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Osteonecrosis of the femoral head (ONFH) is a potentially disabling orthopedic

condition that requires total hip arthroplasty in most late-stage cases. However,

mechanisms underlying the development of ONFH remain unknown, and the

therapeutic strategies remain limited. Growth factors play a crucial role in

different physiological processes, including cell proliferation, invasion,

metabolism, apoptosis, and stem cell differentiation. Recent studies have

reported that polymorphisms of growth factor-related genes are involved in

the pathogenesis of ONFH. Tissue and genetic engineering are attractive

strategies for treating early-stage ONFH. In this review, we summarized

dysregulated growth factor-related genes and their role in the occurrence

and development of ONFH. In addition, we discussed their potential clinical

applications in tissue and genetic engineering for the treatment of ONFH.
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1 Introduction

Osteonecrosis of the femoral head (ONFH) is a degenerative disease of the hip characterized by

microfractures of the subchondral bone and subsequent collapse of the femoral head, resulting in

hip dysfunction (Guerado and Caso, 2016; Liu et al., 2019). Because the femoral head is completely

collapsed in 80% of untreated patients, ONFH has become one of the most severe challenges for

orthopedic surgeons (Seamon et al., 2012). More than 20,000 new cases of ONFH are reported

annually in the United States of America, and the prevalence of ONFH continues to increase

(Hungerford, 2002;Mont et al., 2020). The incidence of ONFH is 1.4 per 100,000 population in the

UnitedKingdom, which is similar to that reported in Japan (1.9 per 100,000 population) (ZhangQ.

X. et al., 2021). InChina,more than eightmillion individuals havebeen cumulativelydiagnosedwith

ONFH (Zhao et al., 2020). Many factors are involved in the development of ONFH, including

genetic factors, trauma, alcoholism, long-term or high-dose treatment with glucocorticoids, long-

term diving, sickle cell disease, and other environmental factors (Mont et al., 2015;Wei et al., 2019).

However, the exact mechanism underlying the development of ONFH remains largely unknown.

With this regard, scholars have proposed various theories, including intravascular coagulation

(Wang et al., 2010; Kumar et al., 2014), disorders of lipid metabolism (Zeng et al., 2017), increased

intraosseous pressure (Mukisi et al., 2009), osteocyte apoptosis (Jilka et al., 2013), genetic
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polymorphisms (Zheng et al., 2014), and immune factors (Tian et al.,

2014). Therefore, it is important to understand the pathogenesis of

ONFH for its prevention, diagnosis, and effective treatment. Clinically,

the treatment of early-stage ONFH is mainly restricted to physical

interventions, pharmacotherapy, surgical core decompression (CD),

porous tantalum rod implantation, osteotomy, and vascularized bone

grafting (Zhaoet al., 2020).However, the results of thesehippreservation

techniques are unsatisfactory (Sadile et al., 2016). After collapse, total hip

arthroplasty (THA) remains the only treatment strategy for relieving

pain and restoring joint functionality (Migliorini et al., 2021). Although

surgical methods and biomaterials have been developed for THA, the

expensive treatment cost, huge surgical trauma, serious complications

such as periprosthetic infection and aseptic loosening, and limited

survival of the prosthesis remain serious challenges (Pollock et al.,

2016; Molloy et al., 2017; Swarup et al., 2018). Given these

difficulties, it is essential to develop new treatment modalities to

delay or reverse ONFH.

Vascular endothelial growth factor (VEGF), bone

morphogenetic proteins (BMPs), transforming growth factor

(TGF), insulin-like growth factor (IGF), hepatocyte growth

factor (HGF), platelet-derived growth factor (PDGF), and

fibroblast growth factor (FGF) are growth factors that play a

significant role in regulating cell differentiation, apoptosis,

morphogenesis, embryogenesis, angiogenesis, wound healing,

hematopoiesis, inflammation and infection, tumorigenesis, and

immunity in humans (Kempen et al., 2010; Goel and Mercurio,

2013; Rijcken et al., 2014; Mitchell et al., 2016). Increasing

evidence suggests that growth factors can regulate bone

development and regeneration and are directly involved in the

pathogenesis of numerous orthopedic conditions, such as

intervertebral disc degeneration, osteoarthritis, osteoporosis,

and osteosarcoma (Zhang et al., 2017; Huang et al., 2018;

Morris and Edwards, 2021; Zhong et al., 2021). Several recent

studies have suggested that growth factors are involved in the

development of ONFH. In addition, the pathological condition of

ONFH is characterized by fibrosis and inflammation, which are

associated with several growth factors that affect osteoblast

activity (Zhu et al., 2017). Scholars have developed novel

therapeutic modalities for ONFH based on the unique

advantages of growth factors.

In this review, we summarized dysregulated growth factor-

related genes and their pathogenic role in ONFH and discussed

the potential applications of growth factors or related genes for

the treatment of ONFH.

2 Association between the
polymorphisms of growth factor-
related genes and osteonecrosis of
the femoral head

Studies have elucidated the genetic factors of ONFH,

suggesting an alternative hypothesis to the development of the

disease. Several ONFH susceptibility genes have been discovered

in multiple populations. In this section, the association between

the polymorphisms of growth factor-related genes and ONFH is

summarized in Table 1.

2.1 Vascular endothelial growth factor

VEGF is a major angiogenic factor and prime regulator of

endothelial cells, which regulates endothelial cell proliferation,

maintains endothelial cell function, and promotes vascular

regeneration (Atis et al., 2012). The human VEGF gene is

located on chromosome 6p21.3 and is alternatively spliced by

eight exons to form a family of proteins. It has more than

30 single-nucleotide polymorphisms (SNPs), with

10 polymorphisms in its promoter region; among which,

polymorphisms at the VEGF −634G/C, +936C/T,

and −2578C/A have been shown to alter plasma VEGF levels

(Andraweera et al., 2013; Chedraui et al., 2013). In addition, these

polymorphisms can influence the etiology of various pathological

conditions such as diabetic retinopathy (Awata et al., 2002; Yang

et al., 2020), prostate cancer (McCarron et al., 2002; Yang et al.,

2020), and breast cancer (Krippl et al., 2003).

Insufficient blood supply to the femoral head has been

suggested as a pathogenic mechanism of ONFH (Zhao K.

et al., 2021). Several studies have investigated the relationship

between polymorphisms in the VEGF gene and the risk of

ONFH; however, the results are inconsistent and

contradictory. Kim et al. (2008) focused on the 5′-
untranslated region (UTR), a promoter region, and the 3′-
UTR of VEGF for genetic analysis of ONFH. They examined

the genotypes and allele frequencies of three SNPs

(−2578C>A, −634G>C, and +936C>T) in the VEGF gene in

317 patients with ONFH and 497 control individuals in a Korean

population. They identified a significant association between

the −634G>C polymorphism and the risk of ONFH; however,

the genotypes and allele frequencies of +2578C>A and −936C>T
polymorphisms between the two groups of patients were not

significantly different. Further stratified analysis based on sex

showed that the −634G>C genotype was significantly associated

with a high risk of ONFH among male patients. In addition, the

allele frequency of the C allele of −634G>C in female patients was

similar to that in male patients; however, the allele frequency was

not significantly different between female and control patients.

This result can be attributed to the small number of female

patients in the study. Liu et al. (2012) evaluated the association

between the VEGF −634G/C polymorphism and ONFH in

220 unrelated patients with nontraumatic ONFH and

220 unrelated control individuals in a Chinese population.

Their results suggested that the VEGF −634G/C CC genotype

is a risk factor for ONFH.

