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Current algorithms for gene regulatory network construction based on

Gaussian graphical models focuses on the deterministic decision of whether

an edge exists. Both the probabilistic inference of edge existence and the

relative strength of edges are often overlooked, either because the

computational algorithms cannot account for this uncertainty or because it

is not straightforward in implementation. In this study, we combine the Bayesian

Markov random field and the conditional autoregressive (CAR) model to tackle

simultaneously these two tasks. The uncertainty of edge existence and the

relative strength of edges can be measured and quantified based on a Bayesian

model such as the CAR model and the spike-and-slab lasso prior. In addition,

the strength of the edges can be utilized to prioritize the importance of the

edges in a network graph. Simulations and a glioblastoma cancer study were

carried out to assess the proposedmodel’s performance and to compare it with

existing methods when a binary decision is of interest. The proposed approach

shows stable performance and may provide novel structures with biological

insights.
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1 Introduction

The network analysis of multi-dimensional data for structural information learning

has attracted much attention in the biomedical research community. Examples include

gene regulatory networks, brain connectivity networks, and microbial networks (Zhang

et al., 2019; Huang et al., 2020). An undirected graphical model, the Markov random field

(MRF), is a common approach to describe the network structure of a group of genetic

variables, because of its direct interpretation of edges with the conditional dependence

between nodes. The Gaussian MRF, also known as the Gaussian graphical model (GGM),

imposes a multivariate distribution for gene regulatory networks, assuming the
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p-dimensional vector X � (X1, X2, . . .Xp)T ∈ Rp follows a

multivariate normal distribution X ~ MVN(μ
~
,Ω � ∑−1) with

Xi denoting the gene expression value of the i-th gene node.

A zero-entry in the precision matrix Ω corresponds to

conditional independence and no connecting line between

nodes. In other words, if the off-diagonal (i, j)-th element ωij

in Ω is zero, then the partial correlation |ij � cor(Xi, Xj|X−(i,j))
is zero; namely, the Xi and Xj are conditionally independent

given the remaining variables, and there exists no edge between

these paired nodes in the network. Therefore, under GGM, the

problem of network construction becomes the inference of a

sparse precision matrix or the selection of non-zero partial

correlation.

Recent work on inferring network structure with GGM can

be categorized into two groups. Methods in the first group focus

on determining if an edge exists between nodes using the idea of

“covariance selection”. When p is large, these methods follow the

principle of variable selection with a regularization procedure to

complete the binary decision about whether ωij or |ij is zero.

Various methods of this regularization approach have been

developed that adopt different objective functions and/or L1
penalty, including neighborhood selection with lasso (M&B)

by Meinshausen and Buhlmann (2006), graphical lasso

(Glasso) in Friedman et al. (2008), the space partial

correlation estimation (SPACE) in Peng et al. (2009), and the

constrained l1 minimization for inverse matrix estimation

(CLIME) in Cai et al. (2011). These penalized optimization

methods can be applied straightforwardly, but they are not

designed to infer the intensity of edges or to interpret the

dependence between nodes, although this information may be

influential in biological experiments (Ni et al., 2020). If the

inference, such as the estimation of the non-zero partial

correlation, is based on a given network, then the network

structure needs to be fixed first with one of the methods

mentioned above. Therefore, this estimation procedure relies

heavily on the choice of the selected network structure, which

may cause concern about subsequent inference if the validity of

this structure is in question.

Methods in the second group, usually under the Bayesian

framework, explicitly adopt the uncertainty in the network graph,

through a prior on the precision matrix, such as the G-Wishart,

spike-and-slab lasso (SSL), and a subset-specific prior (Wang and

Pillai, 2013; Mohammadi and Wit, 2015; Gan et al., 2019;

Williams 2021; JalaliKhare and Michailidis, 2022). To enhance

computational efficiency, researchers have proposed various

tools, such as the double Metropolis-Hasting algorithm and

birth-death Markov chain Monte Carlo methods, and the

Bayes EM to estimate the maximum a posteriori (MAP) to

avoid complex computation. These analyses provide a

posterior probability for each candidate graph and a posterior

inclusion probability for each edge. The inclusion probability, in

this case, can be a good indication of its existence, but the

strength of the edge is not considered in the computation.

One solution may be to average the estimates of precision

matrices in an element-wise way and weigh by the posterior

probability of the matrix and the corresponding candidate graph.

For instance, the BDgraph inMohammadi andWit (2015) can be

utilized to perform this analysis. The computational burden in

these procedures is fairly heavy due to the large number of nodes

and the even more significant number of candidate graphs.

To relieve the computational burden, Gan et al. (2019)

proposed a novel EM algorithm, called BAGUS, that first

estimates the maximum a posteriori (MAP) of the precision

matrix and then approximates the probability of edges with the

precision matrix fixed at the MAP to learn the graph structure.

BAGUS outperformed existing methods in terms of computation

time, accuracy in recovering graph structure, and prediction

error of the precision matrix. However, the uncertainty of the

network graph and the posterior distribution of the edges are not

accounted for in the BAGUS algorithm.

The inference of the strength of the edges has not been the

target of these aforementioned algorithms. This inference

requires a fully Bayesian approach and can be complicated in

computation. In a recent research, Williams (2021) discussed the

importance and implication of this topic. In that study, the edge

inference was carried out with a fully Bayesian approach and the

posterior probability of the precision element is used to infer the

dependence between nodes. The conjugate Wishart prior was

adopted to save computation time. If the SSL prior with a latent

variable indicating the randomness in the edge existence is

considered, further computational complexity will be incurred.

