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Lung adenocarcinoma (LUAD) is the most widely known histological subtype of

lung cancer. Its classification is significant for the characteristic evaluation of

patients. The aim of this research is to assess the categorization of LUAD and

its risk model based on necroptosis and to investigate its potential regulatory

mechanisms for diagnosing and treating LUAD. According to the expression profile

data alongwith the clinical information related to LUAD from The Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus (GEO), we constructed a consistency

matrix through consistency clustering, and used the ConsensusClusterPlus as the

measurement distance tocluster and subtype the samples, andperformedgene set

enrichment analysis and immune infiltration analysis. Least absolute shrinkage and

selection operator (Lasso) regression was utilized for obtaining prognostic

significant necroptosis phenotype-related genes. Finally, we measured each

patient’s riskscore (RS) and build a risk model, and predicted the effect of

immunotherapy for different groups of risk factors in the model. Three

molecular subtypes of LUAD were obtained by cluster analysis of necroptosis-

related genes in LUAD samples. Compared with C1, C3 had a better prognosis and

higher immunecell infiltration. The prognosis of theC1 subtypewas poor andhad a

high clinical grade. The proportion of Stage II, Stage III, and Stage IV was much

more in comparison with that of the other two subtypes. TP53 gene had a high

mutation frequency in the C1 subtype. Gene Set Enrichment Analysis (GSEA)

indicated that the aberrant pathways in the C1 and C3 subtypes mainly included

some cell cycle-related pathways. In addition, seven genes were identified as

related genes of necroptosis phenotype affecting prognosis. High RS had a poor

prognosis, while low RS had a good prognosis. The RSwas verified to have a strong

ability to predict survival. LUAD can be classified by the genes linked with cell

necrosis and apoptosis. The difference among various types is helpful to deepen

the understanding of LUAD. In addition, a risk model was constructed based. In

conclusion, this study provides potential detection targets and treatment methods

for LUAD from a new perspective.
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Introduction

Lung cancer has the highest death rate around the globe

(Bray et al., 2018). Its most widely known histological subtype is

the Lung adenocarcinoma (LUAD), making up about 50% of the

total lung cancer cases. It has a high risk of distant metastasis at

each stage (Shi et al., 2016) and is linked with increased

malignancy and a worse prognosis (Gong et al., 2019; Zhou

et al., 2019). LUAD treatment is based on grade and stage and is

mainly determined by the evaluation of tumor histology and

patient characteristics by pathologists (Wei et al., 2019). The

prognosis of lung cancer is unsatisfactory even though there has

been improvement in its present treatment approach

(chemotherapy, surgical resection, radiotherapy,

immunotherapy, and molecular targeted therapy). Even at

present, the 5-year survival rate of lung cancer patients is only

4%–17%, while the 5-year survival rate of metastatic tumor

patients is <5% (Hirsch et al., 2017; Arbour and Riely, 2019;

Anusewicz et al., 2020). Consequently, it is very important to

diagnose this disease on time along with a detailed and precise

risk assessment. Most of the risk assessment and monitoring

tools that are being used at present for lung cancer use the clinical

features and pathological parameters, among these the most

widely used approach, is TNM stratification. Though, the

current tumor-node-metastasis (TNM) models are usually

linked with limited confidence in lung cancer prognosis

prediction, which is composed of great heterogeneity among

individuals. Therefore, it is necessary to coordinate the

clinicopathological features of the genome when evaluating

the survival prognosis of individuals.

Necroptosis, a kind of programmed necrotic cell apoptosis, is

the gatekeeper of the host against pathogen invasion. It is a

recently found type of programmed cell death that unlike

apoptosis is unrelated to caspase (Robinson et al., 2019). The

morphological manifestations of necroptosis are cell rounding

and swelling, explosive rupture of the cell membrane, cell

membrane perforation, mitochondrial dysfunction, and loss of

mitochondrial membrane potential (Nikoletopoulou et al., 2013).

During the inhibition or low level of caspase-8, receptor-

interacting protein 1 (RIP1) can use receptor-interacting

protein 3 (RIP3) to develop the complex of RIP1-RIP3,

therefore, stimulating the mixed spectrum of pseudokinases.

Phosphorylation of mixed-lineage kinase domain-like protein

(MLKL) occurs to synthesize necrotic bodies, leading to

necroptosis (Vandenabeele et al., 2010). The necroptosis

imbalance is also a key factor in many inflammatory diseases.

