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Background: Heart failure (HF) is not only a common complication in patients with
end-stage renal disease (ESRD) but also a major cause of death. Although clinical
studies have shown that there is a close relationship between them, the mechanism
of its occurrence is unclear. The aim of this study is to explore the molecular
mechanisms between HF and ESRD through comprehensive bioinformatics
analysis, providing a new perspective on the crosstalk between these two diseases.

Methods: The HF and ESRD datasets were downloaded from the Gene Expression
Omnibus (GEO) database; we identified and analyzed common differentially expressed
genes (DEGs). First, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and gene set variation analyses (GSVA) were applied to explore the potential
biological functions and construct protein−protein interaction (PPI) networks. Also, four
algorithms, namely, random forest (RF), Boruta algorithm, logical regression of the
selection operator (LASSO), and support vector machine-recursive feature
elimination (SVM-RFE), were used to identify the candidate genes. Subsequently, the
diagnostic efficacy of hub genes for HF and ESRDwas evaluated using eXtremeGradient
Boosting (XGBoost) algorithm. CIBERSORT was used to analyze the infiltration of
immune cells. Thereafter, we predicted target microRNAs (miRNAs) using databases
(miRTarBase, TarBase, and ENOCRI), and transcription factors (TFs) were identified using
the ChEA3 database. Cytoscape software was applied to construct mRNA−miRNA−TF
regulatory networks. Finally, the Drug Signatures Database (DSigDB) was used to identify
potential drug candidates.

Results: A total of 68 commonDEGs were identified. The enrichment analysis results
suggest that immune response and inflammatory factors may be common features
of the pathophysiology of HF and ESRD. A total of four hub genes (BCL6, CCL5,
CNN1, and PCNT) were validated using RF, LASSO, Boruta, and SVM-RFE algorithms.
Their AUC values were all greater than 0.8. Immune infiltration analysis showed that
immune cells such as macrophages, neutrophils, and NK cells were altered in HF
myocardial tissue, while neutrophils were significantly correlated with all four hub
genes. Finally, 11 target miRNAs and 10 TFs were obtained, and miRNA−mRNA−TF
regulatory network construction was performed. In addition, 10 gene-targeted drugs
were discovered.
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Conclusion: Our study revealed important crosstalk between HF and ESRD. These
common pathways and pivotal genes may provide new ideas for further clinical
treatment and experimental studies.
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Introduction

Heart failure (HF) is a common clinical cardiovascular disease that
affects more than 26 million people worldwide (Savarese and Lund,
2017). One of the most common causes of heart failure is ischemic
heart disease, which causes a loss of myocardial tissue and contractility
(Severino et al., 2020). At this stage, the main goal of the
pharmacological treatment of this disease is to relieve symptoms
and improve residual cardiac functions. The prevalence of HF
increases significantly as the renal function deteriorates (Silverberg
et al., 2004), reaching 65%–70% in end-stage renal disease (ESRD).
Conversely, the risk of HF is 15.8 times higher in patients with
progressive chronic kidney disease (Schefold et al., 2016). On the
other hand, abnormal renal function may affect the application of HF
therapeutic agents, increase the risk of nephrotoxicity in HF treatment,
and impair the patient’s response to diuretics. These results suggest
that several susceptibility factors in kidney diseases may trigger the
development of HF.

Studies have shown that the myocardium in patients with ESRD
exhibits characteristic changes, often accompanied by pathological
myocardial fibrosis and cardiac hypertrophy (Alhaj et al., 2013).
Recent scientific work has identified several possible
pathophysiological mechanisms, including hemodynamic
disturbances, excessive activation of the RAAS, water and
sodium retention, chronic inflammatory states, metabolic
acidosis, reduced cytokine clearance, insulin resistance, oxidative
stress, and post-translational modification of blood-borne
molecules such as lipoproteins (Zoccali et al., 2017; Rangaswami
and McCullough, 2018; Costanzo, 2020). At this stage, mechanistic
studies have mostly focused on the excessive activation of the
RAAS and thus cardiac remodeling (Dounousi et al., 2021).
Although some studies have found that abnormalities in

immune cells in ESRD patients promote cardiovascular disease,
the direct effects of abnormal ratios of immune cells in the blood
and alterations in inflammatory factors on the myocardial tissue in
ESRD patients are often overlooked. Despite there being strong
clinical and epidemiological evidence of the crosstalk between HF
and ESRD, the exact mechanisms explaining the coexistence of the
two diseases remain unclear. A better understanding of the
relationship between them is therefore essential for the
development of detection and management.