Previous studies have only focused on the relationship

between polymorphisms in the VEGF gene and nontraumatic
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ONFH and have not addressed the specific etiology. Lee et al.

(2012) investigated the association between steroid-induced

ONFH and functional VEGF gene polymorphisms (−2578A/

C, −1154A/G, −634C/G, and −405C/G) in 160 patients

(86 idiopathic ONFH and 74 steroid-induced ONFH) and

160 sex- and age-matched control individuals in a Korean

population. Low-inducing VEGF haplotypes (C-G-G-C and

A-G-G-C) conferred increased risk, whereas high-inducing

haplotypes (C-G-C-G and A-A-G-G) had a protective effect

on the development of steroid-induced ONFH. In the study,

patients with ethanol-induced ONFH were excluded because

chronic ethanol exposure can increase VEGF expression. Ma

et al. (2018) analyzed 22 SNPs in VEGF in 1,762 Chinese

individuals (489 patients with ONFH and 1,273 control

individuals) and found that the −634C/G SNP was

significantly associated with alcohol-induced ONFH but not

with steroid-induced ONFH. In addition, the −634C/G SNP

was found to be associated with the disease status of ONFH.

Some SNPs, such as −2578A/C and −1154A/G, which have been

shown to be significantly associated with ONFH in other studies,

were found to be only surrogates of −634C/G.

2.2 Insulin-like growth factor-1

IGF-1, a polypeptide containing 70 amino acid residues, is

found in almost all tissues in mammals and can accelerate cell

proliferation and differentiation, functioning as a mitosis

promoter for many types of cells (including osteoblasts)

(Liu et al., 2018). Several studies have shown that IGF-1

polymorphism is associated with various human diseases,

such as acne severity (Rahaman et al., 2016), diabetes

(Wang et al., 2022), and gastric cancer (Meisami and

Jalilvand, 2020). In addition, IGF-1 can affect bone tissues

via several pathways, mainly involving osteogenesis and bone

metabolism (Gao et al., 2015). Dysregulation of IGF-1 may

lead to osteoblast aging and metabolic bone diseases

(McMichael et al., 2017). In an animal study, IGF-1-

knockout mice had smaller cytoskeletons and fewer cells

than wild-type mice. In addition, the osteoblasts of IGF-1-

knockout mice were more predisposed to apoptosis, and their

osteogenic ability was significantly weakened (Sabokbar et al.,

2016). Furthermore, IGF-1 expression is closely related to

tissue repair in ONFH (Chen et al., 2008). In a study on rabbits

with steroid-induced ONFH, IGF-1 was measured via

enzyme-linked immunosorbent assay at 4, 8, and 16 weeks,

and the results revealed that IGF-1 expression began to

increase 4 weeks earlier than the appearance of abnormal

bone marrow tissue in rabbits (Saygun et al., 2012; Xu

et al., 2021).

Wang et al. (2019) investigated the genetic association

between the IGF-1 polymorphisms rs35767, rs5742714, and

rs972936 and susceptibility to ONFH among the Han Chinese

population (101 patients with ONFH and 128 healthy

individuals). Significant differences were observed in the three

polymorphisms between ONFH and control groups. The results

suggested that the IGF-1 polymorphisms rs35767 and

rs5742417 play a protective role in ONFH susceptibility,

whereas the polymorphism rs972936 enhances the risk of

ONFH among the Han Chinese population.

A few previous studies have reported on familial ONFH, and

most of them focused on the gene locus of COL2A1 (Kishiya

et al., 2014). Xu et al. (2021) reported two first-degree relatives

with ONFH and analyzed ONFH-related genes via whole exome

sequencing (WES). They found a heterozygous mutation

(c.15+3G>A) in IGF1 in the family, resulting in incorrect site

recognition and abnormal mRNA splicing of the gene, leading to

an abnormal quantity or structure of amino acids. Therefore,

TABLE 1 The association of the growth factor related genes polymorphisms with ONFH.

Growth factor-related gene SNP Risk association Patient population Reference

VEGF −634G/C Risk Korean population 317 patients, 497 healthy individuals Kim et al. (2008)

−634G/C Risk Chinese population 220 patients, 220 healthy individuals Liu et al. (2012)

−634C/G Risk Chinese population 489 patients, 1,273 healthy individuals Ma et al. (2018)

IGF-1 rs35767 Protective Chinese population 101 patients, 128 healthy individuals Wang et al. (2019)

rs5742714 Risk

rs972936 Risk

c.15+3G>A Risk Two first-degree relatives with ONFH Xu et al. (2021)

IGFBP-3 rs2453839 Risk Korean population 60 patients, 300 healthy individuals Hong et al. (2010)

rs2453839 Risk Chinese population 49 patients, 42 healthy individuals Song et al. (2012)

rs3110697 Risk Chinese population 182 patients, 179 healthy individuals Song et al. (2016)

rs2453839 Risk

rs2132572 Risk Chinese population 200 patients, 177 healthy individuals Song et al. (2017)
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mutant IGF1 may be the disease-causing gene in the family. In

addition, this finding reveals that IGF-1 is a potential marker for

the pathogenesis and molecular diagnosis of ONFH.

2.3 Insulin-like growth factor binding
protein 3

The insulin-like growth factor binding protein 3 (IGFBP-3)

gene is located on chromosome 7p12.3 and is a member of the

IGFBP family. It is a significant carrier of serum IGF-1 and

inhibits IGF-1 activity by competitively binding to ligands

(Yamada et al., 2010). IGFBP-3 forms a ternary complex with

IGF acid-labile subunit and either IGF-1 or IGF-2. In this form, it

circulates in plasma, prolonging the half-life of IGFs and altering

their interaction with cell surface receptors (Ceda, 1995; Dar

et al., 2010; Moya-Angeler et al., 2015).

IGFBP-3 polymorphisms are correlated with tumor risk but

are rarely involved in orthopedic diseases. A recent study showed

that an adenovirus vector containing IGFBP-3 complementary

DNA inhibited the activity of nuclear factor kappa B (NF-κB),
production of chemokines, and secretion of matrix

metalloproteinases in cultured fibroblast-like synovial cells and

a mouse model of collagen-induced arthritis (CIA). In addition,

the vector decreased the severity of arthritis and pathological

changes in mice, suggesting that IGFBP-3 may reduce

inflammatory bone lesions (Lee et al., 2014).

In 2010, Hong et al. (2010) first reported that the

polymorphism rs2453839 in the IGFBP-3 gene and high

IGFBP-3 levels in serum were closely associated with the

risk of ONFH in a Korean population. Subsequently, in

2012, Song et al. (2012) validated that the genotypes of

IGFBP-3 rs2453839 correlated with the increased risk of

bilateral hip lesions in 49 patients with ONFH and

42 healthy individuals in a Chinese population. In 2016,

Song et al. (2016) further demonstrated that the genotypes

of both rs3110697 and rs2453839 were associated with a

higher risk of ONFH and the clinical stage of ONFH in a

case-control study involving 361 patients (the study did not

include any patient from their previous study). Initially, they

analyzed the association between ONFH development and the

genotypes, allele frequencies, and haplotypes of rs2453839 and

rs3110697. The results showed that the recessive model of

rs3110697 and the dominant model of rs2453839 were

significantly associated with an increased risk of ONFH.

Furthermore, the correlation between IGFBP-3

polymorphisms and the clinical phenotypes of ONFH was

analyzed, which revealed that the CT genotype of rs2453839 is

a risk factor and the CC and TT genotypes of rs2453839 are

protective factors for the progression of hip lesions in ONFH.

