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Background:Most gastric cancer (GC) patients were diagnosed in the advanced

stages without obvious symptoms, which resulted in the increased risk of death.

Although the combination therapies have showed survival benefit of patients,

there is still urgent need to explore the underlying mechanisms of GC

development and potential novel targets for clinical applications. Numerous

studies have reported the upregulation of Wnt signaling pathway in human GC,

which play important role during GC development and progression. However,

the current understanding of Wnt signaling pathway is still limited due to its

complexity and contradictory effect on different stages of GC tumor

microenvironment.

Method: We used The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) dataset to screen Wnt signaling pathway-associated genes by

ssGSEA and correlation analysis. Three molecular subtypes were constructed

based on a consistent clustering analysis. The key Wnt-related genes were

screened through univariate cox analysis, lasso, and stepwise regression. In

addition, the Gene Set Enrichment Analysis (GSEA) were performed to explore

potential molecular pathways regulated by the Wnt-related gene signatures.

ESTIMATE was utilized for evaluating the immune cell populations in GC tumor

microenvironment.

Results: Three molecular subtypes associated to Wnt were identified, and 7 key

Wnt-related genes were screened to establish a predictive RiskScore model.

These three molecular subtypes showed significant prognostic differences and

distinct functional signaling pathways. We also found the downregulated

immune checkpoint expression in the clust1 with good prognosis. The

RiskScore model was successfully validated in GSE26942 dataset.
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Nomogram based on RiskScore and Gender had better prognostic predictive

ability.

Conclusion: In summary, our study showed that the Wnt-related genes could

be used to predict prognosis of GC patients. The risk model we established

showed high accuracy and survival prediction capability.
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Introduction

Gastric cancer (GC) is the major cause of cancer-related

mortality worldwide (Takechi et al., 2020), which is induced by

genetic predisposition and environmental factors (González

et al., 2002). According to the previous reports, the main risk

factor for most GC patients is Helicobacter pylori infection

(Conteduca et al., 2013). Other factors such as Epstein-Barr

virus infection, geographical location, smoking, and abnormal

diet were also reported to be associated with GC development

and progression (Shokal and Sharma, 2012; Correale and Gaitan,

2015; Spence et al., 2017). Early diagnostic rate of GC has been

improved by the use of gastroscopy (Eusebi et al., 2020). In the

early stage of GC, gastrectomy is the prioritized strategy for the

radical cure of patients. However, most patients with GC

progressing to advanced stages without obvious symptoms,

which results in the increased risk of death. Although the

combination treatments have showed survival benefit of

patients, it is still urgent to explore the underlying

mechanisms of GC development and potential novel targets

for clinical applications.

The Wnt signaling pathway functions most commonly in

biological processes including embryonic development and self-

renewal of tissues (Yang et al., 2016; Gavert and Ben-Ze’ev, 2007).

Specifically, it is a complex signaling pathway related to multiple

downstream channels activated upon the binding of Wnt ligands

to its membrane receptor (Komiya and Habas, 2008). Abundant

preclinical and clinical studies have demonstrated that the Wnt

signaling pathway could progress the malignant transformation,

tumor progression, and resistance to conventional cancer

treatments (Sullivan et al., 2010; Anastas and Moon, 2013;

Galluzzi et al., 2019). Growing evidence indicates that

aberrant Wnt signaling may also induce immunosuppressive

signals in the tumor microenvironment, thereby promoting

resistance to various anti-cancer therapies including immune

checkpoint blockade therapy (Galluzzi et al., 2019; Zhou et al.,

2022). Numerous studies have reported the upregulation of Wnt

signaling pathway in humanGC due to the oncogenetic mutation

or overexpression of Wnt ligand and its receptors, which linked

alterations of Wnt signaling to GC development and progression

(Yang et al., 2018; Nie et al., 2022). Although great progress has

been made in exploring the mechanism of this pathway for the

treatment and prediction of GC, the current understanding of

Wnt signaling pathway is still limited due to its complexity and

contradictory effect on different stages of GC tumor

microenvironment.

