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Osteoarthritis (OA) is a major cause of pain, disability, and social burden in the

elderly throughout the world. Although many studies focused on the molecular

mechanism of OA, its etiology remains unclear. Therefore, more biomarkers

need to be explored to help early diagnosis, clinical outcome measurement,

and new therapeutic target development. Our study aimed to retrieve the

potential hub genes of osteoarthritis (OA) by weighted gene co-expression

network analysis (WGCNA) and assess their clinical utility for predicting OA.

Here, we integrated WGCNA to identify novel OA susceptibility modules and

hub genes. In this study, we first selected 477 and 834 DEGs in the GSE1919 and

the GSE55235 databases, respectively, from the Gene Expression Omnibus

(GEO) website. Genes with p-value<0.05 and | log2FC | > 1 were included in our

analysis. Then, WGCNA was conducted to build a gene co-expression network,

which filtered out the most relevant modules and screened out 23 overlapping

WGCNA-derived hub genes. Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses elucidated that

these hub genes were associated with cell adhesion molecules pathway,

leukocyte activation, and inflammatory response. In addition, we conducted

the protein–protein interaction (PPI) network in 23 hub genes, and the top four

upregulated hub genes were sorted out (CD4, SELL, ITGB2, and CD52).

Moreover, our nomogram model showed good performance in predicting

the risk of OA (C-index = 0.76), and this model proved to be efficient in

diagnosis by ROC curves (AUC = 0.789). After that, a single-sample gene set

enrichment (ssGSEA) analysis was performed to discover immune cell

infiltration in OA. Finally, human primary synoviocytes and

immunohistochemistry study of synovial tissues confirmed that those

candidate genes were significantly upregulated in the OA groups compared

with normal groups. We successfully constructed a co-expression network

based onWGCNA and found out that OA-associated susceptibility modules and
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hub genes, which may provide further insight into the development of pre-

symptomatic diagnosis, may contribute to understanding the molecular

mechanism study of OA risk genes.

KEYWORDS

osteoarthritis, WGCNA, pathway analysis, protein–protein interaction, SsGSEA, hub
genes

Introduction

Osteoarthritis (OA), a chronic degenerative joint disease, is

the leading cause of disability in the elderly, which aggravates the

socioeconomic burden and seriously jeopardizes human health

worldwide. With the expanding life expectancy of the aging

population, the incidence and prevalence of osteoarthritis also

increases (Mandl, 2019; Sacitharan, 2019; Yuan et al., 2020).

Though several risk factors associated with osteoarthritis have

been well-accepted, including genetic predisposition, gender, age,

obesity, and trauma, the pathogenesis of osteoarthritis remains

largely unclear (Driban et al., 2020; Allen et al., 2022; Sanchez-

Lopez et al., 2022; Sim et al., 2022). Furthermore, numerous

studies provide solid evidence that cartilage, subchondral bone,

and synovium all play prominent roles in the formation and

progression of osteoarthritis (Hu W. et al., 2021; Hu Y. et al.,

2021; Allen et al., 2022; Lin et al., 2022; Sanchez-Lopez et al.,

2022). To date, a series of clinical and experimental studies have

highlighted that osteoarthritis is a systemic low-grade

inflammation disease, characterized by the activation of

inflammatory factors in synovial fluid and cartilage

(Musumeci et al., 2015a; Pereira et al., 2015; Mobasheri and

Batt, 2016; Scanzello, 2017; Griffin and Scanzello, 2019; Hu W.

et al., 2021; Sanchez-Lopez et al., 2022). During the osteoarthritis

process, the innate immune system is activated. Immune cells

infiltrate the synovium and produce inflammatory signals and

chemokines, and after that, hypertrophic chondrocytes also

express proinflammatory mediators and trigger its phenotypic

shift to degeneration in a vicious feedback cycle. Proliferating

synoviocytes and chondrocytes release proinflammatory

products and degradative enzymes that eventually increase

cartilage degradation and accelerate disease progression

(Hunter and Bierma-Zeinstra, 2019). Practically, inflammation

has become recognized as a hallmark throughout all stages of

osteoarthritis, from the onset of synovitis, cartilage degeneration,

and subchondral bone remodeling osteophyte formation to

subchondral sclerosis and cyst formation (Charlier et al., 2019;

Hu Y. et al., 2021; Lin et al., 2022; Nakasone et al., 2022; Sanchez-

Lopez et al., 2022). Thus, a deeper understanding of

inflammatory cell activation is a pivotal step to effectively

prevent osteoarthritis progression.

In clinical practice, the traditional diagnosis of osteoarthritis

relies on patients’ symptoms, radiography, and magnetic

resonance imaging (MRI) evaluation, which have limited value

in the detection of early OA and disease intervention (Glyn-Jones

et al., 2015; Pereira et al., 2015). In the last 2 decades, with the

expansion of proteomics and molecular biology, many scientists

have devoted themselves to validating biomarkers for early-

diagnosis of OA, intervention, prognostics, and novel

therapeutic targets (Glyn-Jones et al., 2015; Han et al., 2021).

Many potential biomarkers have been proposed, such as IL-6, IL-

8, degradation products of collagen and proteoglycan, and

microRNAs (Haraden et al., 2019; Zhang et al., 2020c; Han

et al., 2021; Ratneswaran and Kapoor, 2021; Weber et al.,

2021; Zhang et al., 2021; Nakasone et al., 2022). However,

none of them are sufficient to meet the “BIPED” biomarker

classification criteria, which stratify biomarkers as burden of

disease(B), investigative(I), prognostic(p), efficacy of

intervention(E), and diagnostic(D) (van Spil et al., 2010;

Musumeci et al., 2015b; Haraden et al., 2019; Batshon et al.,

2020; Weber et al., 2021). Remarkably, there are no reliable and

satisfactory biomarkers in the study of OA, and its clinical

application is a relatively distant prospect (Glyn-Jones et al.,

2015). Taken together, it is urgent for scientists to find effective

and specific biomarkers for OA, which may facilitate clinical

decision-making and early intervention so as to decelerate the

subsequently clinical debilitating complications of OA.

