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Background: Ischemic stroke (IS) is a fatal cerebrovascular disease involving

several pathological mechanisms. Modification of 7-methylguanosine (m7G)

has multiple regulatory functions. However, the expression pattern and

mechanism of m7G in IS remain unknown. Herein, we aimed to explore the

effect of m7G modification on IS.

Methods: We screened significantly different m7G-regulated genes in Gene

Expression Omnibus datasets, GSE58294 and GSE22255. The random forest

(RF) algorithm was selected to identify key m7G-regulated genes that were

subsequently validated using the middle cerebral artery occlusion (MCAO)

model and quantitative polymerase chain reaction (qPCR). A risk model was

subsequently generated using key m7G-regulated genes. Then,

“ConsensusClusterPlus” package was used to distinguish different m7G

clusters of patients with IS. Simultaneously, between two m7G clusters,

differentially expressed genes (DEGs) and immune infiltration differences

were also explored. Finally, we investigated functional enrichment and the

mRNA–miRNA–transcription factor network of DEGs.

Results: RF and qPCR confirmed that EIF3D, CYFIP2, NCBP2, DCPS, andNUDT1

were keym7G-related genes in IS that could accurately predict clinical risk (area

under the curve = 0.967). NCBP2 was the most significantly associated gene

with immune infiltration. Based on the expression profiles of these key m7G-

related genes, the IS group could be divided into two clusters. According to the

single-sample gene set enrichment analysis algorithm, four types of immune

cells (immature dendritic cells, macrophages, natural killer T cells, and TH1 cells)

were significantly different in the two m7G clusters. The functional enrichment

of 282 DEGs between the two clusters was mainly concentrated in the

“regulation of apoptotic signaling pathway,” “cellular response to DNA

damage stimulus,” “adaptive immune system,” and “pyroptosis.” The miR-

214–LTF–FOXJ1 axis may be a key regulatory pathway for IS.
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Conclusion: Our findings suggest that EIF3D, CYFIP2, NCBP2, DCPS, and

NUDT1 may serve as potential diagnostic biomarkers for IS and that the

m7G clusters developed by these genes provide more evidence for the

regulation of m7G in IS.
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transcription factor

1 Introduction

Ischemic stroke (IS) is the most common cerebrovascular

disease, with high mortality and morbidity. It affects

approximately 15 million people worldwide, of which

approximately 5 million die and 5 million are disabled for

life (Maida et al., 2020). In recent years, with the aging of the

population, the risk of IS has greatly increased, resulting in

great pain and economic burden to patients (Matsuzono

et al., 2021). Currently, studies in this area mainly focus

on the regulation of pathological mechanisms, including

apoptosis, inflammation, oxidative stress, and calcium

overload (Feske, 2021). Multiple genes and regulatory

methods are involved in IS, such as phosphorylation signal

transduction and RNA methylation modification (Zhang

et al., 2020). Identifying key genes and intervening in their

regulation can improve the IS prognosis and provide newer

ideas for its treatment.

Recently, the role of RNA modifications in gene regulation

has received increasing attention. More than 150 RNA

modification methods have been discovered, of which

methylation modifications are the most abundant (Chen et al.,

2019). Methylation modifications include 1-methyladenosine, 5-

methyluridine, 5-methylcytidine (m5C), and G methylation of

m1G, m2G, and m7G, 2′-O-ribonucleoside, and N6-

methyladenosine (m6A) (Yang et al., 2021). Modification of

7-methylguanosine (m7G) is one of the most common base

modifications in post-transcriptional regulation. It is widely

distributed in the 5′ cap region of tRNA, rRNA, and

eukaryotic mRNA (Tomikawa, 2018). Zhao et al. (Zhao et al.,

2021) found that m7G-regulated genes are differentially

expressed and induce angiogenesis in other ischemic diseases.

In addition, m7G-regulated genes play an irreplaceable role in

many diseases, such as tumors and gastrointestinal diseases (Dai

et al., 2021). However, the exact regulatory role of m7G-regulated

genes in IS remains unclear.