Herein, in this study, we collected GC patient samples

from The Cancer Genome Atlas (TCGA) dataset and screened

Wnt signaling pathway-associated genes by single sample gene

set enrichment analysis (ssGSEA) and correlation analysis.

Three gene-related molecular subtypes were constructed to

explore their functions in GC tumor immune

microenvironment by analyzing different immune cell

scores. The 7 key Wnt-related genes were screened through

univariate cox analysis, lasso, and stepwise regression. Then,

we established a stable predictive RiskScore model for clinical

outcome. The model was further improved by the decision tree

model, which showed high prediction accuracy and survival

prediction capability.

Materials and methods

Data collection and sources

The mutation data, copy number variation data, and RNA-

seq data for GC patients were downloaded through the TCGA

GDC API. We then removed the samples without survival time

and survival status. The expression profile data and survival data

of the GSE26942 dataset were downloaded from NCBI’s Gene

Expression Omnibus (GEO) official website (https://www.ncbi.

nlm.nih.gov/geo/).

The KEGG_WNT_SIGNALING_PATHWAY data was

downloaded from the Molecular Signatures Database (https://

www.gsea-msigdb.org/gsea/index.jsp) to obtain gene

information of the related pathways.

RNA-seq data preprocessing

For the TCGA RNA-seq data, we first removed samples

without clinical follow-up information such as the loss of survival

time and status. After screening, a total of 333 primary tumor

samples were included. Then, the ensemble was converted to

gene symbol and the average expression was taken when multiple

probes correspond to a gene nameWe then took base 2 logarithm
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of the expression file of fragments per kilobase of transcript per

million fragments mapped (FPKM) for further analysis.

For the GEO data, we removed normal tissue samples and the

samples without clinical follow-up information and ensured that

the survival time of all samples is greater than 0. 93 tumor tissues

and 25,127 genes were finally obtained. Then, the probes were

converted into gene symbols through the platform annotation

file. We also removed the mean of multiple gene names

corresponding to one probe. The average expression was

taken when multiple probes correspond to a gene name.

Construction of molecular subtypes of
related genes

Consensus clustering was used to construct a consistency

matrix and cluster the samples (Wilkerson and Hayes, 2010).

Using the expression data of Wnt-related genes, the molecular

subtypes of the samples were obtained. The “pam” algorithm and

“pearson” were utilized as the metric distance and we performed

500 bootstraps. Each bootstrap process included 80% of the

training set patients. The number of clusters was set from 2 to

10, and the optimal classification was determined by calculating

the cumulative distribution function (CDF) to obtain the

molecular subtypes of the sample.

Risk model

We first identified the genes associated with differences among

the subtypes and selected differentially expressed genes with

significant prognosis (|LogFC|>1; FDR<0.05). Further, the

number of genes was reduced by lasso regression to obtain

phenotype-related prognostic genes. We then calculated the risk

score for each patient using the following formula: RiskScore =

Σβi×Expi, where Expi refers to the gene expression level of the

phenotypic prognosis-related genes, and β is the lasso Cox

regression coefficient of the corresponding gene. After zscore

for risk score, and according to the threshold “0,” the patients

were divided into RiskScore high and low risk groups. Kaplan-

Meiermethodwas utilized for prognostic analysis and the log-rank

test was used to evaluate the significant difference.

Gene set enrichment analysis

We performed GSEA to investigate signaling pathways

regulated by the different molecular subtypes by using all

candidate gene sets in the HALLMARK database (Liberzon

et al., 2015). The Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis on the

2,443 genes were performed by the WebGestaltR package (Liao

et al., 2019; Wang et al., 2021a). The p values smaller than 0.05 was

determined as statistically significant. The correlation coefficients

were also calculated by R package.

Calculation of immune cell abundance in
tumor microenvironment

The characteristic genes of 28 immune cells were obtained

from the previous study (Charoentong et al., 2017) and the scores

of these immune cells were calculated by using the ssGSEA

algorithm (Finotello and Trajanoski, 2018). At the same time,

we also used the ESTIMATE software to calculate the proportion

of immune cells between low- and high-risk groups (Luo et al.,

2020; Fan et al., 2021).