With the advancement of science and technology, bioinformatics
approaches have enabled us to gain a deeper understanding of the
biological processes of disease pathology at the genetic level. However,
the common diagnosis and interlinked genes in HF and ESRD are
unclear. Therefore, this study used bioinformatics methods to screen
the biomarkers, which may serve to provide new insights into the
biological mechanisms of these two diseases.

Materials and methods

Data source

We searched the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) for gene expression datasets using the terms
“heart failure” or “end stage renal disease.” The following criteria were
then used to further screen the dataset: 1) studies that included cases
versus healthy controls; 2) heart failure samples were obtained from
ischemic HF heart tissue; 3) ESRD samples were obtained from blood
samples; and 4) the sample size was greater than 30. Finally, GSE57338,
GSE5604, and GSE48116 were identified as HF datasets, and GSE37171,
GSE9709, and GSE67401 were identified as ESRD datasets. The
information on each dataset is summarized in Table 1.

TABLE 1 Summary of the four GEO datasets involving HF and ESRD patients.

Index GSE
number

Platform Sample Source type Disease Group

1 GSE57338 GPL11532 95 ischemic HF patients and 136 normal
subjects

Expression profiling by array HF Discovery
cohort

2 GSE5406 GPL96 108 ischemic HF patients and 16 normal
subjects

Expression profiling by array HF Validation
cohort

3 GSE48116 GPL9115 15 ischemic HF patients and 15 normal subjects Expression profiling by high-throughput
sequencing

HF Validation
cohort

4 GSE37171 GPL570 75 patients and 40 normal subjects Expression profiling by array ESRD Discovery
cohort

5 GSE97709 GPL17303 28 patients and 12 normal subjects Expression profiling by high-throughput
sequencing

ESRD Validation
cohort

6 GSE67401 GPL9115 58 patients and 22 normal subjects Expression profiling by high-throughput
sequencing

ESRD Validation
cohort

HF, heart failure; ESRD, end-stage renal disease.
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Identification of DEGs

In GSE57338 and GSE37171 datasets, gene expression was analyzed
for subsequent analyses, and the “limma” package (Ritchie et al., 2015)
was used to calculate the differentially expressed genes (DEGs), with
p-value <.05 and |log2 fold-change (LogFC)> 0.5 considered statistically
significant. Subsequently, the batch effects were removed using the
“ComBat” package for the next stage of the analysis. The “ggplot2” (Ito
and Murphy, 2013) and “pheatmap” packages were used to plot DEGs
for visualizing different datasets.

Enrichment analyses

To reveal the potential functions of common DEGs in HF and
ESRD, Gene Ontology (GO) (Carbon et al., 2009) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,
2000) analyses of common DEGs were performed to explore the
functions of DEGs. In the present study, a protein−protein interaction
(PPI) network of DEGs was constructed using the STRING database
(Szklarczyk et al., 2019).

Gene set variation analysis enrichment
analysis

We performed GSVA (Hänzelmann et al., 2013) enrichment
analysis using the “GSVA” R package to explore the potential
biological functions involved in HF and ESRD. The gene list of
pathways was collected by integrating the Molecular Signatures

Database (MSigDB, v7.0) (Subramanian et al., 2005).
p-values <.05 indicate the statistically significant differences.