In addition, the serum protein expression of IGFBP-3 and

IGF-1 was closely related to IGFBP3 function, and both serum

IGFBP-3 and IGF-1 levels were significantly higher in the

ONFH group than in the control group. Serum IGF-1 levels

were significantly lower in patients with bilateral hip than in

patients with unilateral hip lesions, suggesting the possible

role of IGF-1 in the progression of hip lesions in ONFH. In the

following year, Song et al. (2017) further revealed the

association between the genotype of IGFBP-3

rs2132572 and the risk of ONFH in a case-control study

involving 370 patients.

3 Association between growth
factor-related signaling pathways
and osteonecrosis of the femoral
head

3.1 TGF-β signaling pathway

The TGF-β superfamily comprises a large group of growth

factors, such as TGF-β, activins, inhibins, growth and

differentiation factors (GDFs), and BMPs (Peng, 2003). Among

these factors, TGF-β is an essential cytokine involved in the

function and metabolism of osteoblasts, which can promote

osteoblast mitosis, reduce collagen loss, increase the rate of

bone deposition, and promote osteoblast differentiation (Wu

et al., 2016). In addition, TGF-β signaling is involved in most

cellular processes, especially in the early proliferation,

differentiation, maturation, and apoptosis of osteoblasts (Chen

et al., 2012). At present, TGF-β is a major focus of research on

osteogenesis-related signaling pathways (Sun et al., 2018). Smad

proteins are intracellular kinase substrates of the TGF-β receptor

and are responsible for the signal transduction of BMPs and TGF-

β during osteogenesis and chondrogenic differentiation (Zhang,

2018). TGF-β signaling regulates osteoclast development and

osteoblast differentiation in ONFH (Rahman et al., 2015).

Experimental studies have validated the association between the

TGF-β/Smad signaling pathway and ONFH. Li et al. (2020)

reported a significant decrease in TGF-β1 expression in femoral

head specimens collected from adult patients with nontraumatic

ONFH, which indicates the involvement of the abnormal TGF-β/
Smad pathway in the pathological process of ONFH. Furthermore,

TGF-β-related signaling pathways may serve as therapeutic targets

for nontraumatic ONFH (Tao et al., 2017). Studies have shown

that regulation of the TGF-β signaling pathway by non-coding

RNAs contributes to the development of ONFH. Tian et al. (2020)

examined the femoral head tissues of 33 patients with steroid-

induced ONFH and 33 patients with femoral neck fracture via

immunohistochemical analysis, RT-PCR, and western blot. The

results revealed that miR-141 expression was high and TGF-β2
expression was low in the femoral head tissues of patients with

ONFH, and TGF-β2 was identified as a direct target ofmiR-141. In

addition, a rat model of ONFH was constructed by injecting

hormones, and the relationship between miR-141 and TGF-β2
in ONFH was further validated through animal experiments.
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Decreased expression of miR-141 or overexpression of TGF-β2
inhibited apoptosis in bone cells of rats with ONFH; increased the

expression of osteoprotegerin (OPG), B-cell lymphoma 2 (Bcl-2),

BMP-2, and runt-related transcription factor 2 (Runx2); and

decreased the expression of osteoprotegerin ligand (OPGL), Bcl-

2-associated X (Bax), and receptor activator of NF-κB (RANK) in

the femoral head tissues of rats with ONFH.

The Smad7 protein acts as an intracellular inhibitory protein

that antagonizes signal transduction among the TGF-β family

members (Lukas et al., 2017). Fang et al. (2019) demonstrated

that miR-15b expression was low in bone marrow-derived

mesenchymal stem cells (BMSCs) of patients with ONFH,

which significantly upregulated the protein expression of

Smad7 and inhibited the TGF-β signaling pathway, eventually

weakening the osteogenic differentiation ability of BMSCs. In

addition, Bai et al. suggested that miR-27a regulates steroid-

induced ONFH via TGF-β/Smad7 signaling (Bai et al., 2019).

Therefore, aberrant regulation of the TGF-β/Smad7 signaling

pathway may be a potential mechanism underlying the increased

risk of ONFH (Hao et al., 2021).

Regulation of TGF-β-related signaling pathways can effectively

inhibit osteoblast apoptosis, accelerate osteogenic differentiation,

and promote bone repair and regeneration in ONFH. The

abovementioned studies offer a theoretical basis for further

investigation of the pathogenesis, etiology, and treatment of ONFH.

3.2 Bone morphogenetic protein signaling
pathway

BMPs belong to the TGF-β superfamily, a group of highly

conserved homologous signaling proteins that are involved in

embryogenesis, organogenesis, cell proliferation, and stem cell

differentiation (Li et al., 2016). To date, approximately 20 BMPs

have been identified and characterized, including various isoforms

from BMP2 to BMP16, which regulate bone formation and

development (Tian et al., 2015). BMP signaling is transduced

through type I (BMPRI) and type II (BMPRII) receptors, which

interact to form a functional complex to initiate further signaling

pathways (Koenig et al., 1994). On the one hand, activated BMPRI

phosphorylates Smad-dependent signaling pathways (Bao et al.,

2015), and regulation of the BMP-2/Smad/Runx2 pathway

increases or decreases bone mass during bone tissue growth. In

addition, the BMP-2/Smad/Runx2 pathway participates in bone

formation and reconstruction, osteogenic differentiation of stem

cells, maturation of osteoblasts, and secretion and mineralization of

the extracellular matrix (Cui et al., 2017). On the other hand, BMP

receptors activate non-Smad-dependent signaling pathways,

namely, the p38 mitogen-activated protein kinase (MAPK),

extracellular signal-regulated kinase (ERK), and c-Jun N-terminal

kinase (JNK) signaling pathways (Guicheux et al., 2003).

Subsequently, BMP signaling stimulates the expression of the

main osteogenic transcription factors Runx2, distal-less

homeobox 5 (Dlx5), and osterix (Osx) (Lee et al., 2003).

Therefore, the BMP signaling pathway plays a critical role in

inducing osteogenesis.

Studies have demonstrated that miR-23a-3p is the most

significantly upregulated miRNA in patients with ONFH,

which is significantly downregulated during osteogenic

differentiation (Dong et al., 2017). Overexpression of miR-

23a-3p inhibits and its downregulation enhances the

osteogenic differentiation of BMSCs (Dai et al., 2019).

Consistent with previous studies, Zhang X. Y. et al. (2021)

reported that miR-23a-3p expression was significantly

increased in rat models of ONFH. In addition, miR-23a

knockdown promoted the viability and osteogenic

differentiation of BMSCs and increased the mRNA and

protein expression of BMP-2, BMP-4, Runx2, Smad5,

Wnt1, and β-catenin in BMSCs and rat models of ONFH.

Changes in the expression of these factors regulated the BMP-

2/Smad5/Runx2 and Wnt/β-catenin pathways.

In addition to the suppression of osteogenic differentiation,

endothelial dysfunction may significantly contribute to the

progression of ONFH. Huang et al. (2022) reported that the

protein expression of BMP-2/6/7 and Smad-1/5/8 was decreased

in femoral head tissues with glucocorticoid (GC)-induced

osteonecrosis and GC-stimulated bone microvascular

endothelial cells (BMECs). However, silencing of GREM2, a

specific antagonist of BMP-2, reversed the suppressive effects

of GC on BMP-2/6/7 and Smad-1/5/8. Therefore, the BMP

signaling pathway is involved in the development of ONFH

and can be targeted to prevent the progression of ONFH.

