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Genomic instability is a characteristic of tumors, and recent studies have shown that
it is related to a poor prognosis of multiple cancers. Long non-coding RNAs
(lncRNAs) have become a research hotspot in recent years, and many unknown
biological functions are being explored. For example, some lncRNAs play a critical
role in the initiation and progression ofmultiple cancer types bymodulating genomic
instability. However, the role of genomic instability-related lncRNAs in liver cancer
remains unclear. Therefore, we screened genomic instability-related lncRNAs by
combining somatic mutation data and RNA-Seq data in The Cancer Genome Atlas
(TCGA) database. We established a genomic instability-related lncRNA model
(GLncM) involving ZFPM2-AS1 and MIR210HG to predict the hepatocellular
carcinoma (HCC) prognosis and further explore the clinical significance of these
lncRNAs, and the robustness of the model was validated in the verification set.
Thereafter, we calculated the immune score for each patient and explored the
relationship between genome instability and the immune microenvironment. The
analysis indicated that this model was better than the immune microenvironment in
predicting the prognosis of HCC patients, suggesting that the GLncM may be an
effective indicator of HCC prognosis and providing a new direction and strategy for
estimating the prognosis of HCC patients.
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Introduction

Primary liver cancer is the sixth most commonly diagnosed cancer worldwide, and its
mortality rate has increased to third (Sung et al., 2021). Primary liver cancer principally includes
two histological types: hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma
(ICC). Globally, the dominant histological type of primary liver cancer in most countries is
HCC, accounting for approximately 75%–85% of all cases of primary liver cancer. In most high-
risk areas, including China and Africa, the key risk factors for HCC are chronic hepatitis B virus
(HBV) infection and aflatoxin exposure (Sung et al., 2021). In addition to traditional
radiotherapy and chemotherapy, targeted therapy and immunotherapy have recently
emerged as new treatments for HCC(Kudo et al., 2018; Finn et al., 2020); although these
treatments have rapidly progressed, the prognosis of most patients with HCC is still unfavorable
due to the heterogeneity of HCC(Allemani et al., 2018). Thus, more sensitive biomarkers must
be identified to estimate the prognosis of HCC.
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Genomic instability is a prevalent characteristic of most cancers,
from precancerous lesions to advanced tumors (Li et al., 2021; Chen
et al., 2022). In HCC, HBV-DNA integrates into the host genome at
the early stage of tumor amplification and induces genome instability
(Levrero and Zucman-Rossi, 2016). Indeed, numerous studies have
indicated that genetic instability is related to a poor prognosis of
cancers. It has also been reported that the genetically unstable type of
breast cancer has a higher risk of significantly shorter recurrence-free
survival and metastasis-free survival than other types (Duijf et al.,
2019). Consistent with previous reports, genomic instability is also
associated with a poor prognosis in colorectal cancer, ovarian cancer
and other tumors (Xu et al., 2021; Lakbir et al., 2022). However, studies
have shown that extreme genetic instability is correlated with a better
prognosis (Andor et al., 2017).

Long non-coding RNAs (lncRNAs) are a class of non-protein-
coding RNA molecules whose transcripts are more than
200 nucleotides long (Ulitsky and Bartel, 2013). To date,
genome-wide analyses have revealed more than 50,000 genes
that transcribe lncRNAs, and their number is still increasing
rapidly (Iyer et al., 2015). LncRNAs were initially considered
RNAs without biological functions, but researchers have found
that some lncRNAs play key roles in tumorigenesis and progression
through epigenetic regulation, DNA damage and cell cycle
regulation, microRNA regulation, and participation in signal
transduction pathways (Hu et al., 2018; Liu et al., 2018; Wang
R. et al., 2018; Wang Z. et al., 2018; Huang et al., 2019). For
example, H19, HOTAIR and HULC have been shown to facilitate
the invasion and metastasis of HCC(Ding et al., 2014; Li et al., 2014;
Li D. et al., 2017; Lv et al., 2017; Wang et al., 2017).

In this article, we combined genetic instability with lncRNAs,
classified patients in The Cancer Genome Atlas (TCGA)-LIHC
database according to lncRNA expression levels and somatic
mutations, and analyzed clinical characteristics to construct an
HCC prognostic risk model.