Hub gene screening and validation by
multiple machine learning methods

We jointly used four algorithms, namely, random forest (RF)
(Alakwaa et al., 2018), Boruta algorithm (Kursa, 2014), logical
regression of the selection operator (LASSO) (Alhamzawi and Ali,
2018), and support vector machine-recursive feature
elimination (SVM-RFE) (Lin et al., 2012), to screen potential
marker genes in HF and ESRD datasets. RF algorithm is a
supervised machine learning algorithm that classifies features based
on their processing and variables. The Boruta package uses the Boruta
algorithm for significant feature gene extraction. The glmnet package
is used for LASSO regression, where the best λ is determined by the
least binomial deviation with tenfold cross-validation. SVM-RFE is a
supervised machine learning algorithm that ranks different features
based on differences in predictive power (Sanz et al., 2018). The
crossover genes obtained by four machine learning methods have high
accuracy in determining diagnostic gene signals (Gao et al., 2021).
Meanwhile, HF (GSE5406) and ESRD (GSE97709) validation datasets
were used to draw the expression of hub genes.

Evaluation of the hub gene diagnostic value

eXtreme Gradient Boosting (XGBoost) (Ogunleye and Wang,
2020) is a commonly used supervised integrative learning

FIGURE 1
Study design of this research.
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algorithm that can use the expression values of pivotal genes as the
feature values for XGBoost model training. First, we select the HF
dataset (GSE57338) and ESRD dataset (GSE37171) as the training sets,
and the evaluation is performed on the datasets of HF (GSE48116) and
ESRD (GSE67401). The prognostic efficiency was evaluated by the
receiver operating characteristic (ROC) curve, precision–recall (PR)
curve, and area under the curve (AUC).

Analysis of immune cell infiltration

We used the CIBERSORT package (Newman et al., 2015) to
quantify the level of immune cell infiltration in each sample and

to assess the effect of hub genes on immune infiltration in
the HF myocardial tissue. The Wilcoxon test was used to
analyze the immune scores, the “vioplotR” package was
employed to visualize the results, and p <.05 was considered
significant.

Construction of the miRNA−mRNA−TF regulatory network
The miRTarBase database (Chou et al., 2018), TarBase

database (Karagkouni et al., 2018), and ENOCRI database
(Li et al., 2014) were used to discover potential
miRNAs. Furthermore, we overlapped predicted target
miRNAs and constructed a miRNA–target gene regulatory
network. The ChIP-X Enrichment Analysis 3 (ChEA3)
(Keenan et al., 2019) verified the targets of TFs, and the top

FIGURE 2
Identification of common DEGs. (A) Heatmap of the top 50 DEGs in GSE57338. (B) Volcanic plots of GSE57338. (C) Heatmap of the top 50 DEGs in
GSE37171. (D) Volcanic plots of GSE37171. (E) Venn diagram of common DEGs in HF and ESRD. HF, heart failure; ESRD, end-stage renal disease.
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10 TFs were selected as target TFs. Cytoscape (Shannon et al.,
2003) was used to visualize the miRNA−mRNA−TF regulatory
network.

Evaluation of candidate drugs

The Enrichers platform was used to identify the relationship
between drug molecules and hub genes, and the data were obtained
from the Drug Signatures Database (DSigDB, http://tanlab.
ucdenver.edu/DSigDB). We retrieved potential drugs for the hub
genes.

Results

Identification of DEGs

The flow chart of the study design is shown in Figure 1. A total of
447 DEGs were found in the screened HF and healthy subjects in the
dataset GSE57338, including 250 upregulated and 197 downregulated
genes (Figures 2A, B). There were 5,299 DEGs in ESRD patients

compared to healthy controls, including 4,013 upregulated and
1,286 downregulated genes (Figures 2C, D). A total of 68 common
DEGs were identified after taking the intersection of the Venn
diagrams (Figure 2E).

Functional enrichment analyses and the PPI
network

The potential functions and pathways of these common DEGs
were detected through the GO and KEGG clustering analyses. The
GO term enrichment analysis includes biological processes (BPs),
cellular components (CCs), and molecular functions (MFs). In BP,
module genes were significantly enriched in immune receptor
activity, cytokine binding, cytokine receptor activity, protein self-
association, chemokine binding, chemokine receptor activity, and
G protein-coupled chemoattractant receptor activity. In MF,
module genes were significantly enriched in the cytokine-
mediated signaling pathway, response to the virus, T-cell-
mediated immunity, chemokine-mediated signaling pathway,
dendritic cell migration, and regulation of monocyte
chemotaxis. In CC, module genes were significantly enriched in