SCHEME 1
Therapeutic application of growth factors for ONFH.
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4 Therapeutic applications of growth
factors for osteonecrosis of the
femoral head

Osteogenic and angiogenic-related growth factors are promising

tools for treating hip preservation in ONFH. In this section, we

summarize the potential applications of growth factors or related

genes for the treatment of ONFH (Scheme 1).

4.1 Tissue engineering

To improve the regeneration of bone tissue in conventional

treatment, growth factors can be combined with bone tissue

engineering materials during surgery to achieve effective bone

regeneration and osteoinduction. The combination of different

growth factors and tissue engineering materials for the treatment

of ONFH has been summarized in Table 2.

TABLE 2 The different growth factors combined with genetic engineering strategies for treating ONFH.

Therapeutic
strategy

Growth
factor

Animal Associated
cells

Delivery strategy Regeneration results Reference

Tissue engineering VEGF Rabbits BMSCs LiCPP/GM/VEGF
scaffold + CD

Improved osteogenesis and angiogenesis
Contributed to bone repair in GIONFH

Luo et al. (2019)

BMP-2 +
VEGF

Rabbits BMSCs BMP/VEGF/PLGA/CPC
scaffold + CD

Enhanced bone reconstruction and blood
vessel regeneration

Zhang H. X. et al. (2016)

BMP-2 Pigs BMSCs BMP-2 +
RADA16 hydrogel

Controlled the dissemination of biologically
active BMP-2 Stimulated the growth of
BMSCs

Phipps et al. (2016)

rhFGF-2 Rabbits — rhFGF-2 + gelatin
hydrogel

Increased new bone formation and
prevented the femoral head from collapsing
Increased the Harris hip score Reduced the
pain level

Kuroda et al. (2010) and
Kuroda et al. (2016)

Genetic
engineering

BMP-2 Goats BMSCs BMP-2-transduced
BMSCs + β-TCP + CD

Increased the volume of new bone Improved
mechanical properties

Tang et al. (2007)

BMP-2 Rabbits BMSCs BMP-2-transduced
BMSCs + magnesium
alloy rods

Recovery with normal running ability Katiella et al. (2016)

VEGF-165 Dogs BMSCs VEGF-165-transduced
BMSCs + CD

Increased new bone formation and
neovascularization

Hang et al. (2012)

HGF Rabbits BMSCs HGF-transduced BMSCs
+ CD

Enhanced blood vessel regeneration and
bone reconstruction Recovery with
decreased empty lacunae and hematopoietic
tissue

Wen et al. (2008) and
Wen et al. (2012b)

FGF-2 Rabbits BMSCs FGF-2-transduced
BMCSs/XACB + CD

Improved OPG expression Inhibited TNF-α
expression Promoted angiogenesis and bone
formation

Peng et al. (2018),
Zhang et al. (2018) and
Peng et al. (2019)

PDGF-BB Rabbits BMSCs PDGF-BB-transduced
BMCSs + CD

Reduced the progression of osteonecrosis
Enhanced bone regeneration and
angiogenesis

Guzman et al. (2021)

BMP-2 +
VEGF

Rabbits BMSCs VEFG/BMP-2-transduced
BMSCs + CD

Elevated the number and quality of new
bones Accelerated bone repair

Ma et al. (2015)

BMP-2
+ FGF

Dogs BMSCs BMP-2/FGF-transduced
BMSCs + DBM

Improved neovascularization density
Increased compressive and bending
strength

Peng and Wang (2017)

BMP +
VEGF

Rats ASCs BMP-2/VEGF-transduced
ASCs

The optimal ratio of BMP-2-to-VEGF for
enhancing both osteogenesis and
angiogenesis was 9:1

Lee et al. (2019)

Other strategies rhBMP-2 — — rhBMP-2 + light bulb
procedure

Improved the clinical efficacy and quality of
bone repair

Sun et al. (2014) and Shi
et al. (2017)

VEGF Dogs — Single injection and
osmotic micropump

Enhanced bone tissue remodeling and new
bone formation

Dailiana et al. (2018)

BMP-2 Pigs — BMP-2 + IB Decreased femoral head deformity
Stimulated bone formation

Vandermeer et al.
(2011) and Aruwajoye
et al. (2017)

BMP-2 Rats MC3T3-E1 BMP-2/nanofiber scaffold
+ LIPUS

Improved load-carrying capacity, bone
formation, angiogenesis, and differentiation

Zhu et al. (2020)
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4.1.1 Scaffolds
CD and bone grafting are effective measures for the clinical

treatment of pre-collapsed ONFH (Brown et al., 1993; Kang et al.,

2007; Chen et al., 2009). However, therapeutic outcomes are

usually unsatisfactory because the functions of osteoblasts,

osteocytes, and osteoclasts are impaired and the adipogenic

potential of BMSCs is upregulated during the development of

ONFH (Sheng et al., 2007; Xie et al., 2011). Bone tissue

engineering has made rapid progress in recent years and may

offer new therapeutic avenues for ONFH. Bone repair and

vascular regeneration in ONFH are associated with various

growth factors such as BMP and VEGF (Street et al., 2002;

Kerachian et al., 2006; Yu et al., 2010; Garcia et al., 2012).

Therefore, scholars are using the combination of bone tissue-

engineered scaffolds and growth factors to promote bone repair

and angiogenesis, thereby alleviating or reversing ONFH. Luo

et al. (2019) synthesized a novel calcium polyphosphate (CPP)

composite scaffold containing Li and VEGF-loaded gelatin

microspheres (LiCPP/GMs/VEGF). The porous LiCPP/GMs/

VEGF scaffold had good mechanical properties that met the

strength requirements of cancellous bone (2–12 MPa). The

scaffold continuously released Li+ and VEGF, showing

favorable cell biological activity. When the scaffold was added

to BMSC cultures, it significantly increased cell proliferation,

osteogenesis, and angiogenesis. Furthermore, the scaffold

stimulated the expression of osteogenic and angiogenic factors

to alleviate ONFH in vivo in a rabbit model of ONFH. These

results suggest that the LiCPP/GMs/VEGF scaffold improves the

efficacy of CD and has potential value for the treatment

of ONFH.

Many studies have demonstrated that the combined use of

BMP and VEGF is superior to the use of either factor and plays a

synergistic role in promoting bone regeneration and

vascularization (Grellier et al., 2009; Bai et al., 2014).

Compared with the use of only VEGF, the combined use of

BMP and VEGF increases bone mineral density and significantly

enhances new bone formation (Chen et al., 2020). Zhang H. X.

et al. (2016) used bone tissue engineering to combine BMP and

VEGF for the treatment of ONFH and synthesized a novel

calcium phosphate (CPC) composite scaffold containing

BMP–VEGF-loaded poly-lactic-co-glycolic acid (PLGA)

microspheres (BMP-VEGF-PLGA-CPC). The combination of

BMP and VEGF synergistically promoted the adhesion,

proliferation, osteogenic and angiogenic capabilities of BMSCs.

Furthermore, rabbits with ONFH in the BMP-VEGF-PLGA-

CPC group exhibited active osteogenesis and angiogenesis and

higher recovery in bone necrosis. However, the pure CD group

exhibited poor osteogenic and angiogenic activity and few

changes in bone necrosis. Therefore, the combined application

of CD and growth factors can improve blood circulation to the

femoral head and promote the formation of new bones,

potentially restoring the load function and preventing the

collapse of the femoral head (Figure 1).