Results

Classification of genomic instability-related
lncRNAs in HCC patients

The workflow describing the study is shown in Figure 1. We
first calculated the total number of mutations in 364 HCC samples
and then ranked samples in ascending order to obtain genomic
instability-related lncRNAs. The top 25% of the samples (n = 90)
were selected as the genomic stable group, and the bottom 25% (n =
93) were selected as the genomic unstable group. The number of
mutations in the genomic stable group ranged from 3 to 78, and the
number of mutations in the genomic unstable group ranged from
154 to 2055. Then, we performed a differential expression analysis
using the Wilcoxon rank-sum test. As shown in Figure 2A,
88 lncRNAs were differentially expressed between the genomic
stable group and the genomic unstable group and were regarded as
genomic instability-related lncRNAs. Fifty-six of these lncRNAs
were upregulated and 32 lncRNAs were downregulated in the
genomic unstable group. We then observed statistically
significant differences in the mutation numbers between the
genomic stable group and genomic unstable group. In addition,

FIGURE 1
Workflow of this study.
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FIGURE 2
Identification and ceRNA network analysis of genomic instability-associated lncRNAs in HCC. (A) Differential expression of 88 genomic instability-
associated lncRNAs between the genomic stable set and genomic unstable set (B) Unsupervised clustering analysis of 364 HCC samples according to the
expression patterns of 88 selected lncRNAs correlated with genomic instability. Sankey diagram of the ceRNA network of all lncRNAs correlated with genomic
instability (C) and Sankey diagram of the ceRNA network of ZFPM2-AS1 and MIR210HG (D). The connection degree of each gene represented by a
rectangular box is proportional to the size of the rectangle. GS: genomic stable; GU: genomic unstable.
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the genomic stable group had higher stromal scores, immune
scores, and ESTIMATE scores and better outcomes than the
genomic unstable group. Based on the 88 genomic instability-
related lncRNAs identified above, 374 HCC samples were
grouped into two clusters using an unsupervised hierarchical
clustering analysis (Figure 2B). We then observed statistically
significant differences in the mutation numbers between the two
clusters (131.5 versus 102, p < 0.001, Wilcoxon rank-sum test,
Supplementary Figure S1A). The group with a higher number
of mutations was identified as the genomic unstable-like (GU-
like) cluster (n = 153), and the group with a lower number of
mutations was identified as the genomic stable-like (GS-like)
cluster (n = 221).

We established a ceRNA network based on the lncRNA expression
profiles, mRNA expression profiles and microRNA expression data
and visualized the network using the ggalluvial R package (Version:
0.12.3) to better understand the function of 88 genomic instability-
related lncRNAs (Figure 2C). Seventy genomic instability-related
lncRNAs that interact with 86 differentially expressed microRNAs
were searched from the miRcode database. Sixteen of these eighty-six
differentially expressed microRNAs were obtained from the starBase
database. Then, differentially expressed mRNAs were retrieved based
on sixteen differentially expressed microRNAs in the miRDB,
miRTarBase, and TargetScan databases. According to all three of
the databases, twelve differentially expressed mRNAs interacted with
nine of the sixteen differentially expressed microRNAs. Finally,
36 genomic instability-related lncRNAs, 9 differentially expressed
microRNAs and twelve differentially expressed mRNAs were used
to construct a ceRNA network (Figure 2C).

Construction of a genomic instability-
associated lncRNA prognostic model for HCC
patients