Indeed, a variety of bioinformatics softwares and

databases have been developed for the identification of

disease-related pathways, such as WGCNA (Hao M. L.

et al., 2021), KEGG enrichment analysis (Yang et al., 2021;

Zhao et al., 2021), and GSEA (Xia et al., 2021; Yang et al., 2021;

Zhao et al., 2021; Lu et al., 2022). Weighted correlation

network analysis (WGCNA) is a powerful method to find

modules related to diseases and explore their pathogenesis

(Hao M. L. et al., 2021). Genes of microarray or RNA sequence

data are sorted into different modules based on their

correlation, and then relating these modules to clinical data

can find the correlation between modules and traits (Li et al.,

2019; Xia et al., 2021).

In the present study, we identified differentially expressed

genes (DEGs) by analyzing the microarray data of the synovial

membrane from OA and normal groups. Then, WGCNA was

used to identify the most relevant modules with OA, which

significantly narrows the range of genes to be screened.

Additionally, other comprehensive analyses were used to

identify potential hub genes and evaluate immune infiltration

levels between OA and normal groups. In brief, we found four

hub genes, i.e., CD4, SELL, ITGB2, and CD52 that are potential

diagnostic biomarkers which may contribute to the diagnosis of
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osteoarthritis and provide further insight into the underlying

molecular mechanisms for OA risk genes.

Materials and methods

Sample collection and ethics approval

Ethics approval (The Ethics Committee of the Third

Affiliated Hospital of Guangzhou Medical University 2022-

No.018) and written informed consent were obtained for the

use of tissue samples (synovial membranes) discarded during

surgical treatment in the Department of Joint Surgery, The Third

Affiliated Hospital of Guangzhou Medical University from April

2022 to August 2022. Tissue samples of osteoarthritis groups

were collected from OA patients undergoing total knee

arthroplasty surgery (TKA), while samples for non-

osteoarthritis groups were collected from patients undergoing

knee arthroscopic surgery for cruciate ligament injuries,

meniscus injury, or intra-articular fracture.

Data download and preprocessing

We initially searched OA expression profile datasets from the

Gene Expression Omnibus (GEO) using keyword “osteoarthritis”

(https://www.ncbi.nlm.nih.gov/geo/). Microarray datasets of

synovial membrane (GSE1919 and GSE55235) and subchondral

bone (GSE51588) were obtained from platforms GPL91, GPL96,

and GPL13497. Synovial tissues were analyzed in the GSE1919 and

GSE55235 datasets, including 15 normal samples and 15 OA

samples. Meanwhile, subchondral bone samples were selected in

the GSE51588 datasets, including 10 samples from normal donors

and 40 from OA patients (Table. 1).

Identification of differentially expressed
genes

First, raw data from dataset GSE1919, GSE55235, and

GSE51588 were read and preprocessed for batch correction

and normalization by using R software (version 3.6.1).

Then, the “limma” package was conducted for DEG

screening. After significance analysis (p-value < 0.05 and

| log2FC | > 1 were used as the selection criteria) of

expression levels, volcano plots and DEG expression

heatmaps were generated by processing the “ggplot2” and

the “pheatmap” R packages.

WGCNA (weighted gene co-
expression network analysis)

Weighted correlation network analysis (WGCNA) is a

systematic biological method used to describe gene

association patterns between different samples. It can be

used to identify highly synergistic gene sets. Based on the

interconnectedness of gene sets and the association between

gene sets and phenotypes, it can identify candidate biomarkers

(Langfelder and Horvath, 2008). We computed the “WGCNA”

R package to construct a gene co-expression network of OA.

First, a sample-clustering tree was drawn to assess the

presence of outliers. Second, the adjacency matrix (AM)

was transformed into a topological overlap measure (TOM)

matrix (scale free R2 = 0.80). Third, the “DynamicTreeCut”

method was used to classify genes with similar expression

profiles into the same gene modules (the parameters were

adjusted to minModuleSize = 60 and deepSplit = 2). Finally,

we calculated the correlation between different modules with

OA pathogenesis and the most relevant modules were selected

as WGCNA-derived hub genes.

Screening and validation of candidate
hub genes for GO and KEGG analyses

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a

database resource for systematic analysis of gene functions, linking

genomic information with higher-order functional information,

especially large-scale molecular datasets generated by high-

throughput experimental technologies (Kanehisa and Goto, 2000;

Kanehisa et al., 2017). To begin with, the intersection of DEGs and

WGCNA-derived hub genes was obtained throughVenn diagram by

Bioinformatics & Evolutionary Genomics software (http://

bioinformatics.psb.ugent.be/webtools/Venn/). Those intersection

genes were considered OA pathogenesis-related candidate hub

TABLE 1 Information of the GEO datatsets.

Dataset Platform Manufacturer Group Tissue type

Normal OA

GSE1919 GPL91 Affymetrix HG_U95A 5 5 Synovial membrane

GSE55235 GPL96 Affymetrix HG-U133A 10 10 Synovial membrane

GSE51588 GPL13497 Agilent-7026652 10 40 Subchondral bone
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genes. Subsequently, we performed gene ontology (GO) enrichment

analysis and KEGG enrichment analysis to help us understand the

underlying molecular mechanisms of pathogenesis and progression

by means of the “clusterProfiler” R package.