4.1.2 Hydrogels
Injectable hydrogels offer a potential strategy for controlling

the dissemination of biological molecules in vivo (Branco and

Schneider, 2009; Gelain et al., 2010). Certain hydrogels, based on

their composition, allow for minimally invasive delivery via

injection, quickly transition from a solution to a gel in

response to stimuli in the local environment, and are

biodegradable. Therefore, hydrogels are ideal drug delivery

vehicles (Hatefi and Amsden, 2002). Although hydrogels have

been used for drug delivery in many studies, the infusion of a

hydrogel into the femoral head has been less studied. Phipps et al.

(2016) evaluated the potential of a peptide-based, self-assembling

hydrogel called RADA16 to transition from a solution to a gel

after its infusion into the femoral head, thereby preventing

backflow, and examined its potential use as a delivery vehicle

for BMP-2. After infusion, RADA16 was spread throughout the

trabecular network of the femoral head and formed a gel in situ,

with a slight leakage of the hydrogel. The bioactivity of BMP-2

was similar in cells treated with fresh BMP-2 and those treated

with RADA16 hydrogels, indicating that the use of RADA16 did

not alter the bioactivity of delivered proteins under certain

conditions. In addition, the proliferation of BMSCs was

significantly higher on RADA16 hydrogels than on tissue

culture plastic, indicating that RADA16 offered a suitable

matrix for supporting cellular proliferation. This novel

strategy may be beneficial for the treatment of ONFH.

FGF-2 is a pleiotropic regulator of the proliferation,

migration, and differentiation of cells in bone tissues and the

vasculature and has anabolic effects on angiogenesis and bone

formation (Nugent and Iozzo, 2000). Studies have shown that

FGF-2 in gelatin hydrogels can be released consistently at

relatively low concentrations (Nguyen et al., 2015). FGF-2

delivered via gelatin hydrogels has therapeutic potential in

ischemic limb and heart injury and bone formation for

fracture repair (Nakajima et al., 2004; Zhou et al., 2021).

Therefore, FGF-2 encapsulated within gelatin hydrogels offers

a promising strategy for the treatment of ONFH. Kuroda et al.

(2010) investigated the potential effects of recombinant human

FGF-2 (rhFGF-2) on bone repair in a rabbit model of ONFH. The

treatment group was administered a single local injection of 100-

μg rhFGF-2 in 100-μl gelatin hydrogel microspheres into the

femoral head. The control group was administered phosphate-

buffered saline in 100-μl gelatin hydrogel microspheres.

Morphological, histopathological, and radiologic analyses

showed the collapse of the femoral head and progression of

articular cartilage degeneration in the control group 16 weeks

after the injection. However, rhFGF-2 treatment resulted in new

bone formation in the femoral head and prevented the femoral

head from collapsing.

Furthermore, Kuroda et al. (2016) evaluated the safety and

clinical outcomes of a single local injection of gelatin hydrogels

impregnated with rhFGF-2 for treating the pre-collapse stage of

ONFH. Patients with ONFH were administered a single local
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injection of 800-μg rhFGF-2 encapsulated within gelatin

hydrogels and were followed up for 1 year. During the follow-

up period, there were no complications related to either surgery

or treatment with hydrogels, and all patients recovered without

problems. Moreover, all clinical scores related to pain, daily

activity rating, and hip joint functions significantly improved

postoperatively. Therefore, local administration of rhFGF-2 was

safe. This method offers the crucial advantage of being a

minimally invasive percutaneous technique that facilitates

early return to society and promotes bone regeneration in

necrotic areas (Figure 2). Therefore, with further development,

it can become a valuable treatment strategy for the pre-collapse

stage of ONFH because it can be performed any time before the

femoral head collapse, regardless of the cause.

4.2 Genetic engineering

During bone repair, the body is often unable to meet the

requirements of growth factors owing to its limited ability to

synthesize and secrete. Moreover, exogenous growth factor

implantation is ineffective and works for a limited period.

Therefore, some scholars have used gene therapy as a tool to

deliver growth factors to treat osteonecrosis. With gene

modification, genes related to osteogenic induction factors can

be introduced to target cells, and the genetically modified cells

can continuously express growth factors. This method allows the

release of endogenous growth factors continuously and stably

and targets the cells as required to promote osteogenesis and

maintain the phenotype of osteoblasts. The combination of

different growth factors and genetic engineering strategies for

the treatment of ONFH has been summarized in Table 2.

4.2.1 Bone morphogenetic protein
Bone regeneration can be achieved using various bioactive

molecules with different efficiency. BMPs are a type of critical

bioactive molecules involved in bone regeneration. They can

initiate the complete bone formation cascade, including the

migration and differentiation of MSCs (Wozney, 2002). BMP-

2 exhibits excellent osteogenic potential and has shown efficacy

in a series of clinical trials on spinal surgery and trauma

orthopedic treatment (Rivera et al., 2013). However, a high

FIGURE 1
(A): SEM micrographs of the surface (a), interior (b), and morphological features and microstructure of the BMP-VEGF-PLGA-CPC scaffold (c).
(c) Interconnected micropores located on the porous walls of macropores in the scaffold (denoted by the arrowhead). BMSCs on PLGA-CPC
scaffolds (d), BMP-PLGA-CPC scaffolds (e), VEGF-PLGA-CPC scaffolds (f) and BMP-VEGF-PLGA-CPC scaffolds (g). (B): Rabbits undergoing CD (a)
followed by implantation of scaffolds into the bone defect (b and c). (C): Micro-CT evaluation of 3D reconstruction after 6 and 12 weeks of
surgery. Reprinted with permission from Zhang H. X. et al. (2016).
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dose of BMP-2 is required for systemic administration, which

results in adverse complications such as ectopic bone formation

and inflammatory responses (Shields et al., 2006).

In addition to bioactive molecules, BMSCs have been the

subject of extensive research related to bone regeneration.

BMSCs are characterized by their self-renewal and

differentiation capability and can differentiate into osteoblasts,

adipocytes, endothelial cells, and chondrocytes (Yim et al., 2014;

Ruiz et al., 2016). Therefore, BMSCs are involved in normal bone

metabolism and are considered ideal seed cells for cell therapy of

various human orthopedic diseases (Liu et al., 2014). BMP-

transfected MSCs possess better osteogenic potential than

primary MSCs. The expression of BMPs and osteogenic and

vascular trophic factors is significantly upregulated in BMP-

modified MSCs (Hsieh et al., 2018; Kim et al., 2018).

Tang et al. (2007) investigated the effectiveness of

adenovirus-BMP-2-transduced BMSCs for the treatment of

ONFH. They induced ONFH via liquid nitrogen in goats and

implanted the β-TCP scaffolds/gene-modified BMSCs in goats

after CD. After 16 weeks of implantation, there was a femoral

head collapse in the untreated group but not in the treated group,

in which the femoral heads had an average density and intact

surface. In addition, new bone, fibrous tissue, and lamellar bone

were formed in the macropores of the scaffold, and the

regenerated bone tissue had better mechanical properties.

Katiella et al. (2016) reported that implantation of the

BMSC–BMP-2 composite on magnesium alloy rods into

rabbits prevented experimentally induced ONFH. After

12 weeks of implantation, all rabbits in the experimental

group resumed normal activities without apparent visceral

injury. In addition, macroscopic observations revealed that the

femoral head of rabbits in the experimental group maintained

normal contour and shape, and histological analysis revealed that

the treatment group had better-arranged trabecular structures,

inconspicuous boundary of the implantation area, and near-

normal cancellous bone at the implantation site. Therefore,

BMSCs transfected with BMPs can improve bone repair

in ONFH.