To the best of our knowledge, this is the first study to

explored the epigenetic role of m7G-regulated genes in IS.

After screening using machine learning, we identified five

m7G-regulated genes involved in IS using the middle cerebral

artery occlusion (MCAO) animal model, which were clearly

clustered IS patients into two m7G clusters, and the immune

infiltration of each cluster was further analyzed. Through

functional enrichment and the mRNA–miRNA–transcription

factor (TF) network, we further revealed the biological

functions and regulation modes of different m7G clusters.

This study provides a novel m7G cluster method that

extensively participates in the regulation of IS occurrence and

treatment.

2 Methods

2.1 Data collection

Two IS-related mRNA expression profiling datasets,

GSE58294 and GSE22255, were downloaded from the Gene

Expression Omnibus (GEO) database using the R package

“GEOquery.” GSE58294 contains 92 samples, including

23 control samples and 69 IS samples, whereas

GSE22255 contains 20 patients with IS and 20 healthy

individuals. These samples were all detected by

GPL570 probe (Affymetrix Human Genome U133 Plus

2.0 Array). The “normalizeBetween-Arrays” function of the

“limma” package was used to normalize the expression matrix.

The gene probes were annotated using official symbols. We

calculated the mean values if multiple gene probes matched

the same gene.

2.2 Establishment of the middle cerebral
artery occlusion (MCAO) model

In total, 200–240 g Sprague–Dawley rats were purchased

from the Animal Experiment Center of Xi’an Jiaotong

University. Rat MCAO model was established, as previously

developed and described (Longa et al., 1989). In brief, the

external carotid artery of the rat was carefully isolated and an

incision was made. A suture (RWD, Shenzhen, China) with a

head diameter of approximately 0.34 ± 0.01 mm was inserted

from the incision in the external carotid artery into the

internal carotid artery up to the middle cerebral artery.

Two hours later, the suture was removed and the wound

was sutured. After 3 days, the rats were euthanized. The rat

brain was snap-frozen, cut into 2-mm coronal slices, and

immersed in 2, 3, 5-triphenyl tetrazolium chloride (TTC)

solution in a 37°C water bath for 30 min. Images were

taken using a digital camera after dyeing.
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2.3 Machine learning screens 7-
methylguanosine (m7G) key genes
between healthy individuals and patients
with ischemic stroke (IS)

Based on previous studies on m7G, 34 m7G key regulatory

genes were included in this study as study objects, including

DCP2, AGO2, CYFIP1, CYFIP2, DCPS, EIF3D, EIF4A1, EIF4E,

EIF4E1B, EIF4E2, EIF4E3, EIF4G3, GEMIN5, IFIT5, LARP1,

LSM1, METTL1, NCBP1, NCBP2, NCBP2L, NCBP3, NSUN2,

NUDT1, NUDT10, NUDT11, NUDT16, NUDT16L1, NUDT3,

NUDT4, NUDT4B, NUDT5, NUDT7, SNUPN, and WDR4

(Tomikawa, 2018; Chen et al., 2022). Differences in the

expression patterns of these genes between patients and

controls were detected using the Wilcoxon test, with a

selection criterion of p < 0.05. Spearman correlation analysis

was performed on these differentially expressed genes (DEGs),

and their chromosomal locations were marked. This study

utilized two widely used machine learning algorithms, random

forest (RF) and support vector machine (SVM), to identify key

regulators of m7G between patients with IS and controls by the

“randomForest” package. The algorithm with the smaller

residual was considered to be a more precise algorithm and

was used. The R package “pROC” was used to calculate the area

under the curve (AUC) and evaluate the accuracy of the two

algorithms.

2.4 Quantitative real-time polymerase
chain reaction

Total RNAwas extracted from the ischemic penumbra of rats

and from the same site in the control group using TRIzol

(Invitrogen, USA). After reverse transcription, real-time PCR

was performed on genes with significant m7G differences. The

primer sequences for these genes are listed in Table 1.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

used as the internal reference gene. The results are expressed

as relative mRNA expression at cycle thresholds and normalized

by parallel amplification of the endogenous control GAPDH. The

relative mRNA expression level (target mRNA/GAPDH value) of

the control group was set as 100%, and the mRNA values of the

other groups were converted into fold changes after comparison

with the control group.