This research adopts the Bayesian learning approach for its

ability to incorporate a priori information and to offer probabilistic

inference, and for its wide application in bioinformatic research,

including the Bayesian scoring rule for metabolite molecules

(Ludwig et al., 2018), peak calling with Hi-C data (Xu et al.,

2016), and pathway prioritization with posterior probability (Lin

et al., 2018). The rationale of this research is twofold. First, an

informative metric to quantify the strength of an edge is needed,

which can provide more information beyond its existence. This is

crucial when decoding the interplay between nodes or prioritizing

intervention in a gene regulatory network. Second, since most genes

do not work alone, the strength or intensity of the relationship

between any two nodes should account for the presence of other

genes when learning the network structure of a given set of genetic

nodes. In this study, we start with the Bayesian MRF combining the

conditional autoregressive (CAR) model to estimate the strength of

the edge and its existence probability. Under the Gaussian CAR

model, the conditional mean E(Xj|X(−j)) is expressed as ∑
k≠j

βjkXk

for j � 1, 2, ..., p, where X(−j) ≜ {Xk: k ≠ j} represents the set
containing all variables except Xj. Following Besag (1974) and
Besag and Kooperberg (1995), the coefficient βjk is a function of
elements in the precision matrix Ω, and is connected to the partial
correlation |jk between Xj and Xk. That is, the βjk can be used to
characterize the strength of dependence between these two genes. In
addition, the Spike-and-Slab Lasso (SSL) prior proposed by Ročková
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and George (2018) is adopted for βjk. Then, the regularization
procedure on these βjk’s functions similarly to the “covariance
selection” procedure in previous literature and provides a direct
and intuitive interpretation of the intensity and relationship between
nodes.

The rest of this article is organized as follows. The rationale

and complete model of the Bayesian MRF and the

implementation of prior knowledge are introduced in Section

2. In Section 3, extensive simulation studies are conducted to

demonstrate the performance of the proposed model and

comparison with other state-of-the-art methods. In Section 4,

the proposed model is applied to a glioblastoma study with gene

expression values from TCGA (Hutter and Zenklusen, 2018).

Some biologically relevant findings will be highlighted. We then

conclude with a discussion.

2 Methods

2.1 Learning network structure

To introduce the proposed Bayesian Markov Random field

(BMRF) model, we first let the n × p matrix X represent the

observed gene expression values of the p genes from the n

subjects, where xij is the expression value of the j-th gene

(j � 1, 2, . . . , p) from the i-th subject (i � 1, 2, . . . , n). Without

loss of generality, the values across subjects per gene are

standardized so that E(Xj) � 0 and Var(Xj) � 1. Under

GGM, the p− dimensional random vector (X1, X2, . . . , Xp)T
follows a multivariate normal distribution (MVN) with the

following conditional distribution (Besag 1974),

Xj

∣∣∣∣X(−j) ~ N⎛⎝∑
k≠j

βjkXk, σ
2
j
⎞⎠, j � 1, 2, . . . , p. (1)

Following Besag (1974) and Besag and Kooperberg (1995),

the coefficients can be expressed as βjk � −ωjk

ωjj
if j ≠ k. This is

related to the partial correlation |jk between Xj and Xk where

|jk � −ωjk				
ωjjωkk

√ . When the diagonal elements in Ω are equal, then

βjk � βkj and the underlying coefficients in the CAR model can

be expressed as β
~
� {βjk: 1≤ j< k≤p} where ‖ β

~
‖ � p(p − 1)/2

is the number of unknown parameters to be estimated.

Moreover, when βjk � 0, the corresponding |jk � 0, implying

no edge between two gene nodes. These properties provide two

advantages in supporting βjk as promising candidates in

inferring the network structure. First, the selection of non-

zero elements of βjk ∈ β
~
is equivalent to the decision of the

existence of the edge. Second, the magnitude of these coefficients

can quantify the relative intensity of the partial correlation

between nodes. Their estimates can be derived based on the

CAR model and thus the regression model. Such an approach

would be easier than directly estimating the correlation

coefficient matrix, especially when a direct estimate of the

matrix is not straightforward due to the curse of

dimensionality and the requirement of positive definiteness.

This CAR model is more general than those used in spatial

statistics, where only neighboring “areas” are included in the

mean structure. Here all genetic nodes are included first as a fully

connected model. Then the procedures and computations below

will decide which βjk remain and how strong the evidence is. In

addition, this conditional distribution is also similar to node-wise

regression where constraints are imposed to ensure symmetry in

the βjk’s (Ha et al., 2021).

2.2 Spike-and-slab lasso prior:
Probabilistic estimation of edge

For the inference of βjk, we consider the Spike-and-Slab

Lasso (SSL) prior (Rockova and George, 2018),

π(βjk∣∣∣∣∣γjk) � γjk × ψ1(βjk) + (1 − γjk) × ψ0(βjk). (2)

where the slab distribution ψ1(βjk) � τ1
2 exp(−τ1|βjk|) and the

spike ψ0(βjk) � τ0
2 exp(−τ0|βjk|) are both double exponential

(Laplace) with a small τ1 and large τ0, respectively. The

binary γjk takes the value of one if βjk represents a large

effect, and γjk � 0 if the effect is around zero. Therefore, the

marginal posterior probability of γjk � 1 can represent the

probability of the edge existence.