Necroptosis is known to have both positive and negative effects,

and it has a complicated link with cancer. Even though research

shows that upon the blockage of apoptosis, necroptosis can

inhibit tumor growth as well as metastasis, however, its key

regulators will promote tumor growth and metastasis (Liu et al.,

2021). Increasing evidence shows that necroptosis has the ability

to inhibit the growth and metastasis of tumors, so it can be used

as a potential method to treat cancer (Li et al., 2020a; Park et al.,

2020; Tan et al., 2020). These reports have highlighted the

significant involvement of necroptosis in tumorigenesis and

metastasis, suggesting the potential of targeting necroptosis as

a new tumor classification and treatment.

In this study, we identified stable molecular subtypes by

consensus clustering using genes associated with cell necroptosis

and compared the clinicopathological features, mutation

features, immune features, and pathway features among

subtypes. Finally, the genes linked with the prognosis score

and necroptosis were found by expression difference analysis

and Lasso. Then, the risk model and clinical prognosis model

were constructed, which could assist in the personalized

treatment of LUAD patients.

Materials and methods

Collection and processing of data

The mutation, as well as RNA-Seq data of LUAD, were taken

from The Cancer Genome Atlas (TCGA, http://cancergenome.

nih.gov/abouttcga) using TCGAGDCAPI. In the RNA-Seq data,

we removed the samples with no information regarding clinical

follow-up, survival time, and status. After selecting, a total of

500 samples of primary LUADwere obtained. Then, the Ensembl

in the data was changed into a Gene symbol, and the expression

of numerous gene symbols was considered the mid-value. The

expression data of the GSE72094 and GSE31210 datasets were

taken from the Gene Expression Omnibus (GEO) (https://www.

ncbi.nlm.nih.gov/geo/). 398 and 226 LUAD samples were

included respectively after selection. For the above GEO data

set, the annotation information of the corresponding chip

platform was downloaded. According to the annotation

information, the probe was mapped to the gene, and the

single probe matching numerous genes was eliminated. When

a gene was matched with multiple probes, we considered the

median as the gene expression value. The current study utilized

the TCGA as the training set, and GSE72094 and GSE31210 data

sets were utilized as independent verification sets. In addition,

our necroptosis-related genes came from previous study (Xin

et al., 2022), with a total of 74 genes.

Molecular typing of necroptosis-related
genes

Univariate Cox analysis by Cox function in the R package

highlighted the genes substantially linked with LUAD prognosis

(p < 0.05). A consistency matrix was constructed by

ConsensusClusterPlus (Wilkerson and Hayes, 2010) to cluster

and divide the samples according to these genes. The molecular

subtypes of samples were provided by the expression data of
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genes linked with necroptosis. We carried out 500 bootstraps

with the “PAM” algorithm and “1-Pearson correlation” as the

distance measurement. Each bootstrap had 80% of the subjects in

the training set. The cluster number was set from 2 to 10. The best

division was done by measuring the consistency matrix and the

cumulative distribution function (CDF), and we got the

molecular subtypes of the samples.

Establishing of risk model

The differentially expressed necroptosis genes (false

discovery rate (FDR) < 0.05 and |log2fold change (FC)| >1)
were selected by limma package in molecular subtypes.

Afterward, we chose genes that were expressed differentially

and had a significant prognosis (p < 0.05). The proportion of

genes was further reduced by Least absolute shrinkage and

selection operator (Lasso) regression, and major prognostic

genes related to the phenotype of necroptosis were obtained.

By creating a penalty function, it can obtain a more precise model

by compressing some coefficients and setting others to zero. To

process data with complicated collinearity is a biased estimation

that yet preserves the benefit of subset contraction. It makes

variable selection during parameter estimation possible and

improves the way multicollinearity in regression analysis is

dealt with. The risk model was subsequently created. The

prognosis risk score (RS) for individual patients was

determined with: RS = Σ βi × Expi.

Expi is referred to as the level of expression of genes linked with

the prognosis of necroptosis phenotype, β is referred to as the Cox

regression coefficient of the corresponding gene. The patients were

sorted into RS-high and RS-low groups according to the threshold

“classification.” We drew the survival curve by the Kaplan-Meier

method for prognosis analysis, and the significance of the difference

was found with the help of the log-rank test.

Prediction of immunotherapy effect

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm (Jiang et al., 2018) was employed for verification of

the impact that immune microenvironment score (IMS) has on

the prediction of clinical response of immune checkpoint

inhibitors (ICIs). TIDE algorithm is a calculation method for

predicting immune checkpoint blockade (ICB) reactivity by

using a gene expression profile. It evaluates three types of cells

that inhibit the infiltration of T cells in tumors, including

myeloid-derived suppressor cells (MDSCs), tumor-associated

fibroblasts (TAF), and the M2 subtypes of tumor-associated

macrophages (TAMs), as well as two distinct subtypes of

tumor immune escape mechanisms, including tumor-

infiltrating cytotoxic T lymphocytes (CTL) dysfunction score

and CTL immunosuppressive factor rejection score. The higher

TIDE prediction score indicated an increased likelihood of

immune escape, showing immunotherapy to be less beneficial

for patients.