Construction of protein–protein
interaction networks of candidate
hub genes

The PPI and molecular interaction networks were predicted

and visualized by the STRING online database (http://string-db.

org) and the Cytoscape software platform. First, we inputted

overlapping genes into the STRING database to screen out and

draw PPI networks. Second, Cytoscape software was applied to

rank the significant genes in PPI networks.

Construction of a nomogram model
based on hub genes

We constructed a nomogrammodel to predict the risk of OA

using the “rms” package (Iasonos et al., 2008; Park, 2018). The

performance of the nomogrammodel was assessed by calculating

Harrell’s concordance index (C-index), which can evaluate the

predictive ability of the model (Harrell et al., 1996; Chaudhary

et al., 2018; Su et al., 2022). Then, we constructed the receiver

operating characteristic (ROC) curve by the “ROCR” package to

verify the diagnostic efficacy of candidate markers. The area

under the ROC curve (AUC) was used as an indicator of

accuracy. We used one criterion to distinguish between

excellent accuracy (0.9 ≤ AUC<1), good accuracy (0.8 ≤
AUC<0.9), and non-informative accuracy (AUC = 0.5).

Single-sample gene set enrichment
analysis

In order to explore the role of immune cell infiltration in

OA, single-sample gene set enrichment analysis was

performed by using the“gsva” R package. Gene Set

Variation Analysis (GSVA) is a non-parametric,

unsupervised algorithm, which is popular in large-scale

genomic studies. GSVA does not need to group samples in

advance and can calculate enrichment scores for specific gene

sets in each sample (Hänzelmann et al., 2013; Ferreira et al.,

2021). We also investigated the differential immunocyte

infiltration levels among 22 types of immune cells and

analyzed the correlation between the candidate hub genes

and immune cell infiltration in OA groups by CIBERSORT

analysis, a computational method for quantifying cell

fractions from tissue–gene expression profiles (Chen et al.,

2018; Kawada et al., 2021).

Primary cell culture

Human fibroblast-like synoviocytes were isolated from

synovial tissues of non-osteoarthritis and osteoarthritis

groups.

The collected tissues were digested and incubated first for

2–4 h with 0.5% collagenaseⅡand then for 30 min with 0.05%

trypsin. The isolated cells were cultured in DMEM/

F12 medium (Gibco, Thermo Fisher) supplemented with

10% fetal bovine serum (Gibco, Thermo Fisher) and 1% of

penicillin/streptomycin (Gibco, Thermo Fisher) under

standard cell culture conditions (5% CO2, 37°C). After

24–48 h, supernatants were discarded in order to remove

non-adherent cells without disturbing adherent cells.

Human synoviocytes in passages 4 to 6 were collected for

subsequent experiments.

RNA isolation and real-time quantitative
PCR analysis

Total RNA of primary synoviocytes was collected

according to the instructions of a TRIzol kit (Invitrogen

Corporation, Carlsbad, CA, United States), and cDNA was

synthesized with the reverse transcription kit (Takara). Real-

time quantitative PCR (qPCR) with SYBR Green detection

chemistry was performed on a Roche LightCycler480 Ⅱ Real-

Time PCR system (Roche Diagnostics GmbH, Forrenstrasse

26,343, Rotkreuz, Switzerland) with the following primers

(Table 2). Melt-curve analyses of all real-time quantitative

PCR products were performed. All samples were measured

thrice, and the mean value was considered for comparative

analysis. Quantitative measurements were determined using

the △△Ct method, and GAPDH expression was used as the

internal control. One-way analysis of variance was used for

statistical analysis, and a two-tailed probability (p) value <
0.05 was considered statistically significant.

Immunohistochemistry study

Samples were selected for immunohistochemical staining

to experimentally verify the difference in their expression in

non-osteoarthritis and osteoarthritis tissues. The tissues were

formalin-fixed, paraffin-embedded, and finally cut into slices

with a microtome. CD4, SELL, ITGB2, and CD52 were

detected using the rabbit anti-CD4 polyclonal antibody

(Servicebio, GB11064) at 1:1,000, anti- SELL polyclonal

antibody (Affinity Bioscience, Cat#DF6509) at 1:200, anti-

ITGB2 polyclonal antibody (Affinity Bioscience,

Cat#DF6896) at 1:200, and anti-CD52 polyclonal antibody

(Proteintech, Cat No.21809-1-AP) at 1:200. Sections were

incubated with the HRP-goat anti-rabbit secondary
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antibody (Servicebio, GB21303) at a 1:200 dilution for 30 min

at room temperature. Color was developed by

diaminobenzidine (DAB). The tissue sections were observed

under a microscope.

Results

Screening of DEGs

After preprocessing raw data, genes with p-value < 0.05 and |

log2FC| > 1 were considered differentially expressed genes

(DEGs). In this part, we screened 477 DEGs in the

GSE1919 dataset (Figures 1A,B), including 218 upregulated

and 259 downregulated genes in the OA group compared

with the normal group (Supplementary Table S1). In the

meantime, 834 DEGs were observed in the GSE55235 dataset

(Figures 1C,D), with 448 upregulated and 386 downregulated

DEGs (Supplementary Table S2).