The SSL prior is considered a fundamental variable

selection tool in the Bayesian framework for sparse models.

This differs from the previously mentioned penalized

optimization methods for variable selection, where the

estimated effect size is biased. In addition, the SSL prior is

flexible because it allows the shrinkage effects to vary among

different edges. For instance, a substantial shrinkage penalty

can be deployed for those edges with weak partial correlation,

while for those with strong partial correlation, a non-

shrinkage effect can be considered. Other studies have used

the SSL prior in the matrix inference (Peterson et al., 2015;

Deshpande et al., 2019; Gan et al., 2019). For instance, Gan

et al. (2019) assumed this prior for the off-diagonal entries in

the precision matrix, the ωjk in our case, and Deshpande et al.

(2019) adopted this prior for the regression parameter, the βjk
in our case. In Peterson et al. (2019), the SSL prior was

incorporated to model the network similarity.

By adopting the SSL prior, we can select the influential edges

and perform statistical inference with βjk. The BMRF model

specification is completed with a Bernoulli prior for γjk ,

γjk ~ Ber(pjk), where pjk follows a conjugate beta

distribution. Specifically, in contrast to previous studies

investigating if the edge exists, here we are interested in

constructing the posterior distributions of βjk and γjk,

respectively, to model the strength of the edge and its

existence probability.
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2.3 Computation

Since the posterior distributions of γjk and βjk are the bases of

the probabilistic inference, one can obtain the posterior samples

of γjk and βjk with Markov chain Monte Carlo (MCMC)

methods implemented in any standard Bayesian software. In

the following simulation studies and applications, the R package

R2OpenBUGS is used to carry out the computations.

When the number of gene nodes is large, the number of

possible edges and parameters increases rapidly. Fortunately,

most genetic networks/pathways are sparse. For instance, the

sparsity of the signaling pathway networks in KEGG ranges

between 5% and 10%. Liu et al. (2009), Zhao et al. (2012),

and Mohammadi and Wit (2015) have adopted similar values

in their simulation studies. Such a priori information can be

utilized in a p × p adjacency matrixG*, where elements gjk � 1 if

two genesXj andXk are known biologically to be associated and

gjk � 0 otherwise. By imposing the matrix of domain knowledge

G* on β
~
� {βjk: 1≤ j< k≤p}, one can save computational cost

from estimating the edges known to be non-existent. Similarly,

another p × p adjacency matrixM* can be introduced to contain

elements mjk � 1 if the corresponding interrelation is of interest

to particular experts. This would force the inclusion of the edge in

the network, yet the flexibility remains when later inference does

not favor its existence. Inclusion of these two matrices and the

distribution of pjk can account for all the cases described here.

For example, this matrix M* can be derived first and the data-

driven prior on γjk can be further established. The BMRF with

this setup will be denoted as BMRF.P in later sections.

3 Numerical simulation experiments

For performance evaluation and comparison with existing

methods, three types of network graph are considered in the

simulation studies: the random network (M1), random scale-free

network (M2), and fixed network structure (M3). In M1, edges are

considered exchangeable, and all nodes in a network are equally

important. The scale-free network in M2 is commonly adopted for

genetic pathways, where the edges are not exchangeable because hub

nodes may exist in the network. These two are designed to compare

with the traditional approach of variable selection, where only the

number of true edges successfully detected is of concern. While in

M3, with a fixed and known structure, further comparison between

the inclusion probability in previous Bayesian methods and the

existence probability in current BMRF can be carried out, and the

strength of edge is demonstrated. In other words, in M3, in addition

to the number of true edges successfully detected, both the

probability of existence and strength of edges will be emphasized.

3.1 Simulation settings

In the random network setting M1, the GGM is generated

with the following steps, similar to the procedures in Fan et al.

(2009), and Peng et al. (2009).

1) Set up the network sparsity S, 0≤ S≤ 1
2) Construct the true network E by randomly sampling the

Bernoulli eij with probability S. If eij � 1, then there is an edge

between the node i and j, and 0 otherwise.

3) Generate the precision matrix Ω � (ωij) according to E by

ωij �
⎧⎪⎨⎪⎩

1, i � j
0, i ≠ j, eij � 0
U(W), i ≠ j, eij � 1

where W � [−1,−0.05] ∪ [0.05, 1] and U(.) denotes the

uniform distribution.

4) To assure the positive definiteness of Ω, each off-diagonal ωij

in Ω is replaced by the original ωij divided by

1.5 × ∑p
j�1,j ≠ i|ωij|.

5) Average the rescaled matrix calculated in (4) with its

transpose matrix to ensure symmetry. The values of the

nodes are generated from a multivariate normal

distribution (MVN) with a zero mean vector and the

precision matrix.

Note that different combinations of p and S have been

considered, denoted as M1.1 for p � 25, S � 0.05, M1.2 for

p � 25, S � 0.10, M1.3 for p � 50, S � 0.05, and M1.4 for

p � 50, S � 0.10. The number of edges in each network is

about (p
2
) × S.

In the random scale-free network setting M2, the R package

huge was used to generate the scale-free networks. Two settings

(M2.1) p � 25 and (M2.2) p � 50 were considered. The average

number of edges in the scale-free network is p − 1.

In M3, the fixed network structure setting, a scale-free

network graph containing 50 nodes and 49 edges was selected,

and the node values were generated with the huge package with

the partial correlation in the network set at −0.216.