Decision tree

Recursive partitioning analysis was performed to construct a

survival decision tree for risk stratification with R package

“rpart”.

Results

Screening of genes related to Wnt
signaling pathway in GC

We first calculated the correlation score of Wnt signaling

pathway from each patient based on the 151 relevant genes. Here,

we screened a total of 2,443 genes that were associated with the

Wnt correlation score (cor>0.4 and p < 0.001). Next, GO and

KEGG enrichment analysis were performed on the 2,443 genes.

For GO functional annotations, 960 of which were annotated

with significant differences in biological process (BP)

(Supplementary Figure S1A). There are 169 genes annotated

with significant differences in cellular component (CC) and

116 genes were annotated with significant differences in

molecular function (MF) (Supplementary Figures S1B, C).

Additionally, 73 genes were observed with significant

differences in KEGG enrichment analysis (Supplementary

Figure S1D). Among these genes, the top signaling pathways

were most related to the extracellular structure, extracellular

matrix (ECM), and ECM-receptor interaction.

Construction ofmolecular subtypes based
on genes correlated with Wnt score

We then performed univariate cox analysis on the

2,443 genes correlated with the Wnt score and found that a

total of 41 genes were highly related to prognosis, of which

0 genes were protective genes (Protect, HR < 1), and 41 were risk
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genes (Risk, HR > 1). We aggregated the positively correlated

genes by consensus class on TCGA data and determined the

optimal number of clusters and observed the CDF Delta area

curve. As shown in Figures 1A,B, when cluster was selected as 3, it

showed a relatively stable clustering result. Finally, we chose k =

3 to obtain three molecular subtypes (Figure 1C). Further

prognosis analysis of these three molecular subtypes showed

significant prognostic differences (Figure 1D). Compared to

clust2 and clust3, clust1 showed the best survival benefit. In

addition, we performed molecular typing on the GSE26942 data

by using the same method and the significant differences in the

prognosis of different molecular types were observed (Figure 1E),

which was consistent with the TCGA dataset.

We further analyzed the differences in clinicopathological

characteristics among different molecular subtypes in the TCGA

cohort and compared their distribution of different clinical

characteristics. As shown in Supplementary Figure S2 the

significant differences were found in T stage, Stage, and patient

survival status among the three subtypes. We also explored

differences in genomic alterations among different molecular

subtypes. The mutation characteristics of the top 20 genes in

each subtype were shown in Figure 2A. We compared the

distribution of Homologous Recombination Defects, Fraction

Altered, Number of Segments, and tumor mutation burden

between subtypes. Compared to clust2 and clust3, clust1 showed

significant increase of Fraction Altered, Number of Segments, and

tumor mutation burden (Figure 2B).

Pathway analysis and immune
characterization of molecular subtypes

To investigate pathways of different biological processes

among these three subtypes, we performed the GSEA

enrichment analysis. As shown in Figure 3A, clust1 had

20 inhibited pathways in the TCGA cohort, while 17 inhibited

FIGURE 1
Construction of molecular subtypes based on genes positively correlated with Wnt score. (A) CDF curve of TCGA cohort sample; (B) CDF Delta
area curve of TCGA cohort sample. The horizontal axis represents the category number k and the vertical axis represents the relative change in area
under CDF curve; (C) Sample clustering heatmapwhen consensus k = 3; (D) KM curve of the relationship between the prognosis of three subtypes in
the TCGA cohort; (E) KM curves for the prognosis of the three subtypes in the GSE26942 cohort.
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pathways were found in the GSE26942 cohort. For clust2, no

inhibited pathways were observed in the TCGA cohort, and

5 pathways were inhibited in the GSE26942 cohort. Compared

with no_clust3, 1 pathway was inhibited in clust3 in the TCGA

cohort, and 16 pathways were inhibited in the GSE26942 cohort.