WGCNA network construction and OA-
related module dsl identification

To discern if potential gene modules correlate with OA, we

conducted WGCNA to analyze all candidate genes in different

stages of osteoarthritis formation from OA-related datasets

(GSE1919 and GSE55235) (Figures 2A,D). Based on the

average link hierarchical clustering and soft threshold

power, we confirmed 10 (Figure 2B) and 9 (Figure 2E)

different gene modules on the basis of the GSE1919 and

GSE55235 datasets, respectively. After analyzing the

positive correlation coefficient, we selected the module with

the strongest (and positive) correlation coefficient. Finally,

module cyan (r = 0.64, p = 1.2e−148) (Figure 2C) and module

brown (r = 0.93, p < 1e−200) (Figure 2F) were screened out in

the GSE1919 and the GSE55235 datasets, respectively. As a

result, 1,283 genes were identified in module cyan of the

GSE1919 dataset (Supplementary Table S3), while

2,284 genes were identified in module brown of the

GSE55235 dataset (Supplementary Table S4), both of which

were selected as WGCNA-derived hub genes.

GO enrichment and KEGG pathway
analyses of candidate hub genes

In order to find co-expression genes between DEGs and

WGCNA-derived hub genes, we took the intersection of DEGs

and WGCNA-derived hub genes by using Venn diagram

(Figure 3A). As a result, 23 overlapping genes were screened

out as candidate hub genes, which might play a vital role in the

formation and progression of osteoarthritis (Supplementary

Table S5). To further understand the potential role of those

23 overlapping genes, GO and KEGG analyses were performed.

The KEGG pathway analysis showed that these genes were

enriched in the rheumatoid arthritis, human T cell leukemia

virus 1 infection, and neutrophil extracellular trap formation

pathway (Figure 3B), while the GO enrichment analysis revealed

that changes in these 23 genes were mainly enriched in the

regulation of cytosolic calcium ion concentration, cell adhesion

molecules, cytokine binding, leukocyte activation, and acute

inflammatory response (Figure 3C).

Analysis of hub genes through the PPI
network

First, the PPI networks of overlapping hub genes were

analyzed by the STRING online tool (Figure 4A). Then, by

using Cytoscape software, top four upregulated genes that

ranked a high score are visualized as shown in (Figure 4B).

Briefly, CD4, SELL, ITGB2, and CD52 were sorted out.

Nomogram model construction and OA
risk prediction

Subsequently, a nomogrammodel was constructed to predict

the risk of OA (Figure 5A). The discrimination ability of the

nomogram was evaluated using concordance index (C-index).

The C-index value was 0.76 in our nomogrammodel. Typically, a

C-index value greater than 0.7 suggests a reasonable estimation.

As a result, our nomogram model showed an excellent

performance on OA prediction. Next, each ROC curve of the

four hub genes (CD4, SELL, ITGB2, and CD52) together with our

TABLE 2 Primers used for RT-qPCR amplification.

Primers Forward Reverse

CD4 TGCCTCAGTATGCTGGCTCT GAGACCTTTGCCTCCTTGTTC

SELL ACCCAGAGGGACTTATGGAAC GCAGAATCTTCTAGCCCTTTGC

CD52 TCTTCCTCCTACTCACCATCAG CCTCCGCTTATGTTGCTGGA

ITGB2 AAGTGACGCTTTACCTGCGAC AAGCATGGAGTAGGAGAGGTC

GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC
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nomogram model was calculated to assess diagnostic efficacy by

introducing another external dataset (GSE51588). According to

our criteria, 0.9 ≤ AUC<1 represents excellent accuracy, 0.8 ≤
AUC<0.9 represents good accuracy, and AUC = 0.5 represents

non-informative accuracy. The area under the curve (AUC) of

our nomogram could distinguish OA from the control group. In

addition, the diagnostic value was 0.789, higher than that of each

hub gene (Figure 5B).

Evaluation of immune cell infiltration
in OA

Since GO enrichment and KEGG pathway analyses revealed

that these hub genes were mainly related to inflammation

response, the landscape and correlation heatmap of

29 immune-related gene sets were produced by ssGSEA

(Figure 6A). The CIBERSORT algorithm was applied to reveal

different leukocyte infiltration levels in the two groups. The bar

chart shows the composition of 22 immune cell types, while the

correlation heatmap revealed different infiltration levels of

immune cells in the OA group (Figures 6B, C). Figure 6D

illustrated the correlation between hub gene expression and

immune cell infiltration. As shown in the heatmap, the

expressions of CD4, ITGB2, and SELL were found to be

negatively correlated with those of follicular helper CD 4 +

T cells and activated mast cells, and the expression of

CD52 was found to be positively correlated with that of

activated mast cells and CD 8 + T cells. In addition,

ITGB2 and SELL expression levels were positively correlated

with the resting mast cells. On the contrary, the expression of

CD52 was found to be negatively correlated with the resting mast

FIGURE 1
Differentially expressed genes.(A) Volcano plot of DEGs in the GSE1919 dataset. The green dot represents downregulated genes, gray
represents genes with no significant difference, while the red dot represents upregulated genes comparing the OA group with the normal group in
the GSE1919 dataset. (B) Heatmap represents hierarchical clustering for DEGs in the GSE1919 dataset. (C) Volcano map of DEGs in the
GSE55235 dataset. (D) Heatmaps of DEGs in the GSE55235 dataset.
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cell infiltration. In the meantime, the expression of SELL was

negatively correlated with regulatory T cells (Tregs), activated

NK cells, and naive B cells. The expression of ITGB2 was

negatively correlated with CD 8 + T cell infiltration, while it

was positively correlated with resting memory CD 4 + T cell

infiltration.