For all stimulations, the hyper-parameters were specified as

τ1 � 2 and τ0 � 20, the sample size was n � 250, and the number

of replications in each setting was 100. More detailed

information, including the network sparsity and number of

true edges, is summarized in the Supplementary Table S1. For

the proposed BMRF, the corresponding edge is selected for the

network if the posterior probability of γjk � 1 is greater than 0.5.

This choice is used in simulation studies when comparing

different regularized methods for variable selection.
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3.2 Comparing methods and evaluation
criteria

The proposed BMRF model was compared with M&B,

Glasso, SPACE, and CLIME, as well as with the Bayesian

approach BDgraph using the Bayesian model averaging

procedure (denoted as BD_BMA), the Maximum a

posterior probability procedure (BD_MAP), and BAGUS.

M&B and Glasso were performed with the R package huge,

and the tuning parameter used in these two methods was

chosen through the rotation information criterion (ric). The

SPACE approach was performed with the R package space

with the tuning parameter set by default. The package flare was

used for the estimator CLIME with tuning parameters

obtained by 5-fold cross-validation. The R package

BDgraph was used for BDgraph. BAGUS was performed

with the R code provided in the online supplementary

material in Gan et al. (2019).

Several criteria were used to compare performance,

including the total number of true positives (TP), the

sensitivity (SEN), the specificity (SPE), the false discovery

rate (FDR), the Matthew correlation coefficient (MCC), and

the F1-score (F1). These quantities are calculated based on TP

and the total number of false negatives (FN), where TP is

defined as the total number of true edges that were successfully

identified, and FN as the total number of true edges that failed

to be detected.

3.3 Implementations

When handling a large set of gene nodes with BMRF, we

recommend two modeling strategies, one with a non-

informative prior and the other with a data-driven prior.

The former is denoted as BMRF.O, corresponding to the

prior distribution γjk ~ Ber(pjk) with pjk from a beta

distribution with mean 0.5. The latter, denoted as BMRF.P,

models the network edges with pjk ~ Beta(α*, β*), an

informative prior with a mean larger than 0.5 if

eij ∈ M* ∩ G*, or pjk ~ Beta(α†, β†), a non-informative prior

with a mean around 0.5. As stated earlier, the matricesM* and

G* can be elicited by experts, with domain knowledge, with a

screening scheme based on sparsity or sample correlation, or

with SPACE proposed in Peng et al. (2009), which

outperforms other methods when dealing with a scale-free

network structure. In the following analysis, the matrix G*

containing the edges corresponding to the largest 10%

absolute sample correlations was determined first when

the network sparsity was set at 0.05 (or the top 15% if

set at 0.10). For the matrix M*, we incorporated the

information from SPACE to accelerate the computational

efficiency. The mean of the informative prior

pjk ~ Beta(α*, β*) was set at 0.8.

3.4 Results

3.4.1 Existence or not: Random network
(M1 and M2)

To compare performance, Table 1 lists the values of several

evaluation criteria under settings M1.1, M1.3, and M2.2. A quick

look shows that, except for BD_MAP, the other four Bayesian

algorithms perform equivalently or slightly better than the rest.

In most cases, BAGUS is the best in terms of F1-score and MCC,

but is less satisfactory in the number of true positives (TP) and

sensitivity (SEN). Other Bayesian algorithms achieve larger TP

and sensitivity. Among the Bayesian methods, BD_BMA and

BD_MAP tended to identify more edges, leading to larger TP and

SEN but lower F1 and MCC. Consequently, these two often

produce a larger FDR. BD_MAP was usually the worst in this

regard due to the lack of consideration of model uncertainty. In

M1.3 and M2.2, BAGUS, M&B and SPACE perform similarly

well. Generally, the proposed BMRF.O and BMRF.P are

comparable to the best performers. The performances under

other settings are displayed in the Supplementary Table S2.

One metric among the evaluation criteria, the F1-score, is

displayed in Figure 1. When the number of nodes p is as large as

50, most methods are still satisfactory if the graph is sparse, such

as when the case sparsity = 0.05 in Figures 1C,F. The Bayesian

approaches, both BMRF and BDgraph, tend to identify more

edges when compared with the frequentist approach to variable

selection, therefore leading to a higher F1-score. These results

highlight the advantages of probabilistic inference on the

conditional dependence in network analysis, in contrast to the

detection of whether or not the edge exists.

3.4.2 Existence probability: Fixed network (M3)
In setting M3, a fixed network structure with two hub nodes

was determined first, as shown in Figure 2A, and then the node

values were generated from MVN. The numbers of edges

connecting to the two hubs, Node-2 and Node-4, are 14 and

7, respectively. Various methods were then applied to infer the

network structure. Across 100 replications, the average number

of edges estimated by each method is listed in Table 2. Four

methods, BMRF.P, BD_BMA, M&B, and SPACE, performed the

best, with the first two being slightly better with a smaller

standard error. When examining the F1-score in Figure 2B,

BAGUS performed best.

For the probabilistic inference of edge existence, we first

stratify the edges into two groups, truly No Edge and Edge

exists, and display in Figure 2C the estimated edge existence

probability or the inclusion probability derived from the four

competing methods, BMRF.O, BMRF.P, BD_BMA, and

BAGUS. As indicated in the figure, when there exists no

edge (labeled No Edge on X-axis in the figure), BMRF.O

and BMRF.P provide very low probabilities while BD_BMA

and BAGUS show slightly larger probabilities. When the edge

truly exists, labeled Edge exists on X-axis in the right group in
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the figure, the BD_BMA performs the best and is followed by

BMRF.P. It needs to be clarified, however, that it may not be

fair to compare the edge existence probability against the

inclusion probability because of the different definitions. In

BMRF, the existence probability of the edge is the posterior

probability of γjk � 1; while in BD_BMA, the inclusion

probability is the sum of all posterior probabilities of

networks containing the edge. The inclusion probability in

this sense can be viewed as the expected value of the existence

probability if all possible network structures are accounted for.