2.5 Establishment and validation of clinical
prediction models

The expression of the five m7G-related genes was packed by

the “datadist” function of the “rms” package, and subsequently,

the model was fitted using the “lrm” function. The “nomogram”

function was used to build a suitable model and draw a

nomogram by these risk genes. The total score of the

nomogram was the sum of the corresponding scores assigned

to each differential gene, and the score corresponded to the

corresponding disease risk. The higher the score, the higher the

risk of gene-induced IS development. Internal validation using

the “caret” package and Bootstrap self-sampling method to

derive the consistency index (C-Index). The calibration,

clinical decision analysis, and receiver operating characteristic

(ROC) curves were used to further evaluate the accuracy of the

risk model.

2.6 Cluster analysis of patients with IS by
m7G-regulated genes

Cluster analysis was used to distinguish different IS patient

classifications based on the regulation of key m7G genes. The R

package “ConsensusClusterPlus” was used to classify patients

with IS into different subgroups according to experimentally

validated m7G key regulatory genes. In this study, the PAM

algorithm and spearman distance were used as parameters, and

the sampling was repeated 1,000 times for a more stable

classification. The number of clusters was determined using a

cumulative distribution function. The “Rtsne” package was used

TABLE 1 Specific primers used for quantitative real-time PCR.

Primer name Sequence

GAPDH-F TGCCACTCAGAAGACTGTGG

GAPDH-R TTCAGCTCTGGGATGACCTT

NCBP2-F AGCGTGTGGGTTCTGTTTCGTG

NCBP2-R CATACTGCCTGCCCTCCTTAAAGC

CYFIP1-F GATGGTGGAGAGGATTCGCAAGTTC

CYFIP1-R CTGGCTAGGGACTGGTGGATGG

NUDT1-F TACTACAGCCTCAGCGAGTTCTCC

NUDT1-R TCCCTCTTAGCCCCATCCTCAATG

DCPS-F AAGCAGGCGTTGGCAATGGTAC

DCPS-R TCCCCAGAGTCCTCATTCACCTTC

NSUN2-F CGCTGCTATCTGCTCGTCCATC

NSUN2-R CTGTGAGTCTAGGAATGCTGGATGC

CYFIP2-F CCACCACCAACTGAAGGACATCATC

CYFIP2-R TCTATGAGGAGGCAGAACAGGATGG

EIF4E3-F GAGTGTGCCTCGAACCTGAAGAAG

EIF4E3-R TGGTCGCCTCTCTCCTCTCATTAAG

EIF3D-F CAACAAGCAGGTCATCCGAGTCTAC

EIF3D-R CCTCCTCTTCCTCCTCATCCTCTTC
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to display the distribution of samples for different clusters. The

expression of m7G key regulatory genes was compared between

the two clusters using the Kruskal–Wallis test.

2.7 Predicting the immune properties of
m7G key regulatory genes

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to assess the immune infiltration of samples

and genes by the “gsva” package. This study analyzed 23 immune

cell types using ssGSEA. These included activated B cells,

activated CD4 T cells, activated CD8 T cells, activated

dendritic cells, CD56 bright natural killer (NK) cells,

CD56 dim NK cells, eosinophils, gamma delta T cells,

immature B cells, immature dendritic cells, myeloid-derived

suppressor cells (MDSCs), macrophages, mast cells,

monocytes, NK T cells, NK cells, neutrophils, plasmacytoid

dendritic cells, regulatory T cells, T follicular helper cells, type

1 T helper cells, type 17 T helper cells, and type 2 T helper cells.

The infiltrating immune cell abundance scores in two different

patient clusters were compared using the Kruskal–Wallis test. A

heatmap was drawn by the “pheatmap” package to show the

correlation between five m7G key regulatory genes and these

immune cells and to select a key gene that best represents the

cluster analysis.