FIGURE 3
Enrichment analyses for common DEGs. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C) PPI network; the nodes represent proteins, and
the edges represent interactions. GO, GeneOntology; BP, biological processes; CC, cellular components; MF, molecular function; KEGG, Kyoto Encyclopedia
of Genes and Genomes; PPI, protein−protein interaction.
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the vesicle lumen, cytoplasmic vesicle lumen, and secretory
granule lumen (Figure 3A). KEGG analysis showed enrichment
in the cytokine−cytokine receptor interaction, viral protein
interaction with cytokine and cytokine receptor, chemokine
signaling pathway, human cytomegalovirus infection,
ferroptosis, TNF signaling pathway, and FOXO signaling
pathway (Figure 3B). KEGG analysis also showed that
processes such as immune factors and chemokine and immune
cell regulation were mainly enriched. We used the STRING online
server to construct a PPI network (Figure 3C)//.

GSVA enrichment analysis

The results of GSVA enrichment analysis revealed that immune-
related response, interferon gamma response, interferon alpha
response, and KRAS signaling DN were positively correlated with
HF (Figure 4A). Meanwhile, the high expression of adipogenesis,
DNA repair, and KRAS signaling DN were found to be related with
ESRD (Figure 4B).

Identification and validation of hub genes

RF, Boruta, LASSO, and SVM-RFE algorithms were used to
explore the hub genes shared in HF and ESRD. In the HF dataset,
31 genes were screened by RF algorithm (Figure 5A), 42 genes by
Boruta algorithm (Figure 5B), 21 genes by LASSO algorithm

(Figure 5C), and 57 genes by SVM-RFE algorithm after tenfold
cross-validation (Figure 5D). Eventually, 19 overlapping genes were
found in the HF dataset (Figure 5E). In the ESRD dataset, 30 genes
were found by RF algorithm (Figure 5F), 34 genes were found by
Boruta algorithm (Figure 5G), 19 genes were found by LASSO
algorithm (Figure 5H), and 35 genes were found by SVM-RFE
algorithm after tenfold cross-validation (Figure 5I). Finally,
13 overlapping genes were found in the ESRD dataset. In the
end, the SCN2B, BCL6, CCL5, CNN1, and PCNT genes were
found (Figure 5J).

We validated the expression of candidate hub genes in the HF
dataset (GSE5406) and the ESRD dataset (GSE97709), as shown in
Figures 6A, B. However, in the HF dataset, there was no significant
difference between the two groups in the expression of SCN2B.
Therefore, BCL6, CCL5, CNN1, and PCNT were defined as hub
genes in HF and ESRD. Surprisingly, CCL5 expression was
increased in HF tissues but decreased in ESRD blood samples.
To assess the diagnostic efficacy of the hub genes, we selected one
HF dataset (GSE57338) for training and another (GSE48166) for
validation. The performance of the training set showed that the
values of ROC and PR curves were 0.976 and 0.958 (Figure 7A),
respectively, and that of AUC was 0.924 and 0.92 for the validation
set (Figure 7B), which illustrated the diagnostic efficacy of the
model. To verify its ability to identify ESRD patients, we used the
ESRD dataset (GSE37171) for training (ROC = 0.996; PR = 0.998;
Figure 7C) and the ESRD dataset (GSE67401) for validation
(ROC = 0.886; PR = 0.724; Figure 7D), and the results are also
applicable and practical.

FIGURE 4
Functional and pathway analysis by GSVA enrichment analysis in HF and ESRD. (A) Significant related biological pathways in HF were obtained by GSVA.
(B) Significant related biological pathways in ESRD were obtained by GSVA. The blue bars represent high expression, and the green bars represent low
expression. HF, heart failure; ESRD, end-stage renal disease; GSVA, gene set variation analysis.
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FIGURE 5
Identification of the hub gene in HF and ESRD datasets. (A) RFmethod identified overlapping DEGs in HF datasets. (B) Boruta method identified common
DEGs in HF datasets. (C) LASSO method identified common DEGs in HF datasets. (D) SVM-RFE method identified 68 common DEGs in HF datasets. (E)
Intersection of common DEGs in HF by the four analyses. (F) RF method identified common DEGs in ESRD datasets. (G) Boruta method identified common
DEGs in ESRD datasets. (H) LASSO method identified common DEGs in ESRD datasets. (I) SVM-RFE method identified common DEGs in ESRD datasets.
(J) Intersection of common DEGs in ESRD by the four analyses.
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Analysis of immune infiltration in the HF and
normal groups