To further elucidate differences in the tumor immune

microenvironment of GC patients between different molecular

subtypes, we assessed the extent of immune cell infiltration in

TCGA cohort by using the expression levels of genes in immune

cells. As shown in Figure 3B, we found significant differences in

some immune cells such as CD4 T, CD8 T, natural killer (NK)

cells, macrophages and MDSCs among these three subtypes. The

immune score was also evaluated by the ESTIMATE method

(Figure 3C). However, the immune score of clust1 with good

prognosis was lower than that of the clust2 and clust3 subtypes,

which might be induced by other immunosuppressive factors

such as ECM that could form the second physical barrier and

attenuate the penetration of immune cells inside the tumor tissue.

We therefore examined the expression of immune

checkpoint genes in the three subtypes. Compared to

clust2 and clust3, we found that most of the immune

checkpoint genes were sharply downregulated in clust1

(Figure 3D), indicating that immune checkpoint inhibition

mainly contributed to good prognosis of clust1. Our findings

indicated that the prognosis of GC patients among the tree Wnt-

related molecular subtypes was highly associated with tumor

immunemicroenvironment and their related signaling pathways.

Identification of key genes and
construction of Wnt-related risk model

In the previous analysis, we identified three distinct

molecular subtypes through the Wnt signaling pathway score-

related genes, and found differences between the subtypes

through clinical phenotype, mutation, immune signature, and

pathway analysis. Then, we performed differential analysis on

clust1 vs. no_clust1 subtypes, clust2 vs. no_clust2, clust3 vs.

no_clust3 subtypes to screen differential genes. In clust1 vs.

no_clust1, we screened 379 up-regulated genes and

603 downregulated genes, while 441 upregulated genes and

10 downregulated genes in clust2 vs. no_clust2. There were

84 genes with upregulated expression and 8 genes with

downregulated expression in clust3 vs. no_clust3. The volcano

plots of difference analysis were shown in Figures 4A–C. We

finally screened a total of 773 differential genes for further analysis.

FIGURE 2
Genomic alterations in molecular subtypes of the TCGA cohort. (A) Somatic mutation analysis of different molecular subtypes in the TCGA
cohort (Fisher’s exact test); (B) Comparison of Homologous Recombination Defects, Fraction Altered, Number of Segments and Tumor mutation
burden among different molecular subtypes in the TCGA cohort.
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Next, we performed univariate cox analysis on the 773 differential

genes and screened 259 genes related to prognosis. As shown in

Figure 4D, there were 258 risk genes and 1 protective gene. To

reduce the number of genes, these 259 genes were further

compressed by using lasso regression for the risk model

construction. The change trajectory of each independent

variable was analyzed as shown in Figure 4E, from which with

the gradual increase of lambda, the coefficient of the independent

variable tends to 0. The penalty parameter was established through

10-fold cross validation to build the model and analyze the

confidence interval under each lambda (Figure 4F). The model

tended to be optimal when lambda was 0.0368. We therefore

selected 12 genes as the target genes and used stepwisemultivariate

regression analysis. As shown in Figure 4G, 7 genes including

CHRD, BHLHE41, GRP, GPC3, PAX5, S100A2, and DKK1 were

identified as correlated genes affecting prognosis. The formula was

as follows:

RiskScore � 0.233*CHRD + 0.163*BHLHE41 + 0.202*GRP

+ 0.133*GPC3 + 0.219*PAX5 + 0.167*S100A2

+ 0.163*DKK1

We then used the TCGA data as the training data set and

calculated the RiskScore of each sample through the 7 gene

expression levels. The receiver operation characteristic (ROC)

curve analysis of the prognostic classification on the RiskScore

were performed and analyzed. As shown in Figure 5A, the

prognostic prediction classification efficiency was analyzed in

FIGURE 3
Pathway analysis and immune characterization of molecular subtypes. (A) A heatmap demonstrating normalized enrichment scores (NESs) of
Hallmark pathways calculated by comparing clust1 with clust2 (with a false discovery rate (FDR) < 0.05); (B) Comparison of 28 immune cell scores
between different subtypes; (C) Comparison of immune scores in different subtypes; (D) Comparison of immune checkpoint genes between
different subtypes. Kruskal. Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001.
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1, 2, and 3 years, respectively, of which the area under the time-

dependent ROC curves (AUC) reached 0.7 in 1–3 years,

indicating the predictive ability of this model.