2.8 Enrichment analysis

After cluster analysis, the DEGs between the two clusters

were screened by the “limma” package, and the screening

conditions were as follows: |log2 (fold change)| > 0.5,

adjustment p-value < 0.05. Metascape (https://metascape.org/

gp/index.html) is an excellent tool for pathway and biological

function enrichment analysis. These genes were functionally

enriched using Metascape, with output options, including

Gene Ontology (GO) biological processes, canonical pathways,

Kyoto Encyclopedia of Genes and Genomes pathway, and

Reactome gene sets.

2.9 Construction of the
mRNA–miRNA–transcription factor (TF)
network

The STRING database (https://cn.string-db.org/) can be used

to assess protein–protein interactions (PPIs). The DEGs between

the two m7G clusters were inputted into the STRING database to

construct a PPI network. After forming the PPI network, we

performed cluster analysis on the PPI network using MCODE of

Cytoscape and explored the cluster with the highest MCODE

score as the key genes network. The possible binding miRNAs of

the key genes were predicted using the TargetScan (https://www.

targetscan.org/) and miRTarBase databases (https://www.

mirbase.org/). Predicted transcription factors (TF) may bind

to key genes in the Enrichr database (https://maayanlab.cloud/

Enrichr/). Finally, Cytoscape 3.7.2 was used to construct the

mRNA–miRNA–TF network.

2.10 Statistical analyses

R version 4.0.2 was applied for all statistical analyses.

Between-group comparisons were made using the

independent samples t-test and Mann–Whitney U test. All

analyses were based on two-tailed tests, and statistical

significance was set at p < 0.05.

3 Results

3.1 Expression patterns and differences of
m7G-regulated genes in IS

We explored the differential expression of 34 m7G-

regulated genes in IS and found that 11 genes were

significantly differentially expressed. Among these, CYFIP1,

EIF4E2, and EIF4E3 were significantly upregulated in IS,

whereas CYFIP2, DCPS, EIF3D, GEMIN5, NCBP2, NSUN2,

NUDT1, and SNUPN were significantly downregulated

(Figures 1A, B). To explore whether these m7G-regulated

genes played a key role in IS, we assessed the correlation

between these genes (Figure 1C). In IS, DCPS and NUDT1

showed a high positive correlation (r = 0.67), and EIF3D and

EIF4E3 showed a high negative correlation (r = –0.60). This

suggested that m7G-regulated genes play an important role in

IS. We further marked the location of these genes on the

chromosomes (Figure 1D).

3.2 Machine learning and m7G key gene
screening

The machine learning algorithm was used to further screen

for m7G key regulatory genes. We compared two machine

learning algorithms and found that the residual of RF was

significantly smaller than that of SVM (Figures 2A, B). In the

ROC curve, the RF algorithm (AUC = 1) also showed better

accuracy than SVM (Figure 2C). Therefore, the RF algorithm was

selected as the machine learning algorithm in this experiment.

When the number of trees was 93, the machine learning error of

the RF algorithm was the smallest (Figure 2D). Finally, eight

genes with an importance score greater than 3 were selected:

CYFIP1, CYFIP2, DCPS, EIF3D, EIF4E3, NCBP2, NSUN2, and

NUDT1 (Figure 2E).
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FIGURE 1
Expression patterns and differences of m7G-regulated genes in IS. (A) Boxplot of 34 m7G genes expression between control and IS. (B)
Heatmap of 11 differentials expressed m7G genes between control and IS. Red represents high expression and blue represents low expression. (C)
Correlations of m7G DEGs in IS. Blue represents positive correlation and red represents negative correlation. (D) Chromosomal positions of m7G
DEGs. *p < 0.05, **p < 0.01, ***p < 0.001. IS: ischemia stroke; con: control; DEGs: differentially expressed genes.
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3.3 Expression profiles of m7G-regulated
genes in the MCAO model

To explore the expression of m7G-regulated genes in IS,

we constructed a MCAO model. We used rat brain tissue for

TTC staining 3 days after modeling to verify the success of the

modeling. A clear white infarct appeared in the left cerebral

hemisphere of the model group, whereas the whole brain of

the control group showed a red active state (Figure 3A). Eight

screened m7G-regulated genes were verified using qPCR. The

results showed that EIF3D, CYFIP2, NCBP2, DCPS, and

NUDT1 exhibited significant differences in the MCAO

model, which was consistent with the differential analysis

of the expression profile dataset (Figure 3B). These results

confirm that these m7G-regulated genes play a significant

regulatory role in IS.