We used CIBERSORT to quantify the enrichment scores of
22 immune cell species and related functions in HF patients and the
normal population to explore the differences between myocardial
tissue and normal tissue immune cells in HF. The first bar graph
clearly shows the proportion of different immune cell
subpopulations in each sample (Figure 8A). Regarding the
correlation between immune cell subtypes, activated mast cells

and M1 macrophages (r = 0.49) have the most significant
positive correlation. In contrast, B memory (r = −0.57) cells
have the most significant negative correlation (Figure 8B). We
find significant differences between HF and normal tissues in
the 21 immune cell subpopulations. Therefore, the occurrence of
HF is closely related to abnormal immune cell infiltration, and
changes in the correlation between immune cells may be related to
the occurrence and development of HF (Figure 8C). Specifically, all
hub genes showed a remarkable correlation with neutrophil cells
(Figure 8D).

FIGURE 6
Validation of the hub genes in GSE5406 and GSE97709 datasets. (A) Expression levels in GSE5406 datasets. (B) Expression levels of the hub gene in
GSE97709 datasets. HF, heart failure; ESRD, end-stage renal disease; p-values are shown as *, p < 0.05; **, p < 0.01; ***, p < 0.001; ns, not significant.
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miRNA−mRNA−TF regulatory network
construction

A total of 385 miRNA gene pairs were obtained after mapping
by three experimentally verified miRNA target prediction
databases (Supplementary Tables S1–S3). Finally,
11 overlapping target miRNAs were regarded as key miRNAs.
The ChEA3 database was used to enrich TF targets of hub genes to
explore their distribution further. The results of
CHEA3 prediction showed that SCMH1 ranked the highest
among TFs of hub genes (Supplementary Table S4). The top
10 TFs are SCMH1, TEAD3, YBX3, HAND2, MYF6, ARNTL,
ZNF581, MYOD1, GLI2, and REXO4. Subsequently, we merged
the mRNA−miRNA−TF regulatory network with Cytoscape
software (Figure 9).

Screening for potential pharmacological
targets

We used the DSigDB database built on the Enrichr website to
search for target drugs for the hub genes. The target drugs for these
genes were predicted, and the potential pharmacological target
screening was downloaded. The top 10 drug candidates associated
with hub genes were selected based on p-values and adjusted p-values
(Table 2).

Discussion

Patients with HF have benefited from many trials, but patients
with ESRD are often excluded from these trials. However, there is little
evidence that the benefit of treatment for patients with heart failure
combined with advanced kidney disease is altered by the presence or
absence of kidney disease. Therefore, more direct evidence is needed to
clarify the link between heart failure and end-stage renal disease. In
this study, common DEGs and associated pathways between HF and
ESRD were explored by bioinformatics analysis. Enrichment analysis
revealed that immune and inflammatory responses might play an
essential role in HF and ESRD. These findings highlight that immune
mechanisms may play a key role in linking HF and ESRD
(Rangaswami et al., 2019). Immune cell activation is usually
accompanied by the production of inflammatory mediators, such
as cytokines, chemokines, and cellular immune receptors, which
directly or indirectly affect cardiomyocyte metabolism and promote
the development of cardiomyocyte hypertrophy and myocardial
fibrosis. GSVA showed that KRAS signaling and TNF-ɑ signaling
via NF-κB were positively correlated with both HF and ESRD. The
KRAS belongs to the Ras gene family, and the role of KRAS in
cardiovascular disease was less studied. However, studies have
shown a potential role in its association with cardiac cell
proliferation and pathological cardiac hypertrophy (Ramos-Kuri
et al., 2021). The NF-κB is a transcription factor that has crucial
roles in inflammation, cell proliferation, and immunity, and its

FIGURE 7
(A) XGBoost modeling in the HF training set (GSE57338). (B) Validation through the HF validation set (GSE48166). (C) XGBoost modeling in the ESRD
training set (GSE37171). (D) Validation through the ESRD validation set (GSE67401).
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activation contributes to the pathogenic processes of various
inflammatory diseases (Gordon et al., 2011; Song et al., 2019).