Furthermore, zscore was also performed on the RiskScore and

the samples were divided into high-risk group when the Riskscore

greater than zero and those with less than zero as low-risk

group. High-risk group showed poor survival benefit compared

to low-risk group (Figure 5A). To better verify the robustness of

the model, we used the GSE26942 dataset for validation and the

risk model established was applied to perform prognostic

classification on RiskScore. Similar results were obtained

compared with that under TCGA dataset, indicating excellent

predictive capability of this model (Figure 5B).

To examine the relationship between the RiskScore and

tumor clinical characteristics, we analyzed the differences in

RiskScore between different clinical phenotypes in the TCGA

dataset. The results showed that the risk score increased with

deepening of the clinical grade (Figure 6A). We also compared

the differences in clinicopathological characteristics between the

RiskScore groups in the TCGA cohort and found similar results

(Figure 6B), indicating the good performance of the model to

predict the clinical stage of GC progression.

Mutation characteristics of high- and low-
risk groups

We further explored differences in genomic alterations between

high- and low-risk groups in the TCGA cohort. We screened out

9,922 genes and used the fisher test to screen for significant high-

frequency mutations in each subtype. Finally, 1892 genes were

obtained and the mutation characteristics of the top 20 genes in

each subtype were shown in Supplementary Figure S3. In addition,

we compared the distribution of Homologous Recombination

Defects, Fraction Altered, Number of Segments, and tumor

mutation burden between subtypes. Compared to low-risk group,

the Homologous Recombination Defects increased, while tumor

mutation burden sharply decreased in the high-risk group

FIGURE 4
Differential analysis among three subtypes for the identification of key genes. (A) Volcano plot of differential analysis of clust1 vs. no_clust1 in
TCGA cohort; (B) Volcano plot of differential analysis of clust2 vs. no_clust2 in TCGA cohort; (C) Volcano plot of differential analysis of clust3 vs.
no_clust3 in TCGA cohort; (D) A total of 774 promising candidates were identified among the DEGs; (E) Trajectory of each independent variable with
lambda; (F) Confidence interval under lambda; (G) Multivariate cox analysis, coefficients of prognostic-related genes.

Frontiers in Genetics frontiersin.org07

Kong et al. 10.3389/fgene.2022.1035099

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1035099


(Supplementary Figure S3B), which was consistent with the

observations in the clust1 with best prognosis. These results

indicated that the risk model we established could predict the

clinical outcome according to the mutation burden in GC patients.

Pathway characteristics between two risk
groups

To observe the relationship between the RiskScore of different

samples and their biological functions, gene expression profiles

corresponding to the tumor samples were selected in the TCGA

cohort and calculated the scores of each sample on different

biological functions. The ssGSEA score of each function

corresponding to each sample was obtained, and the correlation

between these functions and RiskScore was further calculated. As

shown in Figure 7A, the function with a correlation greater than

0.3 was selected, from which the RiskScore showed a positive

correlation between these pathways and GC samples. We next

analyzed the differentially enriched pathways in GC samples. As

shown in Figure 7B, 20 pathways were activated, and no inhibited

pathways were observed in the TCGA cohort. Additionally,

13 activated pathways and 16 inhibited pathways were found in

the GSE26942 cohort. Particularly, the pro-tumor signals

including KRAS, TGF-β, and hypoxia pathways showed

significant positive relationship with GC progression. These

FIGURE 5
Riskmodel construction. (A) ROC curve and KM curve of riskmodel constructed by 7 genes in TCGA dataset; (B) ROC curve and KM curve of risk
model constructed by 7 genes in GSE26942 dataset.
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results suggested that RiskScore was related to the biological

functions and tumor-enriched signaling pathways. The seven

genes in the model might be involved in signaling pathway

regulation and the RiskScore had biological support for

predicting prognosis.