Expression of hub genes in clinical
specimens of synovial tissues

To further verify the expression results obtained by our

bioinformatics research, we performed Q-PCR in human

primary culture synoviocytes. The results showed that the

relative expression levels of CD4, SELL, ITGB2, and

CD52 were consistent with our hypothesis (Figure 7).

Then, we assessed the expression of CD4, SELL, ITGB2, and

CD52 proteins in synovial tissues from TKA patients and

patients undergoing knee arthroscopic surgery using IHC

staining. As expected, the expressions of CD4, SELL, ITGB2,

and CD52 were significantly upregulated in the OA group

compared with the normal group (Figure 8).

Discussion

Osteoarthritis (OA) is the most prevalent and disabling bone

disease, with over 250 million people getting affected in

populations (Hunter and Bierma-Zeinstra, 2019). In line with

the aging population, the absolute number of osteoarthritis cases

is currently increasing. OA is a heterogeneous disease with a wide

range of underlying pathways, and its pathogenesis is complex

and remains largely enigmatic. Even worse, there are no effective

biomarkers for early diagnosis of OA.

Diagnostic biomarkers aim to identify patients with

pathological changes (Glyn-Jones et al., 2015). Currently,

researchers have concentrated on validating the biomarkers

involved in cartilage degeneration in OA (Musumeci et al.,

FIGURE 2
WGCNA was performed to discern osteoarthritis (OA)-related gene modules in the GEO datasets. (A) Dendrogram of all genes in the
GSE1919 dataset was clustered on the basis of a topological overlap matrix (1-TOM). Each branch in the clustering tree represents a gene, while co-
expressionmodules were constructed in different colors. (B)Module-trait heatmap of the correlation between the clustering genemodule andOA in
the GSE1919 dataset. Each module contains the corresponding correlation coefficient and p value. (C) Scatter plot of module cyan has the
strongest positive correlation with OA in the GSE1919 dataset. (D) Dendrograms of all genes in the GSE55235 dataset were clustered on the basis of
topological overlap matrix (1-TOM). (E)Module-trait heatmap of correlation between the clustering gene module and OA in the GSE55235 dataset.
Each module contains the corresponding correlation coefficient and p value. (F) Scatter plot of module brown has the strongest positive correlation
with OA in the GSE55235 dataset.
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FIGURE 3
Screening and validation of candidate hub genes. (A) Venn diagram revealed 23 overlapping candidate hub genes. (B) Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis of candidate hub genes. (C) Gene ontology (GO) enrichment analysis of candidate hub genes.

FIGURE 4
PPI network. (A) PPI network of overlapping hub genes. (B)Most significant upregulated genes were obtained (the deeper the color, the higher
the score).
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FIGURE 5
Nomogram to predict the risk of OA. (A) Nomogram model of hub genes. (B) ROC curves to assess the diagnostic efficacy of our nomogram
model and each hub gene.

FIGURE 6
Landscape and correlation heatmap of 29 immune-related gene sets. (A) Relative distribution of 22 kinds of immune cells in all samples. (B)
Correlation heatmap of immune cells in all samples. Red squares indicate positive correlation, and blue squares indicate negative correlation; the
deeper color squares indicate stronger correlations. (C) Bar chart shows the composition of 22 immune cell types in the two groups. Each color
represents a kind of immune cell. (D) Correlation between hub gene expression and immune cell infiltration. Red squares indicate positive
correlation, and blue squares indicate negative correlation; the deeper color squares indicate stronger correlations.
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2015b; Batshon et al., 2020). Certain molecules such as nitric

oxide (NO) and sodium nitroprusside (SNP) have been

recognized as biomarkers that are involved in chondrocyte

apoptosis and cartilage extracellular matrix (ECM)

destruction; however, no deeper analysis of this hypothesized

association was described (Musumeci et al., 2015b; Huang L. W.

et al., 2021; Roy et al., 2021). The death receptor Fas/FasL, toll-

like receptors 1/2 (TLR1/2), collagen markers (collagen type II

and type X), and thrombospondin-4 (TSP-4) were also proposed

as biomarkers of cartilage degeneration in OA, although these

findings lack in vivo experiments (Tu et al., 2013; Luo et al., 2018;

He et al., 2019; Maly et al., 2019; Barreto et al., 2020). It is

reported that interleukin-6 (IL-6), monocyte chemoattractant

protein 1 (MCP-1), fibroblast growth factor (FGF-2), and

transforming growth factor beta 1 (TGFβ-1) showed a

predominant increase in protein levels, while activin A mainly

decreased in the synovial fluid of OA patients during knee joint

distraction (Watt et al., 2020; Henrotin, 2022). Interestingly, in a

study of knee OA, researchers found that serum

lipopolysaccharide-binding protein (LBP), IL-6, interleukin-8

(IL-8), tumor necrosis factor alpha (TNF-α), and the cluster

of differentiation 14 (CD14) of synovial fluid were associated

with most MRI features in an earlier stage of knee OA (Rajandran

et al., 2020). Batshon et al. (2020) found that the NT/CT

deacetylase sirtuin-1 (SIRT1) ratio correlated with OA in both

mice and humans, and this increase was mainly due to NT

fragment level increase from non-senescent chondrocyte

apoptosis. A phase III clinical trial study proposed that urine

FIGURE 7
(A) RT-PCR validation of hub genes in human primary culture fibroblast-like synoviocytes between OA and normal controls. All experiments
were performed thrice, and results were presented as M ± SD. (pp < 0:05). (B–E) HE staining of synovial tissues from TKA patients and patients
undergoing knee arthroscopic surgery.
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CTX-II was associated with risk of radiographic progression, and

this biomarker can independently contribute to prediction of

structural progression risk and joint replacement surgery (Bihlet

et al., 2020). It should be noted that none of these biomarkers is

sufficient for use in clinical practice and many obstacles remain.