4.2.2 Vascular endothelial growth factor
Owing to its potent angiogenesis, VEGF has been widely and

intensively investigated to promote vascularization in bone tissue

engineering. Studies have shown that VEGF participates in the

initial phase of ONFH (Varoga et al., 2009). Therefore, strategies

for promoting vascular reconstruction should be developed to

improve bone repair in ONFH.

VEGF-165 is the primary secreted form of VEGF in humans

and the central effector molecule that exhibits strong potential for

the proliferation and angiogenesis of undifferentiated endothelial

cells in vitro (Solovyeva et al., 2020). Hang et al. (2012)

FIGURE 2
Controlled release of rhFGF-2 for the treatment of ONFH. (A): Pre-operative planning. (B): Preparation of rhFGF-2-encapsulated gelatin
hydrogel. (C): Pieces of the rhFGF-2-encapsulated gelatin hydrogel. (D): Intra-operative fluoroscopic imaging after drilling. (E): Percutaneous
administration of the gelatin hydrogel. Reprinted with permission from Kuroda et al. (2016).
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established a canine model of ONFH through femoral neck

osteotomy and subsequent repinning. After CD, BMSCs

transfected with VEGF-165 were implanted into the canine

models. After 12 weeks of implantation, histological analysis

revealed that the periosteum of the femoral head in the

transgenic group was smooth, the chondrocytes were arranged

in order, the bone trabeculae were complete and arranged in

order, and the osteoblasts within trabeculae were visible. In

addition, immunofluorescence staining for von Willebrand

factor revealed that the transgenic group had the most

pronounced neovascularization in the necrotic area above the

plane of osteotomy, with a significant increase in vascular

density. However, the number of blood vessels did not

increase in the necrotic area after implantation of non-

transgenic BMSCs.

Previous studies have demonstrated that GCs downregulate

VEGF expression in primary osteoblasts, and the loss of VEGF

may contribute to the initial stage of GIONFH (Varoga et al.,

2009). Therefore, VEGF plays a critical role in ONFH treatment

and can be used as a therapeutic target.

4.2.3 Hepatocyte growth factor
HGF is secreted by MSCs and acts as a multi-functional

cytokine. It stimulates mitogenesis, cell motility, and matrix

invasion, thus playing a central role in angiogenesis,

tumorigenesis, and tissue regeneration (Makarevich et al.,

2012). It suppresses cell apoptosis in an oxygen-poor

environment (Vogel et al., 2010) and induces the osteogenic

differentiation of BMSCs (Wen et al., 2018). HGF exerts its

effects by binding to its receptor c-Met. HGF at different

concentrations has different mechanisms to regulate the

proliferation and osteogenic differentiation of MSCs. At low

concentrations (20 ng/ml), HGF preferentially promotes the

osteogenic differentiation of MSCs by increasing the

expression and phosphorylation of c-Met and activating the

Akt pathway. However, at high concentrations (100 ng/ml),

HGF strongly induces proliferation by activating the ERK1/

2 signaling pathway (Wen et al., 2012b). Wen et al. (2008)

reported that in vitro transfection of BMSCs with replication-

deficient recombinant adenoviral vectors expressing the human

HGF gene (Ad-HGF) increased the concentration of HGF to

133 ng/ml after 1 week of transfection, which decreased to 19 ng/

ml after approximately 2 weeks. This change in concentration

rapidly increased HGF concentration after injury, which

promoted the proliferation of BMSCs to produce the

appropriate number of cells required for tissue regeneration.

The subsequent decrease in HGF concentration promoted the

differentiation of BMSCs for tissue repair. In addition, hormone-

induced ONFH and traumatic ONFH models were constructed

to validate that HGF-transfected BMSCs can repair bone tissue in

ONFH in vivo (Wen et al., 2012a).

HGF can induce the secretion of VEGF by activating its

receptor c-Met, followed by activation of the ERK1/2 and Akt

signaling pathways (Van Belle et al., 1998; Wojta et al., 1999;

Dong et al., 2001; Sengupta et al., 2003). In addition, it can

promote angiogenesis to repair bone tissue in ONFH.

4.2.4 Fibroblast growth factor
FGF plays a pivotal role in bone homeostasis (Novais et al.,

2021). Disruption of the FGF gene dramatically decreases bone

formation and bone mass in mice (Montero et al., 2000). In

addition, FGF performs many desirable functions, including

upregulation of VEGF in osteoblasts and activation of the

proliferation, migration, and osteogenic differentiation of

MSCs (Saadeh et al., 2000; Xiao et al., 2010; D’Mello et al., 2015).

The imbalance between bone regeneration by osteoblasts and

bone resorption by osteoclasts contributes to the occurrence and

development of ONFH (Tan et al., 2012). OPG and receptor

activator of NF-κB ligand (RANKL) are critical factors for

osteoclast differentiation, and bone resorption can directly

affect bone cell function. OPG reduces the production of

osteoclasts by binding to RANKL (Walsh and Choi, 2014).

Furthermore, tumor necrosis factor-alpha (TNF-α) is a

significant cytokine regulating bone homeostasis. On the one

hand, it causes osteoclastogenesis by activating osteoclasts. On

the other hand, it inhibits osteogenic differentiation, thereby

destroying bone tissue (Osta et al., 2014). Peng et al. (2018) and

Peng et al. (2019) combined FGF-transfected BMSCs with

xenogeneic antigens of cancellous bone (XACB) to generate

tissue-engineered bone (XACB/FGF/BMSCs) and implanted

these BMSCs into the necrotic region of rabbits with early

ONFH after CD. After 3, 6, and 12 weeks of implantation, the

expression of OPG and RANKL was significantly increased in the

femoral head. However, the expression of TNF-α remained low

for up to 12 weeks after transplantation. Histological analysis

showed that numerous new bone trabeculae were found, which

were not clear with normal bone boundaries, and the repaired

bone was similar to the normal cancellous bone.

Zhang et al. (2018) combined FGF-overexpressing BMSCs

with XACB to construct tissue-engineered bone, which

effectively promoted vascular regeneration and improved bone

repair in ONFH. Therefore, FGF-transfected BMSCs are

promising gene therapy tools for bone repair in ONFH.

4.2.5 Platelet-derived growth factor-BB
PDGF is a glycoprotein with five dimeric isoforms: PDGF-

AA, PDGF-BB, PDGF-AB, PDGF-CC, and PDGF-DD (Zhang Z.

et al., 2021). Among the five isoforms, PDGF-BB is especially

pleiotropic (Wang et al., 2018). Secretion of PDGF-BB by

preosteoclasts increases the migration of MSCs and

endothelial progenitor cells through the PI3K/Akt/FAK

pathway and the differentiation of osteoblasts through the

Sphk1/S1P pathway (Xie et al., 2014). PDGF-B is a ligand of

platelet-derived growth factor receptor-beta (PDGFR-β), and
their binding activates PDGF-BB/PDGFR-β signaling (Andrae

et al., 2008), which is critical for vasculogenesis or angiogenesis
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(Su et al., 2020). Studies have shown that modifying circulating

PDGF-BB levels can benefit patients with osteoporosis and other

age-related diseases (Zaidi et al., 2021). The lack of PDGF-BB

secretion by preosteoclasts is associated with bisphosphonate-

related osteonecrosis of the jaw (BRONJ) in rats treated with

zoledronate, which can be reversed with local PDGF-BB

supplementation (Gao et al., 2021). In addition, PDGF-BB has

beneficial immunomodulatory effects (Zhang J. M. et al., 2016).