3.4 Establishment of a clinical prediction
model

We established a clinical predictionmodel to evaluate the risk

and correlation between five key m7G-regulated genes in IS. Our

nomogram showed the risk of developing IS for each gene

(Figure 3C). The internal validation of the model using

Bootstrap self-sampling method with 1,000 samples yielded a

model C-Index of 0.888. A calibration curve was used to further

confirm the accuracy of the model, which showed that the

FIGURE 2
Machine learning screens m7G key regulatory genes. (A) Boxplot of residual in RF and SVM. (B) Reverse cumulative distribution of residual in RF
and SVM. (C) ROC curve of RF and SVM. (D) Random forest screening of DEGs. (E) Screening for candidate m7G-regulated genes by RF. RF: random
forest; SVM: support vector machine; ROC: receiver operating characteristic; DEGs: differentially expressed genes.
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prediction model had a good accuracy (Figure 3D). The decision

analysis curve also showed that m7G could predict the risk of

disease more accurately (Figures 3E, F). The ROC curve (AUC =

0.967, 95% CI 0.932–1.000) further supported these results

(Figure 3G). In conclusion, we used a clinical predictive

model to accurately assess the risk of m7G-regulated genes in IS.

3.5 Cluster of patients with IS according to
m7G key regulatory genes

Based on the five validated key regulatory genes of m7G, we

performed cluster analysis on patients with IS. The tracking plot

showed that it was prudent to divide the patients into two clusters

FIGURE 3
Experimental validation and clinical predictionmodels. (A) TTC verification ofMCAOmodel. (B)Validation of quantitative real-time PCR analysis.
(C)Nomogram of m7G key regulatory genes for predicting IS. Calibration curve (D), Clinical decision analysis (E,F) and ROC curve (G) of nomogram.
TTC: 2, 3, 5-triphenyl tetrazolium chloride; MCAO: middle cerebral artery occlusion; IS: ischemia stroke; ROC: receiver operating characteristic.
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for accuracy (Figures 4A, B).We displayed the expression profiles

of five m7G key regulatory genes according to these two clusters

and found that their expression levels varied significantly in

different clusters (Figure 4C). Principal component analysis

(PCA) revealed that this clustering method could completely

and accurately distinguish patients with IS (Figure 4D).

Therefore, we accurately clustered patients with IS according

to the expression patterns of m7G-regulated genes.

3.6 Immune infiltration signatures of m7G
clusters

We used the ssGSEA algorithm to evaluate the level of immune

cell infiltration between different clusters to explore the differences

in their immune microenvironment characteristics. We found that

the four types of immune cell infiltration were significantly different

between the two clusters: immature dendritic cells, macrophages,

NK T cells, and type1 T helper cells (Figure 5A). The correlation of

the five m7G-regulated genes experimentally identified with

immune cell infiltration was also calculated (Figure 5B). Among

them, the correlation of NCBP2 was the most evident, with a

maximum positive correlation coefficient of 0.58 and a

maximum negative correlation coefficient of –0.69. Therefore,

NCBP2 may play a critical role in immune cell infiltration. As

shown in Figure 5C, among the cells with different NCBP2

expression levels, there were more cell types with significant

differences in immune infiltration, including activated B cells,

activated CD4 T cells, activated CD8 T cells, activated dendritic

cells, eosinophils, MDSC, macrophages, plasmacytoid dendritic

cells, mast cells, NK cells, neutrophils, and type 2 T helper cells.