We constructed a prognostic model based on these lncRNAs to
further elucidate the prognostic value of genomic instability-
associated lncRNAs. First, 370 HCC samples, excluding duplicate
samples, were randomly split into a training set (n = 186) and
verification set (n = 184) at a 1:1 ratio. The clinical features of the
training set and verification set are displayed in Table 1. The
distribution of each clinical feature between the training set and
verification set was balanced. Next, a univariate Cox regression
analysis of the training set was conducted to obtain 9 lncRNAs
associated with the prognosis (p < 0.05; Table 2). Then, a
multivariate Cox regression analysis was performed on these
9 lncRNAs to obtain two lncRNAs with independent prognostic
value (ZFPM2-AS1 and MIR210HG, p < 0.05, Table 2). Finally, a
genomic instability-related lncRNA model (GLncM) was constructed
using the expression levels and coefficients from the multivariate Cox
regression analysis of ZFPM2-AS1 and MIR210HG to evaluate the
prognosis of HCC patients. The formula was as follows: GLncM
score = 0.119315765508808 × expression level of ZFPM2-
AS1+0.142471464922762 × expression level of MIR210HG. In the
formula, the coefficients of ZFPM2-AS1 and MIR210HG were both
positive, indicating that these two genes were risk factors and that high
expression of these genes was correlated with a poorer prognosis than
low expression. Liu et al. and Wang et al. previously confirmed that
high expression of the two lncRNAs was associated with the
proliferation, migration and invasion of HCC cell lines. According

TABLE 1 Clinical features of the training cohort, testing cohort and whole TCGA-LIHC cohort.

Covariates TCGA set (n = 370) Training set (n = 186) Testing set (n = 184) p-value

Sex Female 121 (32.7%) 66 (35.48%) 55 (29.89%) 0.3003

Male 249 (67.3%) 120 (64.52%) 129 (70.11%)

Age ≤61 192 (51.89%) 94 (50.54%) 98 (53.26%) 0.6744

>61 178 (48.11%) 92 (49.46%) 86 (46.74%)

Family history No 90 (24.32%) 49 (26.34%) 41 (22.28%) 0.43

Yes 280 (75.68%) 137 (73.66%) 143 (77.72%)

Stage Stage I-II 256 (69.19%) 132 (70.97%) 124 (67.39%) 0.0975

Stage III-IV 90 (24.32%) 45 (24.19%) 45 (24.46%)

Unknown 24 (6.49%) 9 (4.84%) 15 (8.15%)

Child-pugh classification A 216 (58.38%) 109 (58.6%) 107 (58.15%) 0.0975

B-C 22 (5.95%) 11 (5.91%) 11 (5.98%)

Unknow 132 (35.68%) 66 (35.48%) 66 (35.87%)

Grade G1-G2 232 (62.7%) 114 (61.29%) 118 (64.13%) 0.125

G3-G4 133 (35.95%) 69 (37.1%) 64 (34.78%)

Unknow 5 (1.35%) 3 (1.61%) 2 (1.09%)

AFP <400 213 (57.57%) 109 (58.6%) 104 (56.52%) 0.9823

>400 64 (17.3%) 32 (17.2%) 32 (17.39%)

Unknow 93 (25.14%) 45 (24.19%) 48 (26.09%)
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to the previous ceRNA network, microRNAs that interact with
ZFPM2-AS1 and MIR210HG play a pivotal role in oncogenesis and
tumor development (Figure 2D). For instance, Ren et al. previously
reported that hsa-mir-206 inhibits tumor growth and metastasis by
inhibiting the translation of the SFRP1 protein (Ren et al., 2014). The
two lncRNAs in the GLncM may competitively bind to hsa-miR-206,
thereby disrupting the binding of the microRNA and SFRP1 and
leading to oncogenesis and tumor progression.

Afterward, the risk score of each sample was calculated based
on the GLncM, and the median value of the risk score
(0.1484198) was regarded as the cutoff value to classify the
samples into a high-risk group and a low-risk group. As
presented in Figure 3A, the low-risk patients experienced a
longer overall survival (OS) than their high-risk counterparts
(median OS NA vs. 2.98 years, p < 0.001), and the hazard ratio
(HR) of the OS of low-versus high-risk group was 0.394 (95% CI:
0.223-0.696). The area under the receiver operating
characteristic (ROC) curve (AUC) of the GLncM for OS was
0.742 (95% CI: 0.652-0.833) at 1 year, 0.741 (95% CI: 0.639-
0.844) at 3 years and 0.654 (95% CI: 0.52-0.787) at 5 years
(Figure 3B). In addition, we ranked the patients according to
the risk score in ascending order and displayed the expression
patterns of ZFPM2-AS1 and MIR210HG and the landscape of
mutation counts and risk scores in the training set (Figure 3C).