Gene set enrichment analysis

For understanding the pathways of various biological

mechanisms in a variety of molecular subtypes, GSEA was

employed for pathway analysis. We utilized all candidate gene

sets present in the Hallmark (Liberzon et al., 2015) for GSEA.

FDR <0.05 was taken as a significant enrichment.

Immune infiltration analysis

Cell type Identification By Estimating Relative Subsets Of

RNA Transcripts (CIBERSORT) algorithm (Chen et al., 2018)

(https://cibersort.stanford.edu/) was used for the quantification

of 22 immune cells’ relative abundance in LUAD.

Simultaneously, the number of immune cells was measured

with the help of the Estimation of Stromal and Immune cells

in Malignant Tumor tissues utilizing Expression data

(ESTIMATE) software (Yoshihara et al., 2013).

Statistical analysis

All R packages and statistical analysis were conducted in R

software (4.1.1). Parameters with no specific indication were

default. Statistical methods were indicated in the figure legends.

p < 0.05 was considered as significant. ns, no significance. *p <
0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

Results

Molecular typing on the basis of genes
related to necroptosis

Firstly, the expression of necroptosis-related genes was taken

from the expressionmatrix of TCGA, and 20 necroptosis genes with

significant prognosis related to LUAD were selected (Figure 1A, p <
0.05). Patients were classified by consensus clustering in accordance

with the expression profiles of these 20 genes.We finally determined

that the optimal number of clusters was 3 as it gave us comparatively

stable clustering outcomes (Figures 1B,C), i.e., k = 3 to get three

separate molecular subtypes (Figure 1D). Further analysis revealed

that there were major prognostic variations in the prognostic

features of the three molecular subtypes (Figure 1E). In general,

C3 showed a good prognosis, and the C1 subtype had a poor

prognosis. In addition, for the GSE72094 data set, after molecular

typing with the same method, it was found that there were major
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variations in prognosis (Figure 1F), similar to the training set. At the

same time, the expression differences of these 20 necroptosis genes

that were substantially linked with the prognosis in separate

molecular subtypes of TCGA were compared (Figure 1G).

Clinicopathological characteristics among
molecular subtypes

We kept on exploring the differences in clinicopathological

characteristics in separate molecular subtypes present in the

TCGA cohort. In the TCGA data set, there were variations in

the distribution of diverse clinical features among the three

molecular subtypes. It could be observed that the C1 subtype

had a high clinical grade, and male patients accounted for a large

proportion of C1 and C2 subtypes (Figure 2A). Moreover, we also

compared the clinicopathological characteristics of various

molecular subtypes in the GSE72094 cohort and observed that

the proportion of Stage II in the C1 subtype was substantially

greater than that of the other two subtypes, and the proportion of

Stage II was considerably reduced in comparison with that of the

other two subtypes. KRAS, STK11, and TP53 gene mutations in

patients with the C3 subtype were considerably reduced in

comparison with those in patients with C1 and C2 subtypes,

FIGURE 1
Molecular typing results according to the necroptosis-related genes. (A) Forestmap of genes related to necroptosis with significant prognosis in
TCGA cohort; (B) cumulative distribution function (CDF) curve of the samples in TCGA cohort; (C) The CDF Delta area curve of TCGA cohort sample
highlights the relative change of the area under the CDF curve of each category number (k) in comparison with K-1. The horizontal axis is for k, and
the vertical axis is for the relative change of the area under the CDF curve; (D) Sample clustering Heatmapwhen consensus k = 3 in TCGA queue;
(E) Kaplan-Meier (KM) curve of overall survival (OS) prognosis of three subtypes in TCGA cohort; (F) Prognostic variations in the three molecular
subtypes in the GSE72094 cohort; (G) The heat map of the expression of necroptosis genes with significant prognosis in different subtypes of TCGA.
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and EGFR gene mutations were significantly more than those in

patients with C1 and C2 subtypes (Figure 2B).