RiskScore combined with
clinicopathological features to further
improve prognostic model and survival
prediction

Here, we constructed a decision tree based on patient age,

gender, stage, grade, and RiskScore in the TCGA cohort. The

results showed that only RiskScore and gender remained in the

decision tree, and three distinct risk subgroups were identified

(Figure 8A). Among them, gender and RiskScore were the most

powerful parameters. There were significant differences in overall

survival between the three risk subgroups (Figure 8B). We found

RiskScore as the most significant prognostic factor by univariate

andmultivariate Cox regression analysis of RiskScore and clinical

characteristics (Figures 8C,D). To verify the risk assessment and

survival benefit of patients, we combined RiskScore and other

clinicopathological features to build a nomogram as shown in

Figure 8E. From the model results, RiskScore showed the greatest

influence on the prediction of survival rate. Further, we evaluated

the prediction accuracy of the model by using the calibration

curve (Figure 8F). The predicted curves from the calibration

FIGURE 6
The relationship between the RiskScore and tumor clinical characteristics. (A) Differences in RiskScore of different phenotypes in the TCGA
cohort (Wilcox. Test, *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001); (B)Comparison of clinical phenotypes between RiskScore groups in the
TCGA cohort.
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points in 1, 2, and 3 years were nearly coincident with the

standard curve, suggesting that the nomogram showed a good

predictive performance. Moreover, decision curve analysis

(DCA) was also used to evaluate the reliability of the risk

model (Figure 8G). Both RiskScore and nomogram had

significantly higher benefits than extreme curves. Moreover,

compared with other clinicopathological features, nomogram

and RiskScore showed the strongest survival predictive

capability (Figure 8H).

Discussion

Numerous studies have proved that various factors such as

genetic predisposition and environmental factors were associated

with GC development (González et al., 2002; Shokal and Sharma,

2012; Conteduca et al., 2013; Correale and Gaitan, 2015; Spence

et al., 2017). Although improved diagnosis and prioritized

gastrectomy strategy for early stage of GC patients have been

achieved during the past decades, most GC patients were

diagnosed to advanced stages without obvious symptoms,

which induced poor prognosis. The preclinical and clinical

studies have demonstrated that the Wnt signaling pathway

could progress the GC malignant transformation, progression,

and resistance to conventional cancer treatments (Sullivan et al.,

2010; Anastas and Moon, 2013; Galluzzi et al., 2019). Growing

evidence demonstrated the upregulation of Wnt signaling

pathway in human GC (Yang et al., 2018; Nie et al., 2022).

Although great progress has been made in exploring the

mechanism of the Wnt pathways for the treatment and

prediction of GC, the current understanding of this pathway

is still limited. The next-generation sequencing data analysis

from human patient samples has been demonstrated as a

powerful tool to explore the mechanisms of cancer

development and progression, which could execute the

predictive risk model establishment for clinical outcome. In

this study, we used RNA-seq data generated from GC patient

samples to screen Wnt signaling pathway-associated genes.

Then, we constructed three gene-related molecular subtypes to

explore their functions in GC tumor immune microenvironment

and established a risk prediction model for clinical applications.

Herein, we screened a total of 2,443 genes that were positively

associated with Wnt signaling pathways. Most top Wnt-related

genes were found to be responsible for ECM construction and

remodeling to induce the tumor immunosuppressive

microenvironment, which was consistent with previous reports

(Sathe et al., 2020; Liu et al., 2021).We constructed three molecular

subtypes and found that compared to clust2 and clust3,

clust1 showed the best prognosis. However, the immune score

and the levels of some immune cells such as CD4 T, CD8 T, and

NK cells in clust1 were lower than those in clust2 and clust3. As

reported, the T cell and NK cell infiltration inside the tumor

microenvironment will drive the antitumor immunity by inducing

the innate and adaptive immune response (Wang et al., 2018; Hu

et al., 2019). The low level of immune cell infiltration in

clust1 might result from other immunosuppressive factors such

as fibroblast and M2-polarized macrophage that could form the

second physical barrier and inhibit the penetration of immune cells

inside the tumor tissue (Wang et al., 2021b).We also evaluated the

expression level of immune checkpoint genes in the three subtypes.