Four machine learning algorithms, namely, RF, Boruta, LASSO,
and SVM-RFE, were used to screen potential hub genes, and a total
of four hub genes were identified to elucidate the crosstalk between
HF and ESRD. The XGBoost machine learning model analysis
shows that they have a good prediction effect. BCL6 is a
transcriptional repressor with anti-apoptotic and pro-oncogenic
properties that was initially identified as an oncogene in non-
Hodgkin’s B-cell lymphoma. BCL6 is the most strongly
characterized inflammatory marker of cardiac aging and predicts
the decline in the LV filling rate from early to late stages (Ma et al.,
2015). BCL6 is also a regulator of immune cells, and Treg cells
lacking BCL6 are uniquely deficient in their ability to suppress
Th2 inflammation (Sawant et al., 1950). However, BCL6 may play a
role in protecting mature cardiomyocytes from eosinophilic
inflammation in myocardial tissue (Yoshida et al., 1999). In
cardiac fibroblasts, BCL6 may inhibit cardiac fibroblast
activation and function through direct binding to SMAD4 (Ni
et al., 2019).

CCL5/RANTES is a T-cell chemotactic agent that is essential
for the recruitment of leukocytes to the sites of inflammation, and
CCL5 serves as one of the natural ligands for CCR5, which binds to

form a family of secreted proteins involved in immune regulation
and inflammatory processes (Zeng et al., 2022). CCL5 is thought to
drive immune cell migration to the heart tissue of patients with HF,
and studies have also revealed an essential role of CCL5 in
ventricular remodeling. Stevenson et al. (2019) found
significantly increased levels of CCL5 in human hearts with
ischemic cardiomyopathy compared to non-failing hearts.
Batista et al. (2018) found that in chasmic cardiomyopathy,
CCL5 drives the migration of immune cells to myocardial tissue.
The protective role of CCL5 in kidney injury has been
demonstrated in other models of kidney disease (Krensky and
Ahn, 2007). We found that CCL5 expression was increased in
the HF dataset but decreased in the ESRD dataset. First, CCL5 in
the blood of ESRD patients is influenced by several factors, such as
hemodialysis, drug application, and other diseases (Naumnik et al.,
2013; Elmoselhi et al., 2016). Second, impaired immune cells in the
blood of patients with ESRD may lead to reduced expression of
CCL5 (Betjes, 2013). However, this still needs to be confirmed by
further studies.

CNN1 encodes a protein that plays a role in regulating and
modulating smooth muscle contraction (Takahashi et al., 1986). It
inhibits actin-activated myosin ATPase and Ca2+-dependent
migration of actin. It has therefore been identified as a critical

FIGURE 8
Analysis of immune cell infiltration. (A) Relative percentage of 22 immune cell subtypes. (B) Correlation heatmap of 21 immune cells. (C) Immune cells in
HF and normal samples. (D) Relationship between hub genes and immune cells related to HF. HF, heart failure; p-values are shown as *, p < 0.05; **, p < 0.01;
***, p < 0.001; ns, not significant.

Frontiers in Genetics frontiersin.org10

Bian et al. 10.3389/fgene.2022.1037520

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1037520


player in the stabilization of actin stress fibers (Liu and Jin, 2016)
and its role in cardiomyopathy, placental vascular development,
and development of tissue morphology has been revealed. A study
of human heart failure gene expression has shown downregulation
of CNN1 expression in heart failure, which is consistent with our
findings (Tan et al., 2002). In contrast, basic studies found that
CNN1 plays an essential role in DCM ventricular remodeling and
can inhibit the progression of dilated cardiomyopathy in mice
through εPKC signaling (Lu et al., 2014). PCTN is a
multifunctional scaffolding protein that binds to various
centrosomal proteins (Kim et al., 2019). PCTN regulates many
centrosomal functions, such as controlling cell cycle progression,
mitotic spindle organization and orientation, and directed cell
division. Some studies have shown that it is associated with the
development of congenital heart disease (Liang et al., 2020).
However, the specific mechanism of the role of CNN1 and
PCNT in renal diseases is not well understood and still to be

revealed. While our study showed that CNN1 and PCNT are
associated with neutrophils and plasma cells, we speculate that
it may be related to the differentiation and activation of immune
cells in the HF myocardial tissue.