Validation of the GLncM in HCC patients

Using the same GLncM formula and cutoff value obtained from
the training set, we classified patients in the verification set into high-
and low-risk groups. Similar to the result for the training set, the high-
risk group experienced a noticeably shorter OS than the low-risk
group (median OS 3.15 vs. 5.84 years, p = 0.016, Figure 3D). The AUC
of the GLncM for OS was 0.672 (95% CI: 0.569-0.776) at 1 year, 0.631
(95% CI: 0.515-0.748) at 3 years and 0.680 (95% CI: 0.532-0.829) at
5 years (Figure 3E), and the HR of the OS of the low-versus high-risk
group was 0.456 (95% CI: 0.256-0.815). Moreover, we ranked the
patients according to the risk score in ascending order and described
the ZFPM2-AS1 and MIR210HG expression patterns and the

landscape of mutation counts and risk scores in the testing set
(Figure 3F).

Additionally, we stratified all patients in TCGA-LIHC cohort into
high- and low-risk patient groups based on the GLncM and the same
cutoff value acquired from the training set. Similar to the results
described above, patients in the high-risk group experienced a shorter
OS than their low-risk counterparts (median OS 3.11 vs. 6.94 years, p <
0.001, Supplementary Figure S1B). The AUC of the GLncM for OS was
0.709 (95% CI: 0.641–0.778) at 1 year, 0.687 (95% CI: 0.610–0.765) at
3 years and 0.666 (95% CI: 0.568–0.765) at 5 years (Supplementary
Figure S1C), and patients in the low-risk group had a lower risk than
those in the high-risk group (HR: 0.413, 95% CI: 0.276–0.618). Based
on the ascending order of risk scores of patients, we displayed the
ZFPM2-AS1 and MIR210HG expression patterns, mutation counts
and risk scores for the whole TCGA-LIHC dataset (Supplementary
Figure S1D).

Independence of the GLncM from other
clinical factors

Clinical features, including sex, age, HBV infection status,
hepatitis C virus (HCV) infection status, non-alcoholic fatty liver
disease, alcohol consumption, pathologic stage and histologic grade,
were subjected to a univariate Cox regression analysis andmultivariate
Cox regression analyses with the established GLncM to assess whether
the GLncMwas independent of common clinical features. As shown in
Figure 4A and Supplementary Table S1, the results of univariate and
multivariate Cox regression analyses showed that GLncM was an
independent factor for estimating the prognosis of HCC. In addition,
the p values of the other two clinical features, HBV infection status and
pathologic stage, were statistically significant in both the univariate
and multivariate Cox analyses. Thus, we applied a stratification
analysis to verify whether the prognostic value of the GLncM was
independent of the HBV infection status and pathologic stage. TCGA-
LIHC cohort was classified into the HBV-affected group (n = 251) and
the non-HBV-affected group (n = 93). According to the GLncM and
cutoff value identified previously, patients in each HBV infection
status group were divided into high- and low-risk subgroups. As

TABLE 2 Univariate and multivariate Cox regression analysis of the 88 genomic instability-associated lncRNAs correlated with OS in the training cohort.

Gene symbol Univariate cox regression analysis result Multivariate cox regression analysis result