Therefore, more in-depth research studies are needed to identify

specific biomarkers that might be beneficial to early diagnosis,

intervention, and etiology study of OA (Hunter and Bierma-

Zeinstra, 2019; Batshon et al., 2020; Weber et al., 2021). In our

study, we screened out four potential biomarkers by

comprehensive bioinformatics methods together with

molecular biotechniques, computing the diagnostic efficacy of

these candidate biomarkers by ROC curves (AUC = 0.789),

which proved to be efficient in diagnosis. Nevertheless, little

attention has been focused on these candidate biomarkers (CD4,

SELL, ITGB2, and CD52) in the progression of OA.

Currently, with the rapid development of computational

algorithms and gene chip technology, many researchers have

focused on exploring biomarkers of numerous diseases by

application of multiple bioinformatic approaches, which

enables in-depth analysis of the whole genome and accelerates

the progression of disease study. However, many studies are

confronted with limited databases (Gao et al., 2019; Cao et al.,

2021; Qin et al., 2021), lack of experimental validation (Gao et al.,

2019; Zhang et al., 2020b; Cao et al., 2021), controversial

methodology validation (Qin et al., 2021; Li et al., 2022), and

unconvincing outcomes. Qin et al. (2021) chose only one dataset

(GSE55235) for WGCNA analysis and validated their findings in

chondrocytes stimulated by IL-1β. First, in terms of precision,

their limited dataset may lead to sampling error, and the

conclusions may cause bias. Second, experimental validation

of the chondrocytes stimulated by pro-inflammatory cytokine

could not represent the real condition of OA in vivo. Third,

adding IL-1β cytokine in the OA group means introducing a new

variable which may have adverse impacts on the experiment

result. Researchers performed WGCNA analysis to find the

miRNA–mRNA network. BTG2, ABL2, and VEGFA were

identified and validated in the IL-1β-induced OA

FIGURE 8
Expression of CD4, SELL, ITGB2, and CD52 proteins in clinical specimens of synovial tissues from TKA patients and patients undergoing knee
arthroscopic surgery. (A) CD4, (B) SELL, (C) ITGB2, and (D) CD52.
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chondrocytes (Li et al., 2022). Other research groups also only

chose one dataset for WGCNA analysis, and many of them

lacked validation experiments (Gao et al., 2019; Zhang et al.,

2020b; Cao et al., 2021; Wang et al., 2022) or lacked synoviocyte

validation data (Qin et al., 2021; Li et al., 2022). None of them

verified and evaluated the diagnostic efficacy of candidate

markers by mathematical models. Consequently, these

controversial issues suggest that more comprehensive and

powerful design should be taken into consideration when we

utilize these bioinformatic approaches to the study of diseases.

In this study, we take advantage of the comprehensive

bioinformatic analysis to further explore potential hub genes

and their interactions with immune cell infiltration that might

influence OA progression.We downloaded three mRNA datasets

from the GEO database. First, we screened out 477 and 834 DEGs

in the GSE1919 and the GSE55235 datasets, respectively. Second,

we conducted WGCNA to analyze the most relevant modules in

the OA group and screened out WGCNA-derived hub genes.

After taking the intersection of DEGs and WGCNA-derived hub

genes by a Venn diagram, 23 overlapping genes were found out.

Third, GO enrichment and KEGG enrichment analyses were

conducted, elucidating that cell adhesion molecules pathway,

leukocyte activation, and inflammatory response are essential in

OA. Subsequently, we analyzed 23 potential hub genes through a

protein–protein interaction network, and the top four

upregulated hub genes (CD4, SELL, ITGB2, and CD52) were

finally sorted out. Our nomogram model showed good

performance in predicting the risk of OA (C-index = 0.76).

After that, by introducing another external dataset

(GSE51588), we assessed the diagnostic efficacy of our

nomogram model by ROC curves (AUC = 0.789), which

proved to be efficient in diagnosis. Since GO and KEGG

pathway analyses revealed that these hub genes were mainly

related to inflammatory response, we took advantage of the

single-sample gene set enrichment analysis to discover

immune cell infiltration in the OA group. In the meantime,

the mRNA expression levels of human primary cultured

synoviocytes and immunohistochemistry study of synovial

tissues confirmed that the relative expression levels of CD4,

SELL, ITGB2, and CD52 were significantly upregulated in the

OA group compared with the normal group. The discrepancy

between the mRNA and protein levels of the proposed

biomarkers could be attributed to the post-transcriptional

regulation, such as protein methylation, phosphorylation, and

acylation.

To our knowledge, this study for the first time integrates the

WGCNA-derived hub genes with differentially expressed genes

(DEGs) based on two GEO databases. We first validated our

conclusion in human primary cultured fibroblast-like

synoviocytes isolated from clinical samples and fresh human

synovial tissues. In addition, we first constructed a nomogram

model to predict OA risk by using our WGCNA-derived hub

genes. Third, we verified the diagnostic efficacy of our nomogram

model by receiver operating characteristic curves. Last but not

least, rather than verify it in internal datasets itself in many other

studies (Huang R. Z. et al., 2021), we introduced another external

dataset (GSE51588) to verify the diagnostic efficacy by ROC

curves (AUC = 0.789), which certainly can produce more reliable

results. Hence, our study may provide a solid foundation and

practical design for the molecular mechanism and biomarker

study of OA.