In BAGUS, the inclusion probability is estimated with a

conditional probability, conditioning on the Bayes EM

estimates of the other parameter values. In other words, the

BAGUS estimate assumes a fixed network structure rather

than estimating across all possible structures.

The association between the existence probability from

BMRF.P and the inclusion probability from BM_BMA is

further examined in Figure 2D. The blue circles represent true

edges and the red circles indicate non-existent edges. These two

are fairly consistent, except that BD_BMA seems to detect more

non-existent edges (red circles) than BMRF.P. The values of the

other criteria are summarized in the Supplementary Table S3.

3.4.3 Accuracy of probabilistic inference
An alternative way to evaluate the probabilistic inference

of the edge existence is the Brier score (Brier, 1950), which can

TABLE 1 Values of six evaluation criteria (F1, MCC, FDR, TP, SEN, and SPE) under simulation settings M1.1, M1.3, andM2.2. Each value is the average of
100 replications with standard error (SE) in parentheses.

M1.1 F1 MCC FDR TP SEN SPE

BMRF.O 0.89 (0.06) 0.89 (0.07) 0.12 (0.09) 13.6 (3.0) 0.91 (0.08) 0.99 (0.005)

BMRF.P 0.88 (0.06) 0.87 (0.06) 0.16 (0.09) 13.8 (3.1) 0.92 (0.07) 0.99 (0.005)

BD_BMA 0.87 (0.06) 0.86 (0.06) 0.19 (0.09) 14.1 (3.1) 0.94 (0.07) 0.99 (0.006)

BD_MAP 0.58 (0.09) 0.60 (0.08) 0.58 (0.10) 14.1 (3.2) 0.94 (0.07) 0.93 (0.020)

BAGUS 0.94 (0.05) 0.94 (0.05) 0.02 (0.04) 13.6 (2.9) 0.91 (0.08) 0.99 (0.002)

Glasso 0.83 (0.06) 0.82 (0.06) 0.25 (0.09) 14.1 (3.2) 0.94 (0.07) 0.98 (0.009)

CLIME 0.88 (0.08) 0.89 (0.08) 0.01 (0.02) 11.9 (2.5) 0.81 (0.13) 0.99 (0.001)

M&B 0.90 (0.06) 0.90 (0.06) 0.10 (0.09) 13.8 (3.0) 0.92 (0.07) 0.99 (0.005)

SPACE 0.89 (0.06) 0.88 (0.06) 0.14 (0.08) 13.8 (3.0) 0.92 (0.07) 0.99 (0.005)

M1.3 F1 MCC FDR TP SEN SPE

BMRF.O 0.78 (0.05) 0.78 (0.05) 0.13 (0.05) 44.2 (3.7) 0.72 (0.07) 0.99 (0.002)

BMRF.P 0.79 (0.05) 0.79 (0.05) 0.14 (0.04) 45.6 (4.0) 0.74 (0.07) 0.99 (0.002)

BD_BMA 0.76 (0.04) 0.75 (0.05) 0.25 (0.06) 47.7 (4.2) 0.77 (0.06) 0.99 (0.004)

BD_MAP 0.50 (0.03) 0.51 (0.04) 0.63 (0.03) 48.8 (4.3) 0.79 (0.06) 0.93 (0.007)

BAGUS 0.80 (0.05) 0.80 (0.05) 0.04 (0.03) 42.3 (3.8) 0.69 (0.07) 0.99 (0.001)

Glasso 0.78 (0.05) 0.78 (0.05) 0.10 (0.05) 43.0 (3.7) 0.70 (0.08) 0.99 (0.002)

CLIME 0.63 (0.11) 0.67 (0.09) 0.01 (0.02) 29.2 (6.7) 0.48 (0.11) 0.99 (0.001)

M&B 0.79 (0.05) 0.80 (0.05) 0.04 (0.03) 41.9 (3.4) 0.68 (0.08) 0.99 (0.001)

SPACE 0.80 (0.05) 0.80 (0.05) 0.09 (0.04) 43.9 (3.8) 0.71 (0.07) 0.99 (0.002)

M2.2 F1 MCC FDR TP SEN SPE

BMRF.O 0.78 (0.09) 0.77 (0.09) 0.24 (0.06) 39.2 (6.1) 0.80 (0.13) 0.99 (0.002)

BMRF.P 0.84 (0.04) 0.84 (0.04) 0.23 (0.04) 45.3 (2.8) 0.92 (0.06) 0.99 (0.002)

BD_BMA 0.83 (0.04) 0.83 (0.04) 0.27 (0.05) 46.0 (2.3) 0.94 (0.05) 0.99 (0.003)

BD_MAP 0.52 (0.03) 0.55 (0.03) 0.64 (0.02) 45.7 (2.3) 0.93 (0.05) 0.93 (0.006)

BAGUS 0.89 (0.05) 0.89 (0.05) 0.04 (0.03) 41.5 (3.6) 0.85 (0.07) 0.99 (0.01)