3.7 Enrichment among different m7G
clusters

To explore the characteristics of the biological functions

under different m7G gene expression patterns, we performed

FIGURE 4
Cluster analysis of IS by m7G key regulatory genes. (A) Sample distribution for k = 2–9. (B) Consensus clustering matrix with k = 2. (C)Heatmap
of m7G key regulatory genes between clusters. Red represents high expression and blue represents low expression. (D) PCA analysis between
clusters. Group A and group B represent two clusters of IS patients divided according to the expression of m7G key regulatory genes. PCA: principal
component analysis.
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FIGURE 5
Immune infiltration analysis of two m7G clusters. (A) Differences in immune infiltration abundances between two m7G clusters. Group A and
group B represent two clusters of IS patients divided according to the expression ofm7G key regulatory genes. (B) Immune cell infiltration correlation
heatmap of m7G key regulatory genes. Red represents positive correlation and blue represents negative correlation. (C) Immune infiltration analysis
between clusters with different NCBP2 expression levels. Group Low and group High represent cell clusters with low and high NCBP2
expression, respectively. *p < 0.05, **p < 0.01, ***p < 0.001. IS: ischemia stroke.
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biological functions and pathway enrichment analysis.

Specifically, we screened 282 DEGs between the two m7G

clusters (Supplementary Table S1). Metascape was used for

the enrichment analysis (Figure 6A). The results showed that

in the “GO Biological Processes” analysis, the “regulation of

apoptotic signaling pathway” and “cellular response to DNA

damage stimulus,” the mechanisms closely related to IS

pathogenesis, were enriched in 12 and 17 genes, respectively.

In the “Reactome Gene Set” analysis, the genes enriched in the

two IS-related pathways of “adaptive immune system” and

“pyroptosis” were 20 and 4 genes, respectively. This indicates

that m7G-regulated genes are closely related to IS in terms of

biological functions.

3.8 Construction of the
mRNA–miRNA–TF network

DEGs between the two m7G clusters were used to build a PPI

network to explore the interaction relationship between genes. There

were 254 nodes and 274 edges in this PPI network (Supplementary

Figure S1). After further identification of keymodules and hub genes

using MCODE, a PPI network with 9 nodes and 26 edges was

identified, which included LTF, LCN2, ELANE, RNASE3, CTSG,

DEFA4, OLFM4, and CEACAM8 (Figure 6B). We combined

“Targetscan” and “miRTarBase” databases to successfully predict

21 miRNAs that may bind to key regulatory genes of m7G. Next, we

showed the mRNA–miRNA–TF networks (Figure 6C). Among

them, LTF had the largest number of nodes and edges and may

bind to 18 miRNAs and 19 TFs. This indicates that LTF plays an

important regulatory role in IS.

4 Discussion

In this study, we discovered the epigenetic and immune

microenvironmental regulatory mechanisms of m7G in IS.

First, we screened out the differentially expressed m7G

regulatory genes in IS. Second, we identified that EIF3D,

CYFIP2, NCBP2, DCPS, and NUDT1 were five key m7G-

FIGURE 6
Functional enrichment and mRNA–miRNA–TF networks. (A) Pathway and process enrichment analysis of DEGs between m7G clusters. (B) PPI
network of DEGs between m7G clusters. (C) mRNA–miRNA–TF networks of DEGs between m7G clusters. TF: transcription factor; PPI:
protein–protein interactions; DEGs: differentially expressed genes.
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regulated genes differentially expressed in IS according to the RF

algorithm and qPCR of the MCAO model. The risk impact of

these genes on developing IS was assessed separately, and

patients with IS were divided into two clusters based on these

genes. Finally, immune infiltration between the two clusters and

the functional enrichment and regulatory network of differential

genes were also revealed.

IS is a complex disease that involves multiple molecular

mechanisms and methylation modifications. Chokkalla et al.

(Chokkalla et al., 2019) found that regulation of m6A methylation

is involved in IS development and can be considered an important

marker of IS. Zhang et al. (Zhang et al., 2020) found that YTH

domain-containing 1 acts as an m6A reader and alleviates IS by

promoting the activation of the AKT signaling pathway. However,

studies on m7G and IS are limited. Therefore, our study provides

evidence for epigenetic studies on methylation and IS.