Based on the GO database, 23 hub genes were mainly

enriched in leukocyte activation, cell adhesion molecules, and

acute inflammatory response. These results demonstrated that

OA was characterized by immune cell inflammation, adhesion,

and infiltration. To be honest, substantial evidence indicated that

inflammation is the fundamental pathogenesis of osteoarthritis

(Geyer and Schönfeld, 2018; Molnar et al., 2021).

Consequently, many new therapeutic strategies have been

proposed and tested focusing on immune regulation by

inhibiting inflammation response (McAlindon et al., 2017;

Geyer and Schönfeld, 2018; Chen et al., 2019; Zhao et al.,

2019; Zhu et al., 2022). KEGG signal pathway enrichment

analysis suggested that these genes were enriched in the

rheumatoid arthritis, human T cell leukemia virus 1 infection,

and neutrophil extracellular trap formation pathway.

In the present study, we found that CD4 is increased in OA

tissues. CD4 molecules were extensively expressed in the

membranes of many immune cells, such as T lymphocytes,

B cells, macrophages, and granulocytes. Much evidence

indicated that the levels of soluble CD4 in synovial fluids and

sera were higher in OA patients than in healthy individuals

(Symons et al., 1991; Sawada et al., 1994; Li et al., 2017). In

addition, macrophage infiltration is common in OA synovium,

and the predominant cellular infiltrate in OA is macrophage,

many of which were CD4-positive (Symons et al., 1991; Zhang H.

et al., 2020; Butterfield et al., 2021). Apart from the macrophage,

T cells were the second-highest frequency immune cells in the

OA synovium and synovial fluid. Accumulating evidence found

that CD4+T cells were predominant among T-cell infiltration,

and CD4+/CD8+ ratios increased in OA compared to healthy

synovium (Dolganiuc et al., 1999; Pawłowska et al., 2009; Lopes

et al., 2017; Xia et al., 2017).

SELL (L-selectin, CD62L) is a type-I transmembrane

glycoprotein and cell adhesion molecule that is expressed in

most circulating leukocytes and regulates leukocyte trafficking to

sites of inflammation (Wedepohl et al., 2012; Ivetic, 2018; Ivetic

et al., 2019). To date, a series of clinical and experimental studies

have highlighted that L-selectin expressed on monocyte

protrusion and participated in trans-endothelial migration

(TEM). Stimulated by numerous proinflammatory signals,

L-selectin is rapidly cleaved from leukocytes and turned over

at the plasma membrane through ectodomain shedding, which

releases soluble circulating fragment. Therefore, soluble

L-selectin was used as a biomarker for leukocyte activity

triggered during inflammation (Albertini et al., 1999; Shimada
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et al., 1999; Font et al., 2000; Giannitsis et al., 2000; Kretowski

et al., 2000; Ivetic et al., 2019). Consistent with these studies, our

result found that SELL was upregulated in OA tissues compared

with control groups in mRNA and protein level. However,

scientists observed that SELL was not upregulated in

rheumatoid arthritis (RA) synovial tissues, synovial fluid (SF),

and peripheral blood (PB). Therefore, their result suggested that

L-selectin shedding was not a strict prerequisite for leukocyte

migration into synovial fluids and might be mediated in a

different pathogenic mechanism in rheumatic diseases

(Johnson et al., 1993; Lindsley et al., 1993; Humbría et al.,

1994; Björkman et al., 2019).

Integrin β2 (ITGB2), also known as CD18, is a keymember of

the integrin family which plays a prominent role in the immune

system by regulating leukocyte recruitment, aggregation,

adhesion, and transmigration during inflammatory diseases.

The integrin β2 family consists of different a-subunits

(CD11a, CD11b, CD11c, and CD11d) and a conserved ß-

subunit (CD18). Once activated, the a-subunits of ITGB2 bind

to intercellular adhesion molecules (ICAMs) and promote

leukocytes adhered to the endothelial cells in an ITGB2-

dependent manner (Hynes, 2002; Ivetic, 2018). However,

ITGB2 or CD18 has received little attention in the study of

osteoarthritis. Previous studies found that CD18 levels of the

synovial membrane were significantly upregulated in rheumatoid

arthritis and spondylarthritis (el-Gabalawy et al., 1996; Gjelstrup

et al., 2010). Blocking antibodies to CD18 showed inhibition of

PBMC binding to synoviocyte monolayers (Lindsley et al., 1993).

Interestingly, extensive studies demonstrated that SELL could

also activate integrinβ2, promoting adhesion to vascular cell

adhesion molecule-1 (VCAM-1) and ICAM-1 (Ivetic, 2018).

But even so, the detailed relation of ITGB2 with OA remains

poorly defined.

CD52 is widely present on most human lymphocytes and

expresses on the cell membrane via a glycosylphosphatidylinositol

(GPI) anchor (Pemmari et al., 2018). Although little is known about

its exact physiological function, CD52 has shown to be a promising

target for several immune system-mediated diseases, such asmultiple

sclerosis (MS), autoimmune inflammatory neurodegenerative

diseases, allergic asthma, and lymphocytic leukemia (Shafiei-Jahani

et al., 2021). Treatment with CD52 antibody reduced the infiltration

of T lymphocytes andmacrophages in the spinal cord inMS patients

(Hao W. et al., 2021). Scientists established that CD52 is

constitutively expressed in innate lymphoid cells under steady

state and inflammatory conditions. Anti-CD52 therapeutics

ameliorated allergic airway hyperreactivity and lung inflammation

(Shafiei-Jahani et al., 2021). However, the role of CD52 in

osteoarthritis is explored to a much lesser extent. Further work is

needed before a definitive conclusion on this matter can be drawn.