FIGURE 7
Pathway characteristics between RiskScore grouping. (A) Correlation analysis between HALLMARK pathways with RiskScore correlations
greater than 0.3 and RiskScore; (B) A heatmap demonstrating normalized enrichment scores (NESs) of Hallmark pathways calculated by comparing
High with Low (with a false discovery rate (FDR) < 0.05).

Frontiers in Genetics frontiersin.org10

Kong et al. 10.3389/fgene.2022.1035099

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1035099


Interestingly, compared to clust2 and clust3, most of the immune

checkpoint genes were significantly suppressed in clust1. These

findings suggested that immune checkpoint inhibition instead of

immune cell infiltration contributed to the good prognosis of

clust1. Moreover, we found that Fraction Altered, Number of

Segments, and tumor mutation burden had significance in three

subtypes, which may also be responsible for the prognosis

difference of three subtypes.

By screening of gene signatures, we identified seven

significant genes including CHRD, BHLHE41, GRP, GPC3,

FIGURE 8
RiskScore combined with clinicopathological features to further improve prognostic model and survival prediction. (A) Patients with full-scale
annotations including RiskScore, stage, gender and age were used to build a survival decision tree to optimize risk stratification; (B) Significant
differences of overall survival were observed among the three risk subgroup; (C) Univariate cox analysis of RiskScore and clinical characteristics; (D)
Multivariate Cox analysis of RiskScore and clinical characteristics; (E) Nomogram model; (F) Calibration curves for 1, 2, and 3 years of
nomogram; (G) Nomogram decision curve; (H) Compared with other clinicopathological features, the nomogram exhibited the most powerful
capacity for survival prediction.

Frontiers in Genetics frontiersin.org11

Kong et al. 10.3389/fgene.2022.1035099

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1035099


PAX5, S100A2, and DKK1 as correlated genes with GC

development. Among these genes, dickkopf-1 (DKK1) was

reported as a secretory glycoprotein that can inhibit the

activation of Wnt singling pathway, which should be

considered as a therapeutic target and further explore its

function in antitumor immunity (Liu et al., 2016; Jiang et al.,

2021). Some studies have found paired box gene 5 (PAX5)

promoter methylation in GC cells and tumor tissues that was

significantly associated with the survival of GC patients, which is

consistent with our findings of PAX5 and its related Wnt

signaling pathway in GC (Otani et al., 2013; Deng et al.,

2014). The correlation between these selected genes and GC

prognosis might provide potential targets for the GC treatment.

We further established a prognostic risk model for clinical

outcome prediction and performed validation studies.

Collectively, the model we established has been evaluated that

showed high accuracy and survival prediction capability. The

findings here provide a potential future research direction in the

effect of Wnt signaling pathway on GC development and

migration. Additionally, the comprehensive Wnt signaling

pathway in the various immune cell types and ECM-related

cells in the tumor microenvironment could be further explored

for the clinical diagnosis and treatment of GC patients.

Conclusion

In this study, we screened Wnt signaling pathway-related

genes by ssGSEA and correlation analysis from GC patient

samples. Three molecular subtypes related to prognosis were

constructed by Wnt-related genes and analyzed their function

and immune-related pathways inGC. The 7 keyWnt-related genes

were screened through univariate cox analysis, lasso, and stepwise

regression. Then, we established the RiskScore clinical prognostic

model, which is robust and independent of clinicopathological

features, and has stable predictive performance in independent

datasets. Finally, the prognostic model and survival prediction

were further improved by the decision tree model, which showed

high prediction accuracy and survival prediction capability.

Contribution to the field statement

Three gene-related molecular subtypes were constructed, and

7 key Wnt-related genes were screened to establish a predictive

RiskScore model. These three molecular subtypes showed

significant prognostic differences and distinct functional

signaling pathways. We also found the downregulated

immune checkpoint expression in the clust1 with good

prognosis.
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