Glasso 0.83 (0.06) 0.82 (0.07) 0.19 (0.07) 41.7 (4.1) 0.85 (0.08) 0.99 (0.004)

CLIME 0.63 (0.11) 0.65 (0.09) 0.52 (0.13) 47.3 (2.1) 0.97 (0.04) 0.95 (0.025)

M&B 0.88 (0.05) 0.88 (0.05) 0.08 (0.05) 41.6 (4.2) 0.85 (0.09) 0.99 (0.002)

SPACE 0.86 (0.05) 0.86 (0.05) 0.16 (0.05) 43.7 (3.1) 0.89 (0.06) 0.99 (0.003)
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be calculated for each of the Bayesian estimates. The Brier

score, ranging between 0 and 1, is a mean squared difference

between the true class label (edge exists or not) and the

estimated probability. Smaller values of the Brier score

indicate better estimates. This score has become a common

measure to assess the accuracy of the probabilistic estimates of

binary outcomes, especially when comparing performance of

machine learning algorithms (Dinga et al., 2019; Ovadia et al.,

2019).

The boxplots of the Brier score for the four Bayesian

estimates under different simulation settings are displayed

in Figure 3. Every boxplot is composed of 100 Brier scores,

each from a replication in the simulations. In all the subfigures,

it can be observed that all four methods provide small Brier

scores, mostly below 0.07, indicating good accuracy. In other

words, they provide large probability estimates when the edge

truly exists and small probability estimates when the edge does

not exist. This pattern is consistent with that in Figure 2C

under simulation setting M3. Note that the average Brier

scores of the four Bayesian estimates under M3 are 0.01,

0.01, 0.02, and 0.03 for BMRF.O, BMRF.P, BD_BMA, and

BAGUS, respectively. The second observation in the figure is

that the probabilistic estimates of BAGUS are more variable

and usually slightly larger than the rest. This could result from

the utilization of MAP in the BAGUS probability estimate,

where the estimate is a probability conditioning on MAP

estimates of the other parameters and therefore incurs

further estimation errors in the graph structure.

4 Applications in two glioblastoma
studies

In this section, we consider two data types, array and

sequencing gene expression values, collected from

Glioblastoma (GBM) patients. GBM is a grade IV

FIGURE 1
Boxplots of F1-scores from 100 replications under each method. Each subfigure corresponds to a setting with a combination of p and S. Note
that the blue boxplots correspond to the five Bayesian algorithms and the pink ones correspond to the four penalized methods.
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malignant brain tumor, usually in adults. After being

diagnosed, patients have a median survival time of about

12–15 months and generally respond poorly to treatments

(Stupp et al., 2005; The Cancer Genome Atlas Research

Network, 2008). Although several molecular biomarkers

have been identified, such as TP53 mutation and

overexpression in EGFR (Bralten and French, 2011; Zhang

et al., 2018), targeted therapy shows a limited effect (Shergalis

et al., 2018; Banerjee et al., 2021). Recent interest has focused

on the molecular mechanism of the Janus kinase/signal

transducer and activator of transcription (JAK-STAT)

signaling pathway (Jain et al., 2012; Ou et al., 2021).

Here we aim at constructing relationships within two

networks, EGFR and JAK-STAT, based on RNA sequencing

and array data, respectively. The BMRF model is applied to

two pathways to examine the conditional dependence among

gene nodes and detect influential molecular relationships to

understand the underlying biological mechanism better. The

expression values were downloaded from the University of

California Santa Cruz (UCSC Xena) TCGA Hub and TCGA

GDC data portal. The array gene expressions were generated

from the Affymetrix HT Human Genome U133a microarray

platform with mRNA values in the log two scale, and the

sequencing data from Illumina HTSeq. The nodes in the JAK-

STAT network were collected with the procedures in Chang

et al. (2020). The EGFR network was determined based on the

protein-protein interaction (PPI) network in STRING. The

final array data consist of 27 gene expression values from

FIGURE 2
Results of competing methods under simulation setting M3. (A) The true network structure with 49 true edges; (B) Boxplots of the F1-score
from 100 replications under each method; (C) Boxplots of average existence probability over 100 replications under each of the four Bayesian
algorithms. The left group No Edge corresponds to the case when there is truly no edge, and the right group Edge exists corresponds to the case
when the edge truly exists. Each boxplot in the right group is composed of 49 average probabilities; (D) The edge existence probability from
BMRF.P versus the inclusion probability from BD_BMA for each edge across replications. Blue circles indicate true edges and red indicates no edge.
The vertical and horizontal solid lines denote the cut-off values for BMRF.P and BD_BMA, respectively.
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253 primary tumor tissues, and the sequencing data contain

30 genes from 83 tissues. All are primary tumor tissues from

male patients aged 40 and 75. The procedures (computing

sample correlation, SPACE, and taking union) discussed

earlier were carried out and resulted in 99 possible edges in

the JAK-STAT network and 80 edges in the EGFR network,

respectively, as the starting sets of edges for further analysis.

More information about the selection procedures is in the

Supplementary Sections S2, S3.

4.1 Edges in the JAK-STAT network with
gene expression arrays

Based on the GBM array data, the BMRF.P identified

69 edges in the network with probabilities greater then 0.5,

15 of which were associated with a posterior

existence probability greater than 0.9. Figure 4A plots the

posterior probabilities of all 99 edges, from the largest to the

smallest. Figure 4B shows the resulting gene regulatory

network, where the 15 edges are represented with

thick lines and the others with thin lines. The

corresponding magnitudes of the 15 existence probabilities

are displayed in Figure 4C, where the width denotes the

TABLE 2 The listed values are the average number of estimated edges
connecting to each of the two hub nodes (Node-2 and Node-4)
across 100 replications under M3. The number in parenthesis is the
standard error. The true number of edges connecting to Node-2 is
14 and to Node-4 is 7.