Mutation characteristics amongmolecular
subtypes

This report also explained the variations of genomic

alterations in the three molecular subtypes in the TCGA

cohort. Firstly, the molecular characteristic information of

TCGA was obtained from the previous pan-cancer research

(Thorsson et al., 2018). Among them, the C1 subtype showed

a higher Homologous Recombination Defects, Aneuploidy Score,

Number of Segments, Fraction Altered, and Tumor mutation

burden (Figure 3A). In addition, according to 160 different

immune signatures, LUAD was divided into five immune

subtypes, of which the best prognosis was observed in the

immune subtypes C3 and C4 and C6 had the poorest

prognosis. It was discovered that, of the three types of

molecular subtypes defined in this study, the C3 subtype

FIGURE 2
Clinicopathological properties ofmolecular subtypes. (A) The clinicopathological characteristics ofmolecular subtypes in TCGA cohort; (B) The
clinicopathological characteristics of molecular subtypes of GSE72094 cohort; The lower and upper parts of the proportion are the statistical
significance of the distribution difference in two pairs -log10 (p-value).
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described in the previous study accounted for more of the

C3 subtypes described when the relationship between these

five immune subtypes and the three types of molecular

subtypes described by us was compared (Figure 3B). In

addition, based on the correlation analysis between gene

mutation and molecular subtype, we concluded that there was

a major link between molecular subtype and gene mutation.

TP53, CSMD3, and KRAS, and other genes had numerous

FIGURE 3
Genomic changes of molecular subtypes in TCGA cohort. (A) The differences in Homologous Recombination Defects, Aneuploidy Score,
Fraction Altered, Number of Segments, and Tumor mutation burden among the molecular subtypes of TCGA cohort were compared; (B)
Comparison of threemolecular subtypes and immunemolecular subtypes; (C) Somatic mutations in threemolecular subtypes (chi-square test). *p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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somatic mutations in LUAD, and the TP53 gene had the highest

mutation frequency in the C1 subtype (Figure 3C).

Immune characteristics among molecular
subtypes

To clearly understand the difference in immune

microenvironment among subjects with various molecular

subtypes, the level of immune cell infiltration in patients in

the TCGA cohort was evaluated by the gene expression level in

immune cells. Firstly, based on the relative abundance of

22 immune cells (Figure 4A), it was observed that most

immune cell types had significant differences among

subtypes. For example, macrophages of the M1 type were

substantially more infiltrated in C1 and C3 subtypes than in

C2, while regulatory T cells (Tregs) were substantially more

infiltrated in C2 subtypes in comparison with the C1 and C3.

Simultaneously, the “immune score” of the C3 subtype was

increased in comparison with that of other subtypes, i.e., C1 and

C2 subtypes, with higher immune cell infiltration (Figure 4B).

In addition, by comparing the immune infiltration of the

GSE72094 cohort (Figures 4C,D), a similar phenomenon to

TCGA could be observed.

Pathway analysis between molecular
subtypes

GSEA analysis was done to identify the differentially

activated pathways in various molecular subtypes. The

outcomes revealed that in comparison with the C3 subtype,

FIGURE 4
Proportion of immune cell components in two LUAD cohorts. (A) The variation of 22 immune cell scores among differentmolecular subtypes in
the TCGA cohort; (B) The difference of ESTIMATE immune infiltration among different molecular subtypes in the TCGA cohort; (C) Differences in
scores of 22 immune cells in various molecular subtypes in GSE72094 cohort; (D) Differences of ESTIMATE immune infiltration in various molecular
subtypes in GSE72094 cohort. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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the C1 subtype was significantly enriched in 32 pathways in the

TCGA cohort and 18 pathways in the GSE72094 cohort (Figures

5A,B). Simultaneously, through the comparative analysis of

abnormal pathways in C1 and C3 subtypes in various LUAD

cohorts, it was found that the activated pathways mainly included

some cell cycle-related pathways, such as HALLMARK_

UNFOLDED_PROTEIN_RESPONSE, HALLMARK_MYC_

TARGETS_V2, HALLMARK_DNA_REPAIR, HALLMARK_

MITOTIC_SPINDLE, etc., while the inhibited pathways mainly

included some immune-related pathways, such as

HALLMARK_INFLAMMATORY_RESPONSE, HALLMARK_

INTERFERON_GAMMA_RESPONSE, HALLMARK_ALLOGRAFT_

REJECTION, HALLMARK_COMPLEMENT, HALLMARK_

INTERFERON_ALPHA_RESPONSE, etc. (Figure 5B).

Through the comparative analysis of the pathways in

C1 and C2, C1 and C3 subtypes, and the differences

FIGURE 5
Pathway analysis betweenmolecular subtypes. (A). GSEA analysis results of C1 vs. C3 in TCGA cohort; (B) Bubble chart of GSEA analysis results of
C1 vs. C3 subtypes in two LUAD cohorts; (C) Bubble chart of GSEA analysis results compared with different molecular subtypes in TCGA cohort; (D)
Radar chart of C1 vs. C2 and C2 vs. C3 uniformly activated channels in TCGA queue.
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between C2 and C3 subtypes in the TCGA cohort (Figures

5C,D), it was found that the cell cycle-related pathways in

C1 patients were activated on the whole, while the immune-

related pathways were inhibited. Therefore, we inferred that

the necroptosis genes used for molecular typing might play a

critical role in the cell cycle-related pathways and the tumor

microenvironment.