Owing to the pleiotropy of PDGF-BB, some scholars have used it

for the treatment of ONFH (Tsubosaka et al., 2021). Guzman

et al. (2021) transducedMSCs with a lentiviral vector carrying the

human PDGF-BB gene under the control of the

phosphoglycerate (PGK) promoter and assessed the

proliferative rate, PDGF-BB expression, and osteogenic

differentiation capacity in vitro. In addition, they evaluated

the therapeutic effects of the transduced MSCs by injecting

them into the bone tunnel during CD in an in vivo rabbit

model of steroid-associated ONFH. The results showed that

PDGF-BB-overexpressing MSCs accelerated cellular

proliferation and osteogenic differentiation in vitro.

Additionally, augmentation of CD with PGK-PDGF-BB-MSCs

increased bone mineral density, osteoclastogenesis, and

angiogenesis in the rabbit model. Therefore, PGK-PDGF-BB-

MSCs as an adjunct to CD may reduce the progression of

osteonecrosis and enhance bone regeneration and angiogenesis

in the treatment of early-stage ONFH.

4.2.6 Gene co-modification
During bone tissue repair in ONFH, the formation of new

bone and interconnected blood vessels should be promoted,

which enables nutrient transfer, oxygen exchange, waste

removal, and the regulation of cellular signaling (Wan et al.,

2020). Consequently, in addition to BMSCs transfected with a

single gene, functional co-modification of BMSCs with

synergistic genes may be more beneficial for the treatment

of ONFH.

Ma et al. (2015) observed the therapeutic effects of BMSCs

modified with VEGF-165 and BMP-2. They combined

arthroscopic CD and transplantation of the modified BMSCs

into the femoral head. After 8 weeks of surgery, the bone defect in

the femoral head was repaired, bone quality was improved, and

the duration of bone repair was shortened. This combination

method improved the high intraosseous pressure and the

pathological state of bone microcirculation obstacles. In

addition, it provided seed cells for reconstruction of the

femoral head to promote bone repair in ONFH. Peng and

Wang (2017) combined BMP-2- and FGF-transfected BMSCs

with a demineralized bone matrix (DBM) to repair bone tissue in

a canine model of ONFH. After 12 weeks of implantation of

DBM seeded with the engineered BMSCs into the necrotic

femoral head, the newly generated bone area,

neovascularization density, and compression and bending

strength parameters in the treated group were superior to

those in the control group.

However, the effectiveness of the combined gene transfer and

the optimal combination ratio of two or more genes remain

unknown. This information is essential because an excess of

either factor may lead to undesirable and, occasionally, reverse

effects (Itoh et al., 2001; Niida et al., 2005). Lee et al. (2019)

transfected adipose stem cells (ASCs) with BMP2/VEGF to

promote osteogenesis and angiogenesis simultaneously. The

optimal ratio of BMP2-to-VEGF was determined to be 9:1.

BMP2/VEGF-transfected ASCs administered in this ratio

effectively healed critical-size calvarial defects and long-bone

segmental defects in immunosuppressed rats (Figure 3). These

findings provide a theoretical and experimental basis for the use

of combined gene transfer in the treatment of ONFH or other

orthopedic diseases.

4.3 Other strategies

4.3.1 Combined with implanted bone
Although several procedures are used to preserve the femoral

head in patients with ONFH in clinical settings, there is no

consensus regarding the optimal procedure. In 1994,

Rosenwasser et al. (1994) proposed the concept of the “light

bulb procedure,” in which necrotic lesions were replaced with

bone grafts via the window on the femoral head-neck junction

without any damage to the joint cartilage. This procedure

provides strong structural support for the femoral head,

amends the morphology of the femoral head to a certain

extent, and prevents further collapse of the femoral head. In

addition, it has several advantages, including the simple surgical

technique, low complication incidence, and straightforward

surgical duration (Sun et al., 2014).

In a retrospective study, Sun et al. (2014) analyzed the clinical

efficacy of rhBMP-2 in the treatment of ONFH. A total of

46 patients with nontraumatic ONFH (79 hip specimens)

were included and divided into two groups. The first group of

patients was subjected to the light bulb procedure and rhBMP-2

treatment, whereas the second group was subjected to the light

bulb procedure alone. After follow-up, the results showed no

significant differences in clinical results between the two groups.

However, the combination method may effectively prevent the

requirement for hip replacement in younger patients with early-

stage ONFH. Although no significant difference was observed in

clinical results, radiological analysis revealed that rhBMP-2

improved the speed and quality of bone repair inside lesions.

Shi et al. (2017) conducted the same retrospective analysis

involving 94 patients with non-traumatic ONFH (141 hip

specimens), and the experimental results were consistent with

those of previous studies. Although patients in the experimental

group had a high rate of femoral head preservation and highHHS
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scores, statistical analysis showed no significant differences

(Figure 4).

4.3.2 Local injection
In addition to debridement of the necrotic femoral head and

implantation of new bone, other treatment options involve direct

injection of drugs into the femoral head, which can avoid

additional surgical intervention (Gao et al., 2013). However,

the traditional administration of growth factors is limited by

their relatively short half-lives and potential side effects (Aldridge

et al., 2005). Therefore, controlled and more continuous

administration may be required to ensure the effective activity

of growth factors (Li et al., 2021). Dailiana et al. (2018) injected

VEGF into the femoral head of a canine model of ONFH using an

osmotic micropump. After 12 weeks of injection, histological

analysis showed that local treatment with VEGF led to bone

tissue remodeling and new bone formation. VEGF acted in a

dose-dependent manner, indicating that the optimal

concentration of VEGF is critical for therapeutic outcomes

and may depend on the size of the necrotic area. Therefore,

the delivery model of VEGF should be further optimized to

achieve better bone regeneration.

The imbalance between osteogenesis and osteolysis plays an

essential role in the occurrence and development of ONFH.

Bisphosphonates are potent inhibitors of osteoclast-mediated

bone resorption, which inhibit osteoclasts and reduce femoral

head deformities (Ma et al., 2021). Local administration of

zoledronic acid in the femoral head has positive effects on the

bone structure of the femoral head in modified rat models of

traumatic ONFH (Zhao J. et al., 2021). Although monotherapy

with bisphosphonates can maintain the structural integrity of the

necrotic epiphysis, the lack of new bone formation has been

observed in studies on large animal models (Kim et al., 2005).

Vandermeer et al. (2011) injected ibandronate (IB) combined

with BMP-2 into immature pig models of ONFH via

percutaneous intraosseous injection. After 8 weeks, the pigs

FIGURE 3
(A): Development of BMP2/VEGF-transfected hASCs. (B): In vivo tracking of implanted hASCs. Reprinted with permission from Lee et al. (2019).

Frontiers in Genetics frontiersin.org12

Che et al. 10.3389/fgene.2022.1037190

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1037190


were sacrificed, and further analysis showed that simultaneous

local administration of ibandronate and BMP-2 improved

preservation of the spherical shape of the femoral head and

stimulated bone healing in immature pig models of ischemic

osteonecrosis.

Furthermore, Aruwajoye et al. (2017) investigated the effects

of IB and BMP-2 on the mineral content and nanoindentation

properties of the bone after ONFH. Backscattered electron

imaging, Raman spectroscopy, and nanoindentation testing

showed that compared with IB monotherapy, treatment with

FIGURE 4
(A): Osteonecrosis of the right femoral head in a 36-year-old male patient with ARCO stage IIIa disease. Graphs (A) and (B) represent the
preoperative anteroposterior and frog-leg lateral X-ray images of the right hip, respectively. Graphs (C) and (D) represent the postoperative
anteroposterior and frog-leg lateral X-ray images, respectively, after 4 months of surgery, showing a lamellar fragment of HO (class II) in the
anterolateral soft tissues of the hip joint (white arrow). ARCO, Association Research Circulation Osseous; HO, heterotopic ossification.
Reprinted with permission from Shi et al. (2017).