Coefficient HR HR.95L HR.95H p-value Coefficient HR HR.95L HR.95H p-value

LINC00221 0.138 1.148 1.028 1.282 0.015

ZFPM2-AS1 0.128 1.136 1.083 1.192 <0.001 0.119 1.127 1.068 1.189 0.000

AC145343.1 0.341 1.407 1.150 1.720 0.001 0.183 1.201 0.953 1.515 0.121

KCNMB2-AS1 0.192 1.212 1.041 1.411 0.013

PRRT3-AS1 0.093 1.098 1.012 1.191 0.025

ST8SIA6-AS1 0.087 1.091 1.000 1.190 0.049

LUCAT1 0.276 1.318 1.129 1.540 <0.001

MIR210HG 0.197 1.218 1.109 1.338 <0.001 0.142 1.153 1.032 1.289 0.012

CASC9 0.070 1.072 1.029 1.118 0.001

HR,hazard ratio; OS, overall survival.
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FIGURE 3
Analysis of the prognostic performance of the GLncM. Kaplan‒Meier survival analysis of the OS of the high-risk and low-risk groups predicted by the
GLncM in the training group (A) and verification group (D). The log-rank test was applied for the statistical analysis. (B) and (E) Time-dependent ROC curves for
the analysis of the performance of the GLncM at 1, 3, and 5 years in the training group and verification group, respectively. (C) and (F) The lncRNA expression
profiles, the risk score and the landscape of mutation counts in the training group and verification group. GLncM: genomic instability-related lncRNA
model; OS: overall survival; ROC: receiver operating characteristic.
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FIGURE 4
Analyses stratified according to the HBV status and tumor stage. (A) Univariate and multivariate Cox regression analyses of the GLncM and clinical
characteristics of the whole TCGA-LIHC cohort. Only factors with p values less than 0.05 in the univariate analysis were included in the multivariate analysis.
OS time illustrated by Kaplan-Meier curves of the high-risk and low-risk subgroups of HCC patients with HBV (B) and without HBV (C). OS time illustrated by
Kaplan-Meier curve in high- and low-risk subgroups of stage I-II patients (D) and stage III-IV patients (E). The log-rank test was applied for the statistical
analysis. HBV, hepatitis B virus; OS, overall survival.
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described in Figure 4B, a considerable difference in OS was observed
between the high- and low-risk subgroups of the HBV-affected group
(median OS 2.75 vs. 4.91 years, p = 0.035), and similar results were
observed in the non-HBV-affected group (median OS NA vs. NA
years, p = 0.002, Figure 4C). Next, patients in TCGA-LIHC dataset
were divided according to pathologic stage; patients with stage I or II
tumors were grouped into stage I - II (n = 254), and those with stage III

or IV tumors were grouped into stage III - IV (n = 90). The GLncM
with the cutoff value acquired previously divided the patients in the
stage I–II group into a high-risk subgroup (n = 126) and a low-risk
subgroup (n = 128), and the high-risk patients experienced a shorter
OS than the low-risk patients (median OS 6.73 vs. NA years, p < 0.001,
Figure 4D). Similarly, the GLncMwas also applied to divide patients in
the stage III - IV group into a high-risk subgroup (n = 58) and a low-

FIGURE 5
Comparison of the performance of GLncM with other models. ROC analysis at 0.5 years (A), 1 year (B), 3 years (C) and 5 years (D) of OS for GLncM,
HouLncM and SunLncM. The C-statistic was applied to assess prognostic performance for predicting the OS of HCC patients. The change C-statistic change
was calculated for GLncM and HouLncM (E) and GLncM and SunLncM (F) in TCGA-LIHC cohort. GLncM: genomic instability-related lncRNA model; HCC:
hepatocellular carcinoma; HouLncM: lncRNA-based model from the study by Hou; ROC: receiver operating characteristic; SunLncM: lncRNA-based
model from the study by Sun.
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FIGURE 6
Combined analysis of GLncM and the immunemicroenvironment. Kaplan‒Meier curves for the high and low immune score groups in the training set (A)
and verification set (D). Difference in the immune scores between the high- and low-risk subgroups in the training set (B) and verification set (E). Scatter plots
showing the negative correlation between immune scores and risk scores in the training set (C) and testing set (F). Kaplan‒Meier curves for patients in the
training set (G) and verification set (H) stratified by both the immune score and risk score. The log-rank test and Spearman’s correlation analysis were
applied for statistical analyses. GS-like: genomic stable-like; GU-like: genomic unstable-like; HH: high risk score and high immune score; HL: high risk score
and low immune score; LH: low risk score and high immune score; LL: low risk score and low immune score.
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risk subgroup (n = 32), and a significant difference in OS was observed
between the two groups (median OS 1.52 vs. 3.52 years, p = 0.021,
Figure 4E). Based on these results, the GLncM was an independent
prognostic factor for HCC.

Comparison of the GLncM with published
lncRNA models in terms of prognostic
prediction performance

We further assessed the predictive performance of GLncM by
comparing it with two existing lncRNA-related models using the
whole TCGA-LIHC dataset: the 5 lncRNA-based model from the
study the study by Hou (HouLncM) (Hou et al., 2018) and the
5 lncRNA-based model from the study by Sun (SunLncM) (Sun
et al., 2019).