Analysis of differentially expressed genes
in molecular subtypes

In the analysis described above; three separate molecular

subtypes were identified by the necroptosis genes with significant

univariate prognosis. Next, the differentially expressed genes

(DEGs) among C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes

FIGURE 6
Differential expression analysis between molecular subtypes. (A) Volcano diagram of DEGs among TCGAmolecular subtypes; (B) Bubble chart
of KEGG function enrichment analysis results of differentially up-regulated genes among TCGA molecular subtypes; (C) Bubble chart of KEGG
function enrichment analysis results of differentially downregulated genes among TCGA molecular subtypes.
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were calculated by using the limma package. Firstly, there were

119 DEGs between the subtypes C1 and C2, including 46 highly

expressed and 73 genes with low expression. Secondly, among the

DEGs of C1 and C3 subtypes, there were 88 up-regulated genes

and 183 down-regulated genes. Finally, among the DEGs

between C2 and C3 subtypes, there were 45 up-regulated

genes and 140 downregulated genes (Figure 6A). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis of differentially up-regulated genes among

C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes was performed by

the R software package clusterprofiler. The results showed that

C1 vs. C2 and C1 vs. C3 subtypes were substantially enriched in

some pathways linked with cell cycle such as cellular senescence,

cell cycle, p53 signaling pathway, etc. While the C2 vs. C3 subtype

was significantly enriched in metabolic-related pathways

(Figure 6B). Similarly, based on the KEGG pathway

enrichment analysis of differentially downregulated genes

among C1 vs. C2, C1 vs. C3, and C2 vs. C3 subtypes, the

results showed that there were fewer differential pathways

among C1 vs. C2 subtypes, while there were more differential

pathways among C1 vs. C3 and C2 v sC3 subtypes, especially

among C2 vs. C3 subtypes, and the down-regulated genes among

these subtypes were substantially enriched in some immune and

inflammatory-related differential pathways (Figure 6C).

FIGURE 7
Lasso analysis of DEGs. (A) Analysis results of DEGs; (B) The locus of each independent variable changing with lambda; (C) Confidence interval
under lambda; (D) Lasso coefficient distribution of the characteristics of genes linked with necroptosis.
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Identification of key necroptosis genes

405 genes were obtained by identifying DEGs among

molecular subtypes. Next, these genes were assessed with

univariate Cox regression analysis, along with the

242 genes that impacted the prognosis more (p < 0.05)

were identified, including 84 “Risk” and 158 “Protective”

genes (Figure 7A). Then, for Lasso regression, the “glmnet”

R package was utilized to select the proportion of genes used to

build risk models among the 242 genes with significant

prognosis. Each independent variable’s change track was

first examined. The number of independent variable

coefficients that are progressively heading to 0 rose as the

lambda value increased (Figure 7B). 10-fold cross-validation

was utilized for creating the model, and the confidence

interval under each lambda was assessed. The value of

lambda = 0.0543 indicated the optimal output (Figure 7C).

Therefore, we selected FAM83A, HMMR, ANLN, RHOV,

CXCL17, MS4A1, and CCR2 as the related genes of

necroptosis phenotype that affected the prognosis when

lambda = 0.0543 (Figure 7D).

Establishment and verification of risk
model

The prognostic RS related to apoptosis was calculated and

normalized for each sample. At the same time, samples with

RS greater than 0 were put in the RS-high group and samples

having RS less than or equal to 0 were put in the RS-low

group. A major difference was observed in the RS-high and

-low groups (p < 0.001). Finally, 260 samples were put in the

RS-high group, and 240 samples into the RS-low group. The

RS distribution of patients in the TCGA cohort of the training

set suggested that RS-high samples had a poor prognosis

(Figure 8A). The ‘timeROC’ R package was utilized for

assessing the Receiver Operating Characteristic (ROC) of

RS prognosis classification, and the classification efficiency

of prognosis prediction for 1, 3, and 5 years were analyzed

respectively (Figure 8B). The outcomes revealed a high area

under curve (AUC) values of prognosis prediction of the

model for 1, 3, and 5 years, which were 0.73, 0.7, and 0.67,

respectively. Finally, patients with higher RS showed worse

overall survival in the training cohort (Figure 8C). For

confirming the robustness of the clinical prognosis model

prediction of necroptosis-related genes, it was verified in

GSE72094 and GSE31210 cohorts. The RS of patients was

calculated following the same method and samples were

divided into high group when RS > 0 and samples were put

in low group when RS < 0. The validation cohort had

outcomes similarly to those of the training set. The

prognosis of high RS was poor, while that of low RS was

good (Figures 8D–G).