We screened keym7G-regulated genes in IS and further verified

this using the rat MCAO model by qPCR, which greatly improved

the accuracy of the screening. These genes included EIF3D, CYFIP2,

NCBP2, DCPS, and NUDT1. EIF3D and NUDT1 have been shown

to play important regulatory roles in tumor and immune infiltration

(Huang et al., 2019; Huang et al., 2022). CYFIP2 has been shown to

play vital regulatory role in the central nervous system (Schaks et al.,

2020).NCBP2 andDCPS are believed to be involved in neurogenesis,

which may inextricably be associated with IS (Singh et al., 2020;

Salamon et al., 2022). However, the specific mode of regulation

between them and the IS has not yet been studied. Therefore, our

study successfully confirmed their close correlation with IS using an

animal model.

Machine learning and clinical predictions are excellent tools for

bioinformatics analysis, enabling accurate assessment of disease

regulatory mechanisms and risks. The algorithm we used, RF,

has been used for long-term outcome prediction of mortality and

morbidity in patients with stroke. Heo et al. (Heo et al., 2019) found

that the RF algorithm can also predict the long-term prognosis of IS.

Our study not only selected the key genes with the RF algorithm but

also proved that RF was more suitable for our study, which provides

evidence for the precise selection of the appropriate machine

learning. Nomograms have been widely used in clinical

prediction models of stroke. Yuan et al. (Yuan et al., 2020) used

a nomogram to accurately predict the risk of stroke using multiple

risk factors, including hypertension, diabetes, and smoking. Our

study further refines the risk factors for genes, providing a more

precise theoretical basis for the prevention and treatment of stroke

through molecular mechanisms.

Our studymakes the first attempt to cluster patients with IS into

two defined clusters based on m7G key gene expression profiles, as

well as presents novel methodologies for identifying different types

of patients with IS and their precise treatment. In addition, we

analyzed the differences in immune infiltration between the two

clusters. Li et al. (Li et al., 2022) clustered patients with liver cancer

by m7G-regulated gene expression patterns. In our study, the

immune infiltrating cells with significant differences between the

different clusters were immature dendritic cells, macrophages, NK

T cells, and type 1 T helper cells. Therefore, we confirmed thatm7G-

regulated genes have profound effects on immune cell infiltration

and play different immune regulatory roles in various diseases. We

also found that these differences in immune cell infiltration were

closely related to NCBP2.

Differential m7G gene expression profiles between clusters were

screened and functionally enriched and mRNA–miRNA–TF

networks were established. Several reports have suggested that

LCN2 can mediate the phagocytosis of astrocytes to trigger

demyelination, which exacerbates IS (Wan et al., 2022). The

critical role of the miR-214–LTF–FOXJ1 axis was also observed

in our study. Although LTF is believed to mediate neuronal

ferroptosis in hemorrhagic stroke, it has rarely been reported in

IS (Zhao et al., 2018). MIR-214 attenuates neuronal apoptosis and

ferroptosis in IS, and FOXJ1 is believed to induce neurogenesis

(Devaraju et al., 2013; Lu et al., 2020). Therefore, we hypothesized

that the miR-214–LTF–FOXJ1 axis may play an important

regulatory role in IS, thus becoming an important molecular

target for the prevention and treatment of IS. However, the

specific role of this axis has not yet been verified, which may

become the focus of our next study.

This study has its own limitations. First, only vivo experiments

but no vitro cell experiments were performed. This may be

improved in subsequent studies. Second, although we

innovatively discovered the miR-214–LTF–FOXJ1 axis, this could

not be verified by basic experiments. Third, although wewere able to

establish detailed predictions on the mediation network of m7G, we

did not further explore therapeutic drugs based on this, which is

insufficient for clinical guidance. In addition, we still need to obtain

more clinical data from patients as an analysis basis to augment the

accuracy of assessment and prediction.
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