Abnormal immune cells are an important basis for immune
dysfunction. Although the quantitative changes and pathway
activation/inhibition of these subtypes are not well studied in
HF, our study further clarifies the relevant directions. The
expression of macrophages, CD4+ T cells, NK cells, plasma cells,
and neutrophils in myocardial tissue is significantly different from
the normal tissue (Li et al., 2021). Consistent with previous
findings, M2 macrophages are reduced in heart failure
myocardial tissue, which in turn increases cardiac apoptosis and
myocardial CD4+ T-cell accumulation (Stevens et al., 2022). In
contrast, neutrophils exert a deleterious function in an
experimental model of heart failure induced by too much
pressure (Liu et al., 2021). This finding is consistent with the
underlying mechanism of action of neutrophils, which can be
involved in the development of multiple cardiovascular diseases
through the release of degranulation and recruitment of
microvesicles. Therefore, changes in these cell subtypes play an
important role in the process of immune response in HF and have
significant prognostic and therapeutic value.

It is well known that miRNAs mainly control gene expression,
while TFs are involved in target gene transcription. We identified
11 target miRNAs and 10 associated transcription factors to further
understand the hub gene associations. Some miRNAs, such as miR-
30b-5p (Ren et al., 2021), miR-30a-5p (Qian et al., 2022), and miR-
155-5p (Wang et al., 2022), can play a role in the pathological process
of HF. The expression of BCL6 can be regulated by the transcription
factors TEAD3, MYF6, ARNTL, ZNF581, MYOD1 and GLI2, and
TEAD3 (Han et al., 2020). GLI2 (Voronova et al., 2012) plays an
essential role in embryonic myocardial development and
cardiomyogenesis. Meanwhile, to predict potentially effective
therapeutic agents, we applied the DSigDB to identify 10 possible
therapeutic agents. Among them, vitamin E can reduce the activation
of inflammatory factor NF-қB, which leads to cytokine/chemokine
and mast cell activation, and has been confirmed in related studies
(Tettamanti et al., 2018). However, the molecular pathways and

FIGURE 9
Construction of the hub gene−miRNA network and the target
gene−TF network.

TABLE 2 Candidate drugs of hub genes in the DSigDB.

Index Name p-value Adjusted p-value Odds ratio Combined score

1 Vitamin E CTD 00006994 0.001621 0.049809 36.80624 236.4658

2 Raloxifene CTD 00007367 0.006732 0.049809 28.23392 141.1963

3 Benzene CTD 00005481 0.005436 0.049809 31.6199 164.8915

4 Dasatinib CTD 00004330 0.003648 0.049809 38.992 218.8838

5 Phorbol 12-myristate 13-acetate CTD 00006852 0.003381 0.049809 40.57173 230.8336

6 Digitoxigenin PC3 UP 0.003381 0.049809 40.57173 230.8336

7 AGN-PC-0JHFVD BOSS 5.38E-04 0.04018 104.7989 788.9822

8 Astemizole MCF-7 UP 4.41E-04 0.04018 115.9357 895.7003

9 Vanadic sulfate CTD 00001628 3.64E-04 0.04018 128.0065 1,013.741

10 Etoposide HL-60 UP 3.19E-04 0.04018 136.9034 1,102.189
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potential therapeutic compounds screened by our bioinformatics
approach still need further validation by cellular experiments and
clinical samples.

Conclusion

To conclude, we identified BCL6, CCL5, CNN1, and PCNT as hub
genes between HF and ESRD. This finding contributes to
understanding the close interrelationship in the development of
ESRD and HF. This study also provides some theoretical basis for
the possible search of new drug targets and developing new
therapeutic approaches.
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