Riskscore in different clinicopathological
characteristics

We discovered that the RS of patients with late T Stage, N

Stage, M Stage, and Stage was considerably greater in comparison

with that of patients with early stage by the comparison of RS

distribution among the groups of clinicopathological features in

the TCGA cohort. Additionally, we discovered that male patients

had a higher RS. Between molecular subtypes, RS was compared

and examined. When compared to the RS of C3 molecular

subtype with a favorable prognosis, the RS of the C1 subtype

with a much worse prognosis was significantly higher

(Figure 9A). In addition, based on the comparative analysis of

the prognosis differences between different clinicopathological

characteristics groups in the TCGA cohort in the RS-high and

-low groups defined by us, our risk groups also had good results

in different clinical groups, proving the reliability of our risk

groups (Figure 9B).

Characteristics of immune/pathways
between riskscore groups

To clarify the variation in the immune microenvironment of

patients in the RS group, the relative abundance of 22 immune

cells in RS-high and -low groups in the TCGA cohort was

compared. There were significant variations in 10 immune

cells present in the RS-high and -low groups (Figure 10A).

Such as, the abundance of resting CD4 memory T cells in the

RS-low group were much higher in comparison with that in the

RS-high group, while the abundance of activated CD4 memory

T cells in the RS-low group was considerably lower when

compared with the RS-high group. At the same time, the

ESTIMATE was used for evaluating the immune cell

infiltration. It was found that “the estimated immune sub-

group” had higher immune infiltration (Figure 10B). This

phenomenon was also observed in the GSE72094 cohort

(Figures 10C,D).

Then, we studied the link of RS with 22 immune cell

components in the TCGA queue and observed that RS and

resting CD4 memory T cells, activated CD4 memory T cells,

and resting dendritic cells along with nine others (Figure 10E).

To analyze the link of RS with the biological role of distinct

samples, we chose the gene expression profile relating to the

LUAD samples in the TCGA cohort and used the GSVA R

package for single sample Gene Set Enrichment Analysis

(ssGSEA). The score of individual samples on various

functions was measured to get the ssGSEA score of individual

functions related to each sample. After studying the link between

these functions and calculating the RS, functional pathways

greater than 0.45 were selected, from which we could see that

RS and KEGG_CELL_Cycle and other cell cycle-related

pathways showed a positive correlation (Figure 10F).
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Differences in immunotherapy/
chemotherapy between riskscore groups

In addition, whether there were differences in

immunotherapy between RS groups in the TCGA cohort were

analyzed. First, we did a comparison of the expression of immune

checkpoints among RS groups and found that most immune

checkpoint genes were differentially expressed in RS groups. On

the whole, the differential expression of immune checkpoint

genes, such as CTLA4, PDCD1, in the RS-low group was

considerably increased in comparison with that in the RS-high

group (Figure 11A). In addition, by evaluating the possible

clinical impact of immunotherapy in the RS-high and -low

groups, we observed that in the TCGA cohort, the RS-high

FIGURE 8
Establishment and verification of risk model. (A) RS, survival time, survival status, and expression of necroptosis-related genes in TCGA data set;
(B) ROC curve and AUC classified by RS in TCGA data set; (C) KM survival curve distribution of RS in TCGA data set; (D,E) ROC curve and KM survival
curve of RS in GSE72094 queue; (F,G) ROC curve and KM survival curve of RS in GSE31210 queue.
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FIGURE 9
RS in different clinicopathological characteristics. (A) The difference of RS between different clinicopathological groups of the TCGA cohort; (B)
KM curve between RS-high and -low groups among different clinicopathological groups of the TCGA cohort.
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group had an increased TIDE score, suggesting that the

possibility of immune escape for the RS-high group was more

and that of benefiting from immunotherapy was less

(Figure 11C). The scores of MDSC and T cell rejection were

increased in the RS-high group, which might be a factor leading

to the low benefit of immunotherapy in the RS-high

group. Furthermore, the response of the RS group in the

TCGA cohort to traditional chemotherapy drugs, such as

docetaxel, vinorelbine, paclitaxel, and cisplatin was also

analyzed. We discovered that the RS-high group showed more

sensitivity to the stated drugs than the RS-low group

(Figure 11E).

At the same time, the differences in immunotherapy and

chemotherapy among RS groups in the GSE72094 cohort were

analyzed, and the same phenomenon as that in the TCGA cohort

was observed (Figures 11B,D,F).