As shown in Figure 5A, the AUC of GLncM for OS was 0.722 at
0.5 years, which was significantly higher than that of HouLncM
(AUC = 0.657) and SunLncM (AUC = 0.587). As shown in
Figure 5B, the AUC of GLncM for OS was 0.709 at 1 year, which
was significantly higher than that of HouLncM (AUC = 0.690) and
SunLncM (AUC = 0.559). The AUC of OS for GLncM was 0.687 at
3 years, which was significantly higher than that of HouLncM (AUC =
0.627) and SunLncM (AUC = 0.629) (Figure 5C). In addition, as
shown in Figure 5D, GLncM exhibited higher AUC values (AUC =
0.666) than the other two models (AUC of HouLncM = 0.654, AUC of
SunLncM = 0.660) in the whole TCGA-LIHC dataset at 5 years.
Moreover, we calculated the C-statistic for GLncM, HouLncM and
SunLncM using the CsChange R package, and GLncM improved the
C-statistic by 0.030 (95% CI: 0.001–0.056, p = 0.004) compared to
HouLncM (Figure 5E) and increased the C-statistic by 0.088 (95% CI:
0.018–0.137, p = 0.034) compared to SunLncM (Figure 5F).

The correlation between the immune scores
and risk score

Since genomic instability has been reported to play a critical role
by creating a precancerous environment (e.g., activation of oncogenic
pathways, suppression of oxidative stress responses, and inhibition of
immune function) (Rao et al., 2017), we used an immune scoring
algorithm similar to that reported by Zhang et al. (2020) to investigate
whether the immune environment differed between high-risk patients
and low-risk patients. After the immune score of each HCC sample
was calculated, the whole TCGA-LIHC cohort was split into a high
immune score group and a low immune score group based on the
median immune score (0.183). As shown in Supplementary Figure
S2A, the OS of the high immune score group was significantly longer
than that of the low immune score group (5.84 vs. 3.76 years, p <
0.001). Then, we analyzed the distribution of immune scores among
the different risk groups. Patients in the high-risk group showed a
significantly lower immune score than patients in the low-risk group
(median score: 0.114 vs. 0.661, p = 0.0017, Supplementary Figure S2B).
Moreover, using Spearman’s correlation analysis, we showed that the
immune score was negatively correlated with the risk score
(Spearman’s correlation coefficient: R = −0.25, p < 0.001,
Supplementary Figure S2C).

Afterward, we analyzed the samples from the training set and
verification set. Consistent with the results from the whole TCGA-

LIHC dataset, patients in the high immune score group from the
training set experienced a longer OS than those in the low immune
score group (median OS: 5.07 vs. 4.27 years, p = 0.032, Figure 6A).
Patients in the high-risk group showed a significantly lower immune
score than patients in the low-risk group (median score: 0.497 vs.
0.520, p = 0.0065, Figure 6B), and correlation analyses confirmed that
the immune score was negatively associated with the risk score
(Spearman’s correlation coefficient: R = -0.25, P = 7e-04,
Figure 6C). In the testing set, the OS of the low immune score
group was significantly shorter than that of the high immune score
group (median OS: 2.75 vs. 5.84 years, p = 0.024, Figure 6D). Patients
in the high-risk group showed a significantly lower immune score than
patients in the low-risk group (median score: 0.181 vs. 0.973, p = 0.055,
Figure 6E), and correlation analyses confirmed that the immune score
was negatively correlated with the risk score (Spearman’s coefficient:
R = -0.26, p = 0.00036, Figure 6F). We then performed a combined
survival analysis according to immune scores and risk scores in the
training set, verification set and whole TCGA-LIHC dataset. Figures
6G,H and Supplementary Figure S2D show that patients with high
immune scores in the low-risk group experienced a longer OS than
other patients. Therefore, the GLncM score has greater prognostic
significance than the status of the immune environment.