Node-2 (true = 14) Node-4 (true = 7)

BMRF.O 8.5 (1.3) 5.7 (1.0)

BMRF.P 14.1 (0.8) 7.0 (0.9)

BD_BMA 14.4 (0.8) 7.2 (0.8)

BD_MAP 16.4 (1.5) 9.5 (1.6)

BAGUS 14.1 (0.4) 6.3 (0.7)

Glasso 14.7 (0.8) 7.6 (1.8)

CLIME 17.6 (2.3) 9.9 (1.9)

M&B 14.3 (0.6) 6.5 (1.2)

SPACE 14.7 (0.9) 6.8 (1.1)

FIGURE 3
Boxplots of the Brier scores of the four Bayesian estimates, BMRF.O, BMRF.P, BD_BMA, and BAGUS, under six different simulation settings: (A)
M1.1; (B) M1.2; (C) M1.3; (D) M1.4; (E) M2.1; (F) M2.2.
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magnitude of the probability. The boxplots in Figure 4D show

the posterior samples of the strength of each edge, all

displaying positive conditional correlations between paired

nodes. This is consistent with the pattern of co-expression, and

the first two pairs seem to be strongly correlated with each

other.

Note that the ordered existence probabilities in Figure 4A

may be useful if prioritization is of interest. When comparing the

top leading 15 edges with the lines in KEGG, we note that two

edges (JAK1-PTPN11 and IRF9-STAT1) are listed in KEGG.

These two each have a probability greater than 0.95. The

other thirteen edges with such a large probability were not

listed in KEGG and may deserve further validation and

investigation. For the connecting lines in KEGG, the BMRF

posterior probabilities can be adopted to provide relative

degrees of conditional dependence.

The proposed BMRF detected several influential biomarkers

and biomarker pairs in the JAK-STAT network. First, the node

MCL1 is clearly crucial in this network since it appears in four

edges (indicated with ‘*’) among the 15 in Figure 4C. This hub

node has been reported as one of the cell apoptosis inhibitors

associated with the progression of GMB and participates in the

signaling of the maintenance of neural stem cells (Fassl et al.,

2012; Murphy et al., 2014). Second, in the constructed network

by BMRF.P, the PTPN2, PTPN6, and PTPN11 in the Protein-

Tyrosine Phosphatase Non-Receptor (PTPN) family play critical

roles. They appear in six edges (indicated with ‘+’) among the

15 in Figure 4C. This is not surprising since the expression level

of the immunotherapy target PTP2 has been shown to associate

with the grade of glioma (Wang et al., 2018). Liu and others (Liu

et al., 2011) have suggested PTPN11 as a functional target for

treating glioblastomas in human and animal studies, and Cerami

et al. (2010) have identified PTPN11 as associated with an

oncogenic process in GBM patients. Members of the PTPN

family induce dephosphorylation of JAK, thereby regulating

JAK-STAT signaling (Xu and Qu, 2008; Jain et al., 2012;

Hammarén et al., 2019). Third, the top-ranking pair shows

the largest conditional dependence between IRF9 and STAT1.

This interaction was found to involve in type I interferon (IFN)

signaling and anti-viral immune response (Au-Yeung et al.,

2013). Fourth, BMRF.P identified the relationship between

MYC and MCL1, where the transcription factor c-Myc of

MYC was associated with the regulation the proliferation and

survival of glioblastoma stem cells (Wang et al., 2008; Ha et al.,

2015).

Other summary statistics regarding these 15 edges and all

69 edges are provided in the Supplementary Table S4;

Supplementary Figure S3, respectively; and other interactions

FIGURE 4
Gene regulatory network constructed by BMRF.P. (A) The ordered probabilities of the 99 edges are estimated by BMRF.P, and different colors
correspond to different thresholds. The first 69 are the edges with a probability greater than 0.5; (B) The estimated genetic network. The 15 thick lines
are edges with an estimated existence probability greater than 0.9; (C) The network structure containing only the 15 edges, where the width of the
edge corresponds to the magnitude of the existence probability; (D) Boxplots of the posterior samples of the strength coefficient
corresponding to each one of the 15 edges. The text above the boxplot represents the estimated existence probability. The ‘+’ indicates edges
involving genes in the PTPN family and ‘*’ involves MCL1.
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are summarized in the Supplementary Table S5. The findings of

BMRF.P are compared with those of alternative procedures in the

Supplementary Figures S4, S5. All edges identified by BMRF. P

overlap with those identified by other procedures. Similar to the

simulation studies, the edges identified by CLIME and BD_BMA

overlap the least with the other procedures. This demonstrates

again that the BMRF.P can provide more information than

previous algorithms.

4.2 Edges in EGFR network with RNA-Seq

The BMRF model was next applied to the RNA sequencing

gene expression of the 30 genes in the EGFR network. Figures

5A–C demonstrate the structure and relative strength of edges

among these gene nodes, when different thresholds for the

probability of existence are adopted. For instance, with the

0.5 threshold, 55 edges were identified, and with 0.90, 20 edges

were detected. Three genes, GAB1, EGFR, and SPRY2, are colored

differently to indicate that relatively EGFR depends more on the

other two, if the conditional dependence inside this network is

quantified and prioritized. Studies have shown that GAB1 is

involved in the cell proliferation and signaling process of

positive feedback activation to EGFR (Kapoor and DM

O’Rourke, 2010; Azuaje et al., 2015) and SPRY2 knockdown is

related to the negative prognosis and drug resistance of GBM

(Walsh et al., 2015; Park et al., 2018; Day et al., 2020).