Riskscore combined with
clinicopathological characteristics for
improving the prognosis model and
survival prediction

Univariate and multivariate Cox regression analysis of RS

and clinicopathological features showed that RS was the most

significant prognostic factor (Figures 12A,B). For risk assessment

quantification and survival probability of patients with LUAD, a

nomogram was established (Figure 12C) in combination with RS,

FIGURE 10
Characteristics of immune/pathways among the RS groups. (A) Proportion of immune cells components in TCGA cohort; (B) Proportion of
immune cells components calculated by ESTIMATE software in TCGA cohort; (C) Proportion of immune cells components in TCGA cohort; (D)
Proportion of immune cells components calculated by ESTIMATE software in TCGA cohort; (E) Correlation analysis between 22 immune cell
components and RS in TCGA cohort; (F) The results of correlation analysis between KEGG pathway and RS whose correlation with RS is greater
than 0.45. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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N Stage, T Stage, and other clinicopathological characteristics.

The model results showed the greatest effect of RS on survival

rate prediction. We evaluated the model for its prediction

accuracy using a calibration curve, it could be observed that

the predicted calibration curve of the three calibration points in 1,

3, and 5 years was near the standard curve (Figure 12D), showing

the nomogram’s good prediction ability. Moreover, the decision

curve analysis (DCA) was also utilized for evaluating the model’s

reliability. It could be seen that the benefits of RS and nomogram

were considerably increased when compared with that of the

extreme curve. Compared with other clinicopathological

characteristics, the nomogram showed the strongest ability to

predict survival, followed by RS (Figure 12E).

Discussion

Necroptosis is a type of cell death related to the

morphological characteristics of necrotic cells and its intrinsic

signal transduction is like that of apoptotic cells. Nevertheless,

necroptosis and apoptosis are different mechanisms that help in

the inhibition of tumor development and metastasis (Fu et al.,

2013; Lawlor et al., 2015; Newton, 2015). Numerous research

conducted since the word “necroptosis” was first proposed have

revealed that necroptosis can prevent tumor growth and

metastasis, suggesting that it can be used for the treatment of

cancer (Li et al., 2020a; Park et al., 2020; Tan et al., 2020).

However, molecular typing of LUAD according to genes linked

with necroptosis has not been reported. Based on necroptosis,

cluster analysis was done using LUAD samples provided by the

TCGA and GEO data sets, and we obtained three molecular

subtypes C1, C2, and C3 of LUAD. C1 had a worse prognosis

than C3, whereas C3 had a better prognosis. The matrix and

immune cells enlisted and activated in the microenvironment

associated with the tumor determine the tumor cells in LUAD.

Immune cells and immune-related molecules also infiltrate the

tumor microenvironment, which is where tumor cells

proliferate, develop, and prepare for metastasis (Seong et al.,

2020; Sprooten et al., 2020; Ma et al., 2021). Therefore, the

variations in the immune microenvironment in subjects with

different molecular subtypes were also observed, which showed

that the immune score of the C3 subtype was increased in

comparison with that of other subtypes, indicating that the

C3 subtype had relatively high immune cell infiltration. This

was supported by our prior study showing that C3 had a good

prognosis and the overall survival rate of patients with a high

immune score was more in comparison with that of patients

having a low immune score. This finding indicates that from the

beginning of tumor formation, LUAD patients with higher

immune scores may have stronger adaptive immune responses

than those with lower immune scores (Ma et al., 2021).

Therefore, the higher immune cell content and an

immune score of C3 may be one of the guarantees of a good

prognosis.

Then, we calculated RS and constructed a risk model, in

which RS-high samples had a worse prognosis. In addition, the

FIGURE 11
(Continued).
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evaluation of potential clinical effects of immunotherapy in RS-

high and -low groups showed that the RS-high group had a

higher score and a higher possibility of immune escape. In other

words, in comparison with the RS-low group, the patients of the

RS-high group were observed to have a worse prognosis and up-

regulated expression of immune checkpoints. They were more

suitable for immunotherapy and were more likely to benefit

from it.

Based on the role of necroptosis in the regulation of tumor

immunity, we carried out the ssGSEA to find the immune status

of various RS groups. Immune cells (resting CD4memory T cells,

memory B cells, and resting dendritic cells) were mostly active in

FIGURE 11
Differences in immunotherapy/chemotherapy between RS groups. (A) Immune checkpoints differentially expressed among different groups in
the TCGA cohort; (B) Immune checkpoints differentially expressed among different groups in the GSE72094 cohort; (C) differences in TIDE analysis
results among separate groups in TCGA queue; (D) variations in TIDE analysis results among different groups in GSE72094 queue; (E) Box diagram of
estimated IC50 of docetaxel, vinorelbine, paclitaxel, and cisplatin in TCGA; (F) Box diagram of estimated IC50 of docetaxel, vinorelbine,
paclitaxel, and cisplatin in GSE72094.
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the RS-low group, among these, some were closely linked with

necroptosis. But, CD8 T cells had no significance between high-

and low-group. Necrotic cells could provide dendritic cells with

tumor-specific antigens and inflammatory cytokines for antigen

cross initiation (Sprooten et al., 2020). These outcomes indicate

the possible involvement of necroptosis in the progression of

LUAD by tumor immunity regulation.

