of BC

patients. There were significant differences in immunocyte

penetration and immunologic function between the low- and

high-risk groups, and TME scores, immune checkpoints, and

FIGURE 9
Correlation analysis and differential expression of immune checkpoints and TME scores in the two groups. (A) Bar plot of CD47 expression in the
high- and low-risk groups and correlation of risk score and CD47 expression. (B) Bar plot of CTLA4 expression in the high- and low-risk groups and
correlation of risk score and CTLA4 expression. (C–I) Values of TIDE, MSI, Dysfunction, Exclusion, MDC, TAM M2, and CAF in the high- and low-risk
groups. (J) Comparison of the risk score in the CR/PR and SD/PD groups. CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease, ***p < 0.001.
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drug susceptibilities differed significantly between the two

groups.

In another experiment, we identified three specific genes

associated with the prognostic signature: TCN1, DIRAS3, and

IZUMO4. A prognostic model for lung adenocarcinoma based on

eight genes (TCN1, COL1A1, SPOK2, PCP4, S100P, CAV2,GPX3,

and ASPM) has been previously constructed (Tu et al., 2021).

Additionally, bioinformatics analyses have confirmed that the

mRNA expression of TCN1 was upregulated in common colon

cancer (Liu et al., 2020); both Yang’s study and our model

identified this gene. The expression of TCN1 was significantly

higher in the low-risk/high-survival group, than in the high-risk

group. Low TCN1 expression was associated with malignancy in

BC, suggesting that it should be further evaluated for its specific

predictive value. The expression levels of two other genes,

DIRAS3 and IZUMO4, were significantly higher in the low-

risk group than in the high-risk group and were also useful in

prognosis.

There are diverse models for breast cancer, based on

metabolic heterogeneity, stromal immune phenotype, diverse

cell-death patterns, cell necroptosis, plasmalogen deficiency,

overactive fatty acid elongation biomarkers, and 4-mRNA

metastasis-related genes (Xie et al., 2018; Zheng et al., 2020;

Tomida et al., 2021; Yu et al., 2021; Xie et al., 2022; Zou et al.,

2022). Yu et al. demonstrated that energy-related metabolic

features in BC were related to glycolytic activity and survival.

The clustering reflected intertumoral metabolic heterogeneity

and could be used to personalize therapeutic strategies (Yu et al.,

2021). In another study, 237 patients with triple-negative breast

cancer (TNBC) from real-world cases and 533 patients with

TNBC from public datasets were used to determine a stromal

immune phenotype for TNBC. According to the density of

FIGURE 10
Drug sensitivity analysis between high- and low-risk groups.
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stromal CD4+ T cells, γδ T cells, monocytes, M1 macrophages,

and M2 macrophages, TNBC patients were divided into immune

phenotypes, A and B, with different immune activities and

prognosis (Zheng et al., 2020). A BC gene signature based on

27 metastasis-associated DEGs was also identified. Its prognostic

ability was demonstrated and a nomogram was constructed

based on mRNA signature, T stage, and N stage (Xie et al.,

2018). Our signature revealed the heterogeneity of BC from the

standpoint of ubiquitination, and we confirmed that it could be

used as a tool to predict survival, immune activity, and therapy

response.

A previous study acknowledged a riskmodel group of eightURGs

that forecast risk for glioma (Wang et al., 2021). Several tumor-related

signaling pathways were augmented in the high-risk group. TFs were

also predicted to adjust the risk model for CD4 T cells and B cells;

URGs and neutrophils were related to the risk model. In another

study, FBXL6 played an important role in promoting hepatocellular

carcinoma owing to the ubiquitination and stabilization of

HSP90AA1, which contributed to tumorigenesis in hepatocellular

carcinoma (Shi et al., 2020). Various enzymes are involved in

ubiquitination, which can lead to cancer development; however,

the underlying mechanisms need to be researched further (Wang

et al., 2022). Ubiquitination is reversible, and de-ubiquitination can be

used in common tumor treatment. In a study on BC, the E3 ubiquitin

ligase, CHFR, was used to create double-strand breaks (DSBs)

through poly(ADP-ribose) or PAR. Additionally, ALC1

(amplification in liver cancer-1) plays an important role in

metastasis and invasion of BC, and poly(ADP-ribosyl)ated

PARP1 stimulated ALC1 at DNA damage sites, emphasizing that

the PBZ sphere of CHFR and PMD and Macro spheres of ALC1 are

essential for the PAR interface. The common ubiquitination of

ALC1 through CHFR is dependent on PARylation and directed to

the degradation of PARylated ALC1 (Wang et al., 2019).

Several cancers, including bladder cancer and glioma,

exhibited immune cell infiltration associated with URGs,

which can provide novel therapeutic targets. The common

ubiquitination-related subtypes showed significant differences

in immune cell infiltration, stromal scores, ESTIMATE scores,

and immune scores (Cai et al., 2021). According to the

investigation of the immune microenvironment in gliomas,

this risk grouping could be used as a guide for common

glioma immunotherapy. An association study between risk

ratings and immune cells showed that many immune cells

were closely associated with risk scores. Lastly, high-risk BC

patients showed higher expression levels of immune checkpoint

genes than low-risk BC patients (Tang et al., 2022).

FIGURE 11
Prognostic and RT-qPCR validation of DIRAS3, IZUMO4, and TCN1. (A) Kaplan–Meier survival analysis for DIRAS3, IZUMO4, and TCN1 in BC. (B)
RT-qPCR of DIRAS3, IZUMO4, and TCN1 in normal breast epithelial and BC cells.
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Six types of immune cells, including endothelial cells,

fibroblasts, cytotoxic lymphocytes, neutrophils, monocytic

cells, and B cells, were differentially expressed in different risk

groups. Among these cells, monocytic lineages, which had a low

survival rate, were significantly more abundant in the high-risk

group than in the low-risk group. There were differences in MSI

score, TIDE score, and immune checkpoint expression between

the high- and low-risk groups. High-risk BC was significantly

associated with low immune cell infiltration, which could support

the discovery of new therapeutic methods. Despite recent

advances in tumor immunotherapy, BC has not achieved

satisfactory therapeutic benefits, and the mechanism

underlying chemoresistance remains unclear; therefore, the

development of multimodal therapies and bio-integration

targets is necessary. The association between URG and BC

requires further investigation.

In summary, our study identified a three-URG signature

associated with immune infiltration and drug sensitivity. We

confirmed the analytical model using training and test sets. The

results showed that this signature could be used as a novel

biomarker in many fields and provide a personalized

treatment strategy for BC. The mechanism underlying URGs

is still unknown, however, and needs to be explored in future

studies.
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