Frontiers in Genetics frontiersin.org13

Che et al. 10.3389/fgene.2022.1037190

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1037190


BMP-2 or IB/BMP-2 improved restoration of the average

mineral content and nanomechanical properties after ONFH.

Therefore, simultaneously inhibiting osteolysis and promoting

osteogenesis can improve bone repair in ONFH.

4.3.3 Combined with low-intensity pulsed
ultrasonography

Low-intensity pulsed ultrasonography (LIPUS) can enhance

osteogenic differentiation of MSCs, stimulate the differentiation

and proliferation of osteoblasts, inhibit osteoclasts, improve local

blood perfusion and angiogenesis, and accelerate the healing of

stress fractures (Chan et al., 2006; Amini et al., 2020). Clinical

studies have shown significant positive effects of LIPUS in

treating fresh (Shimizu et al., 2021) and nonunion (Jiang

et al., 2019; Leighton et al., 2021) fractures. In addition,

LIPUS is considered a non-invasive treatment strategy for

ONFH (Yan et al., 2011). However, other effective strategies

for minimizing the treatment duration and improving patient

outcomes should be investigated intensively.

Zhu et al. (2020) combined BMP-2 and LIPUS for treating

ONFH. They prepared a novel nanofiber scaffold with sustained

release of BMP-2 and implanted the scaffold into the femoral

neck of rats. Subsequently, LIPUS was used to observe the effects

of the scaffold on bone repair in murine models of ONFH.

Compared with the use of LIPUS alone, the sustained release of

BMP-2 from nano-scaffolds enhanced bone regeneration,

resulting in superior bone quality. In addition, treatment with

the scaffolds increased the number and diameter of blood vessels

and promoted angiogenesis. Therefore, the combined application

of LIPUS and BMP-2 contributes to bone formation and repair

in ONFH.

5 Current limitations and future
prospects

ONFH is a progressive disease with complex etiology and

unclear pathogenesis and lacks optimal treatment, especially for

young patients. Multiple growth factor-related genes play a

crucial pathogenic role in ONFH, especially those involved in

osteogenesis and angiogenesis. In addition, abnormalities in

growth factor-related signaling pathways are also involved in

the pathological process of ONFH. Growth factor-based therapy

for ONFH has developed from relevant basic research to clinical

application and have been demonstrated to be effective. Growth

factors can stimulate both angiogenesis and osteoinductive stem

cell differentiation. Additionally, they can enhance cell

proliferation and bone regeneration, thereby assisting in bone

repair in osteonecrosis. They play an essential role in

osteonecrosis because any therapy that can accelerate

osteogenesis or angiogenesis can potentially improve

therapeutic outcomes and quality of life. The advantage of

using growth factors to treat ONFH is the avoidance of

additional surgical interventions because most growth factors

can be not only injected but also used in combination with

surgical treatments and tissue engineering materials.

However, the relatively short half-life of growth factors under

physiological conditions makes it difficult to achieve sustained

and controlled delivery. Genetic engineering, involving precise

manipulation of cellular DNA sequences to alter cell fates and

organism traits, offers the potential to both understand human

genetics and cure genetic disease. Therefore, transfection of

growth factor-related genes into cells via a carrier can

enhance the regenerative capacity of the cells by initiating a

heightened signaling response for cellular recruitment and

initiation of anabolic activity. In addition, it can increase the

autocrine activity of cells to enhance intrinsic mechanisms of

bone repair, making it a powerful gene therapy tool for the

treatment of ONFH.

Traditional surgical approaches, such as bone grafts, vascular

implants, and metal implants, have been used in combination;

however, these treatments are partially successful because they

neither initiate the regeneration of bone tissue nor promote

angiogenesis. Although the implant provides good mechanical

support, it has absolutely no effect on bone regeneration. The

development of bone tissue engineering offers an excellent

solution for the treatment of ONFH. The bone tissue

engineering scaffold has a strong biological function and

provides mechanical support for the femoral head, thus

preventing collapse of the weight-bearing area of the femoral

head. Importantly, with the development of various growth

factor-based delivery systems, growth factors can be loaded

onto the surface of bone tissue engineering scaffolds via

physical, chemical, and biological binding. Such scaffolds

allow for a continuous slow release of growth factors at the

necrotic site and stimulate osteoblast growth and induction of

bone formation during bone regeneration, thereby supporting

vasculature at the necrotic site. In addition to bone tissue

engineering scaffolds, hydrogels have exhibited good

biocompatibility, degradability, and injectability. Hydrogels act

as carriers and can be incorporated with growth factors. Owing to

the degradation of hydrogels and the diffusion movement of

growth factors after injection into the site of osteonecrosis, slow

and controlled local release can be achieved for treating ONFH.

However, several issues and challenges should be addressed

before the practical application of growth factors in the treatment of

ONFH. Some adverse effects may result from the uncontrolled

expression of transgenes. For instance, overexpression of HGF

may lead to the development of sarcoma and negatively affect

osteogenesis and bone formation; uncontrolled synthesis of VEGF

may induce angiomas and, in turn, impair osteogenesis;

overexpression of BMP can lead to ectopic ossification and even

tumorigenesis. Therefore, more precise and controllable gene

transfer strategies should be developed in the future. The choice

of vectors for gene delivery is an important influencing factor in

genetic engineering. Viral vectors enable long-term and consistent
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transgene expression by integrating the transgene into the host

genome but impose a risk of insertional mutations and tumor

formation. Although non-viral vectors have great potential for

gene delivery, especially owing to their safety, their low delivery

efficiency remains the major problem. Therefore, it is necessary to

develop safer and more effective techniques for genetic

manipulation.

rhBMP-2 and rhBMP-7 have been approved by the Food and

Drug Administration (FDA) for clinical treatment of vertebral

fusion, open or nonunion fractures, and maxillofacial bone

reinforcement. When growth factors are used as monotherapy

or are combined with other strategies for the treatment of ONFH,

owing to the short half-life and potential side effects of growth

factors, the amount, use mode, release mode, and release time

should be accurately optimized to achieve appropriate, safe,

effective, and long-term effects. Bone tissue engineering

materials used in combination with growth factors should

have excellent mechanical properties and should be able to

withstand dynamic, physiological compressive and shear loads

at the site of implantation to support the necrotic site until new

bone is formed. In the present study, a combination of natural

and synthetic materials and porous metal scaffolds exhibited

promising mechanical properties for bone defect repair.

Therefore, research on composite materials incorporated with

growth factors may help to develop more effective tissue

engineering-based strategies for the treatment of ONFH.

6 Conclusion

Polymorphisms in osteogenic and angiogenic growth factor-

related genes and abnormalities in their associated signaling

pathways are involved in the development and progression of

ONFH, which offers novel insights into the prevention and

treatment of ONFH. Given the important regulatory role of

growth factors in bone regeneration, they can be used for

genetic and tissue engineering to develop novel strategies for

the treatment of ONFH. However, developing such strategies is

challenging owing to the unknown safety and efficacy of growth

factors. Therefore, further basic and translational studies are

required to maximize the clinical potential of growth factor-

based diagnostics and therapeutics for ONFH.
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