In addition, the function of abnormal pathways in the C1 and

C3 subtypes was analyzed, and the results showed that the activated

pathways mainly included some cell cycle-related pathways, such as

HALLMARK_MYC_TARGETS_V2. The relationship between cell

cycles and necroptosis is inseparable. MYC pathway is one of the

most significant signal pathways in the process of necroptosis. In

addition, the MYC transcription factor has been shown in other

studies to inhibit the formation of anti-necrotic protein of the

RIPK1-RIPK3 complex (Seong et al., 2020), which fully

demonstrates the reliability of our typing results. Different

subtypes do have great differences in the process of necroptosis.

Studies have shown that FAM83A and FAM83A-AS1 are

upregulated in LUAD in comparison with the adjacent healthy

tissues. This high expression indicates poor survival and more

advanced clinical stages (Wang et al., 2021a). Moreover, several

studies have shown that FAM83A can be used as a prognostic

characteristic and potential oncogene of LUAD (Zhang et al., 2019;

Gan et al., 2020; Yu et al., 2020; Song et al., 2021). In this study, seven

genes were identified as prognostic genes related to the phenotype of

necroptosis, and FAM83A was one of them. In addition, these six

genes (HMMR (Li et al., 2020b; Li et al., 2021), ANLN (Zhang et al.,

2020; Deng et al., 2021), RHOV (Wang et al., 2021b; Zhang et al.,

2021), CXCL17 (Liu et al., 2020; Wang et al., 2022), MS4A1 (Ma

et al., 2020; Song et al., 2020), and CCR2 (Liu and Wu, 2021; Wan

et al., 2021)) have also been studied to support their use as potential

FIGURE 12
Improvement of prognosis model and survival prediction. (A,B) univariate and multivariate Cox analysis of RS and clinicopathological
characteristics; (C) Nomogram model; (D) Calibration curve of nomogram in 1, 3, and 5 years; (E) Decision curve of the nomogram.
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prognostic biomarkers and possible immunotherapeutic targets

related to LUAD, but our research supports their involvement in

the incidence and development of LUAD from the perspective of cell

necroptosis.

The classification based on the correlation between

necroptosis provides a novel insight for research on LUAD. In

addition, nomograms were established in the LUAD cohort

based on RS and clinicopathological characteristics. Compared

with other clinicopathological characteristics, RS in this

nomogram had significant advantages in accurately predicting

the survival rate of LUAD and greatly enhanced the clinical

application of gene risk typing linked with necroptosis.

Therefore, the typing proposed in this study is new and

meaningful, and it is found that necroptosis-related genes may

be involved in it.

Nevertheless, this study has certain deficiencies and

limitations. First, for external validation, the addition of more

clinical databases is preferable. Moreover, further experimental

evidence is still needed to confirm the conclusions of this paper.

For example, experiments are needed to verify the expression

differences of genes linked with necroptosis in three separate

molecular subtypes. Finally, experiments should verify that the

necroptosis-related genes in different subtypes have an impact on

tumor progression and prognosis, and the specific study of their

possible interaction and regulation mechanism needs to be further

studied. To overcome the shortcomings of this research, we will

recollect and expand clinical samples in the follow-up work,

perform more external experiments for verifying the efficacy of

this model, and conduct large-scale independent studies in the

future to confirm the efficacy of this risk classification.

In summary, the predictive attributes of genes linked with

necroptosis have the ability of independent prognostic prediction

of LUAD patients, assist in elucidating the mechanism and

process of necroptosis genes in LUAD, and provide LUAD

patients with immunotherapy guidance, but additional

experimental confirmation is still required in the future.

Conclusion

In a word, the stable molecular subtypes were identified by

using the related genes of necroptosis through consensus

clustering. Then, we chose a total of seven genes linked

with the prognosis of necroptosis by analyzing the DEGs

among the molecular subtypes and Lasso. Additionally, the

RS model was created based on the prognosis-related genes of

necroptosis. The model had strong robustness, which was

independent of clinical-pathological characteristics, and

played a stable predictive effect in independent data sets.

Finally, we combined RS with clinicopathological

characteristics to further improve the prognosis model and

survival prediction. The model had high prediction accuracy

and survival prediction ability.
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