Discussion

Currently, the prognosis of patients is mainly determined based
on clinical characteristics and biochemical indicators, such as the
tumor size, cirrhosis, tumor number, microvascular infiltration and
Child‒Pugh score (Bertino et al., 2011; Chan et al., 2018; Galle
et al., 2019; Huang and Gao, 2020). With the development of
emerging detection technologies, researchers have begun to
conduct in-depth research on tumors at the molecular level.
Specific gene mutations, methylation status, microRNAs, etc.,
have also been investigated to assess their potential for
predicting the prognosis of the disease (Xu et al., 2017; Long
et al., 2018; Long et al., 2019). However, the complex
relationship between heredity, etiology and environmental risk
factors results in genotypic and phenotypic heterogeneity in
HCC and has increased the difficulty of determining the
prognostic subtypes of HCC(Herath et al., 2006; Feo et al.,
2009). Therefore, a more flexible and accurate prognostic model
must be developed. With the emergence of high-throughput
sequencing technology and microarray analyses, recent studies
on lncRNAs have found that they play a role in different
mechanisms regulating gene expression. Based on accumulating
evidence, lncRNAs are involved in regulating proliferation,
apoptosis, invasion and angiogenesis during the occurrence and
development of liver cancer (Li et al., 2016; Wang et al., 2016;
Zhang et al., 2016). At present, few studies on genomic instability
and lncRNAs in liver cancer have been conducted, and the exact
biological function and molecular mechanism of related lncRNAs
are still unknown. Therefore, further exploration and verification
are needed to clarify the complex mechanism.

We performed a combined analysis of gene expression data and
somatic mutation data and obtained 88 genomic instability-related
lncRNAs. Based on a ceRNA network analysis, we observed that
lncRNAs may interrupt the regulatory effect of microRNAs on
mRNAs to promote HCC oncogenesis and progression. Several
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lncRNAs among these genomic instability-related lncRNAs inhibit
metastasis progression. For example, hsa-miR-204 downregulates IL-
11 to inhibit the bone metastasis of breast cancer (Pollari et al., 2012).

We further assessed whether lncRNAs correlated with genomic
instability predicted the clinical outcomes of HCC patients and
acquired a lncRNA model consisting of two lncRNAs correlated
with genomic instability (ZFPM2-AS1 and MIR210HG). ZFPM2-
AS1 and MIR210HG have previously been reported to be involved
in cell proliferation and migration (Li J. et al., 2017; Kang et al., 2019;
Wang Y. et al., 2019; He et al., 2020; Liu et al., 2020; Wang et al., 2020),
indicating that the model composed of these two lncRNAs is not only
an indicator of genomic instability, but also can predict the prognosis
in patients with HCC. Based on the results of the ceRNA network
analysis, the two lncRNAs included in the GLncM may promote HCC
oncogenesis and progression by competing with microRNAs for the
binding of mRNAs. For example, the correlation between hsa-miR-
372 and TMEM100 plays an important role in the oncogenesis and
progression of several types of cancer, including bladder cancer,
colorectal cancer, and gastric cancer (Fan and Liu, 2018; Pan et al.,
2019; Pang et al., 2019; Wang J. et al., 2019). ZFPM2-AS1 and
MIR210HG may disrupt the interaction between hsa-miR-372 and
TMEM100 to promote the development of HCC, but the function of
hsa-miR-372 and TMEM100 in HCC has not been reported, and thus
further experiments are needed to confirm this hypothesis.
Furthermore, ZFPM2-AS1 and MIR210HG may also promote the
development of HCC by interrupting the interaction between hsa-
miR-372 and PFKP, since PFKP has previously been reported to play
an important role in cell proliferation (Moon et al., 2011).

Next, we evaluated the synergistic effect of the risk score and
immune score on the prognostic stratification of HCC. The results
indicated that genomic instability affected the immune
microenvironment, but the immune status did not interfere with
predictions obtained with the genomic instability-based model.

Currently, reliable prognostic biomarkers for HCC are still
lacking. We developed a lncRNA model associated with genomic
instability as an independent prognostic marker to stratify HCC
patients at risk, which will help clinicians analyze the prognosis of
patients using more dimensions and provide new insights into the
treatment of patients. Because all samples in this study were collected
from databases, future GLncM validation will be conducted in a
prospective multicenter cohort study. Our study still has some
limitations. Since we did not identify a dataset containing both
lncRNAs in the Gene Expression Omnibus (GEO) database, we did
not use the external dataset to verify the model. More prospective
datasets are needed for the validation and assessment of the
performance of the model to ensure its robustness and reproducibility.