GSEA enrichment analysis revealed comprehensive

infiltration levels of immune cells in OA. We found that an

increased infiltration of monocytes, follicular helper CD 4 +

T cells, CD 8 + T cells, activated NK cells, naive B cells, activated

mast cells, and regulatory T cells and a decreased infiltration of

resting mast cells, M0 macrophages, activated CD 4 + memory

T cells, memory B cells, and naive CD 4 + T cells may be related

to the development of OA. To study infiltrating immune cells in

knee osteoarthritis, scientists found that CD14+ macrophages

were the predominant cells in the synovial membrane, followed

by CD4+ T lymphocytes, whereas mast cells, B cells, and plasma

cells were also found, but to a lesser extent (de Lange-Brokaar

et al., 2012; Deligne et al., 2015; Moradi et al., 2015; de Lange-

Brokaar et al., 2016; Klein-Wieringa et al., 2016; Lopes et al.,

2017; Mathiessen and Conaghan, 2017; Scanzello, 2017). The

accumulation of macrophages in OA synovium resulted in

releasing proinflammatory cytokines including IL-1β and

TNF-α, which accelerated cartilage breakdown (Haseeb and

Haqqi, 2013). Activated macrophages may develop in

response to pathogen-associated molecular patterns (PAMPs)

and endogenous DAMPS (Lopes et al., 2017). Although the

pathological role of T cells in OA is still unexplained, T cells

are the second abundant inflammatory cells in OA synovium

(Pessler et al., 2008). Extensive studies demonstrated that CD4+/

CD8+ T cell ratios and CD4+T cell infiltration levels have

increased in the synovial tissue and peripheral blood of OA

patients, indicating that OA is associated with alterations in

T cells locally and peripherally within the joint (Hussein et al.,

2008; Pawłowska et al., 2009; de Lange-Brokaar et al., 2012; Li

et al., 2017). Shan et al. (2017) found that CD4+ follicular helper

T cells were increased in OA patients and the percent of follicular

helper T cells increased with OA grade. Kummer et al. (1994)

assessed the expression of granzymes A and B in synovial

biopsies of OA and found that NK cells may play a role in

the pathogenesis of OA. It was discovered that NK cells are a

principal leukocyte infiltrate in the synovial tissue from OA

patients. However, with a non-cytotoxic, quiescent phenotype,

those synovial tissue-infiltrating NK cells were functionally

distinct from blood NK cells (Huss et al., 2010). It is of note

that T regulatory cells (Tregs) exert their anti-inflammatory

function in the immune system. Nevertheless, little attention

has been given to Tregs in the OA progression. In 2014, scientists

first found that Tregs were enriched into the joint of OA and RA

patients, with CD4+CD25+/highCD127−/low Tregs enrichment in

the peripheral blood and synovial fluid (Moradi et al., 2014;

Lopes et al., 2017). Li et al. (2016) found significantly elevated

frequencies of CD4+CD25+Foxp3+ Tregs in OA patients. Xia et al.

(2017) suggested that LAG-3+ Treg cells in OA appeared to

reduce their capacity and promote inflammation.

The relationship between hub gene expression and immune

cell infiltration was also analyzed. The results showed that the

expressions of CD4, ITGB2, and SELL were found to be

negatively correlated with those of follicular helper CD 4 +

T cells and activated mast cells, while the expression of

CD52 was found to be positively correlated with that of the

activated mast cells and CD 8 + T cells. Meanwhile, the

expression of ITGB2 was negatively correlated with that of
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CD 8 + T cells, while it was positively correlated with resting

memory CD 4 + T cell infiltration. In the meantime, the

expression of SELL was negatively correlated with that of

regulatory T cells (Tregs), activated NK cells, and naive

B cells. However, the underlying mechanism maintaining the

relationship between hub gene expression and each immune cell

remains to be understood. Meanwhile, q-PCR results of clinical

samples showed that four genes (CD4, SELL, ITGB2, and CD52)

were upregulated in human primary synoviocytes compared with

non-osteoarthritis samples. Furthermore,

immunohistochemistry study of synovial tissues confirmed

that the expression of these genes in OA tissues was higher

than that observed in non-osteoarthritis tissues.

Although these are interesting findings, our study still has

some limitations and disadvantages that are worth considering.

First, OA is a multifactorial disease, and factors such as genetic

predisposition, gender, age, and environmental factors may exert

an impact on our result (Driban et al., 2020; Allen et al., 2022; Sim

et al., 2022). Second, as the number of publicly available datasets

was relatively small, more in vivo and animal experiments are

needed to confirm the possibilities of our hypothesis. Third, in

terms of precision and depth, we strongly agree that the inclusion

of additional datasets and next-generation sequencing data

would be beneficial for our study analysis. In the early stage

of this study, we pre-applied a large number of GEO datasets for

analysis, including recent sequencing datasets. However, due to

lack of differentially expressed genes (DEGs) or no strong

correlation modules screen out by WGCNA, we found certain

datasets that could not meet our inclusion criteria and were not

suitable for our WGCNA study, such as GSE51588, GSE55457,

and GSE117999 datasets. Therefore, the GSE 1919, GSE55235,

and GSE51588 datasets were finally chosen in this study.

In summary, our results identified four hub genes including

CD4, SELL, ITGB2, and CD52 that may involved in OA

progression. Our analyses can provide a solid foundation for

better understanding the underlying molecular mechanisms of

OA pathogenesis and progression, which may provide more

precise and reliable results for pre-symptomatic diagnosis.

Further investigations are needed to confirm the possibilities

of our conclusions.
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