Materials and methods

Data collection

Data were acquired from TCGA database; these data included
somatic mutation data for 364 primary HCC samples, microRNA
expression profiles for 375 primary HCC samples, and gene fragments
per kilobase of transcript per million reads mapped (FPKM)
expression profiles and clinical characteristics for 374 primary
HCC samples. In the modeling process, only 370 samples with
both mRNA expression data and clinical data were used for

analysis. We annotated the gene symbols and gene types according
to the Homo_sapiens.GRCh38.102. chr.gtf file.

Classification of genomic instability-related
lncRNAs

We used a method similar to that described by Bao et al. to
determine the lncRNAs associated with genomic instability (Bao et al.,
2020). First, the total number of mutations in each sample was
calculated based on somatic mutation data. Then, the samples were
sorted in ascending order according to the total number of mutations
in each sample. Then, the first 25% of the samples were selected as the
genomic stable group, and the last 25% were selected as the genomic
unstable group. Then, the Wilcoxon rank-sum test was applied to
compare the expression of each lncRNA between the two groups.
Finally, genomic instability-related lncRNAs were obtained (false
discovery rate (FDR) < 0.05, |log2fold change (FC)| > 1).

Construction of the competing endogenous
RNA (ceRNA) network

LncRNA expression data, mRNA expression data and microRNA
expression data were used to construct the ceRNA network, and the
network was visualized using the ggalluvial R package (Version:
0.12.3) to better illustrate the functions of lncRNAs associated with
genomic instability.

The construction of the ceRNA network mainly included two
steps. 1) The differentially expressed mRNAs and microRNAs
between the genomic stable group and genomic unstable group
were obtained using the Wilcoxon rank-sum test and edgeR
package (Version: 3.24.3) (Robinson et al., 2010), respectively
(FDR<0.05, |logFC|>1). 2) The miRcode database (Version: 11)
(Jeggari et al., 2012) was applied to determine the interaction
between genomic instability-associated lncRNAs and differentially
expressed microRNAs. Interactions between differentially expressed
microRNAs and differentially expressed mRNAs were determined
using the miRDB (Version: 5.0), miRTarBase (Version: 6.1), and
TargetScan (Version: 7.2) databases (Agarwal et al., 2015; Wong
and Wang, 2015; Chou et al., 2018).

Construction and validation of a genomic
instability-related lncRNA prognostic risk
model

First, HCC samples were randomly split into a training set and
verification set. Then, in the training set, the prognostic value of
genomic instability-related lncRNAs for OS was estimated by
performing a univariate Cox regression analysis. The lncRNAs with
p < 0.05 were screened in a subsequent multivariate Cox regression
analysis. The lncRNAs with p < 0.05 in the multivariate Cox regression
analysis were regarded as the final lncRNAs for model construction.
Genomic instability-related lncRNAs were obtained by performing
univariate and multivariate Cox regression analyses using the survival
R package (Version: 3.1–12). The predictive power of the prognostic
risk model was evaluated using the log-rank test and Kaplan‒Meier
survival analysis.
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Immune-related analysis

CIBERSORT(Newman et al., 2015) was used to calculate the
infiltration levels of immune cells in each sample. Then, we used a
method similar to that described by Zhang et al. (2020) to calculate the
immune score for each sample. First, the samples were classified into
different immune subtypes based on the CIBERSORT results. Then,
differentially expressed genes in the three immune subtypes were
obtained using the Wilcoxon rank-sum test. Afterward, the samples
were classified into different gene clusters based on these genes. Genes
that were positively correlated with gene clusters were regarded as
gene signature A; otherwise, they were regarded as gene signature B.
The feature genes were identified using the Boruta R package (Version:
7.0.0) (Kursa and Rudnicki, 2010). Principal component analysis
(PCA) was conducted for gene signature A and gene signature B of
feature genes. The immune score of each sample was calculated by
subtracting the score of the first principal component of gene signature
A from the score of the first principal component of gene signature B.
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