Another interesting observation is about the genes GAB1 and

GAB2. These two are crucial in the constructed network, appearing in

five edges among 20 (Supplementary Figure S7). The probability of

connection between these genes is strong (>0.9). The GAB1 is

connected to EGFR in the lower left in Figure 5C, and GAB2

appears in the middle in Figure 5C. They apparently deserve more

attention when studying the activity of this network.

In addition, note in Figure 5B where both PTPN11 and CBL

have six neighbors and are displayed with larger circles,

indicating more connection with other gene nodes. When

examining the edges with an existence probability greater than

0.9 in Figure 5C, these two genes interact with GAB2, RALGDS,

and SOS2 (in the middle of Figure 5C). These genes have been

reported in the literature to associate with immune function and

GBM. The findings here are not just reproducible results but also

support that further investigation in the collective effect of these

genes may be warranted. The hub nodes identified here and by

other methods are consistent, as listed in Supplementary Table

S7. More details can be found in Supplementary Section S3.

5 Discussion

In addition to the binary decision of edge existence, the

proposed BMRF algorithm offers a probability measure of this

existence, and is able to quantify the relative strength of edges,

through the conditional autoregressive model and SSL prior. Its

novelty lies in the Bayesian inference of the relative strength of

the edges so that the conditional dependence can be prioritized.

Simulation studies have demonstrated that, for the scale-free

network, the performance of BMRF can be significantly

improved when prior information is incorporated. Even when

only the existence is of interest, the BMRF model can provide

performance comparable with existing methods. In the two

glioblastoma studies, the proposed algorithm highlights highly

dependent subsets in the network that are worth for further

investigation.

In contrast to other Bayesian network approaches, BMRF

focuses on inference of the relative strength of the conditional

dependence, while others are more interested in identifying

non-zero elements in the precision matrix (Huang, 2022). The

FIGURE 5
Gene regulatory network constructed by BMRF.P based on different thresholds. The width of edges is proportional to the existence probability
and node size in (B) and (C) is proportional to number of immediate neighbors. (A) These 55 edges are of estimated existence probability greater than
0.5; (B) These 41 edges are of estimated existence probability greater than 0.7; (C) The 20 edges are of estimated existence probability greater
than 0.9.
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proposed method provides a complimentary tool when more

interpretations of the relationship among genes is needed.

That is, this BMRF can be executed with other Bayesian

models, including ones that assign for the precision matrix

a prior distribution composed of a product of all probability

distributions of each element (Wang, 2012; Peterson et al.,

2013; Gan et al., 2019), so that the post-processing

computation can be saved. Another good choice is the

BAGUS algorithm proposed by Gan et al. (2019). It

provides a fast and accurate estimate of the graph structure,

including the MAP estimate of the precision matrix with EM

and the approximate inclusion probability of each edge. The

implementation of the frequentist perspective may increase

the scalability of BMRF. For example, these estimates may be

utilized as baseline information to determine which edges to

initially include for the inference of edge strength, or to tune

the hyper-parameter values in the prior distributions of βjk
and γjk. Incorporation of such information may reduce the

number of iterations required in the MCMC algorithm to save

computational burden. The choice of the hyperparameter

values τ0 and τ1 in the prior distribution does not change

the basic outcome. The posterior distributions of βjk
corresponding to different hyperparameters are very

similar, leading to the same conclusions based on the

posterior distributions. Similarly, the order of the relative

strength remains the same. In other words, the

prioritization is not affected by the hyperparameter values.

The magnitudes of the existence probability are linearly

correlated, though the value may differ slightly. These

observations are based on our limited experiments with the

GBM application. Further studies may be warranted.

The computation time for the BMRF can be as long as 30 min

per replication, especially under the current R package

R2OpenBUGS. This is slow and can hinder the use of the

proposed model. In contrast, the computation for the frequentist

methods discussed here and the BAGUS is much faster. This is a

reason why we did not consider a graph with more than 100 nodes

in simulation studies. This limitation also restricts the use of the

BMRFmodel to screen pairwise relationship among a large group of

genes. Further research in tailoring a fast computation algorithm is

worth investigating.

The proposed algorithm can be extended to integrative

network analysis. With a graphical model comprised of

biomarkers from different platforms, it is possible to reveal

the underlying complex biological structure among various

forms of molecules (Peng et al., 2010; Yin and Li, 2011; Ha

et al., 2021). In this case, adjustments in the CAR model would

be needed to account for the genetic variables at different

levels. However, this approach would be computationally

intensive when facing the enormous number of all

parameters combined.

Another generalization of the BMRF is to relax the

distributional assumption in the CAR model. The GGM for

the gene network assumes the MVN as the joint distribution,

and the conditional and marginal distribution are also

Gaussian. This assumption may not be valid generally,

particularly for gene expression data. Ho et al. (2022)

performed a systematic study to investigate the multivariate

normality of gene expression values. Several parametric and

nonparametric multivariate tests were considered and applied

on more than twenty sets of empirical data. It was concluded

that the normality assumption is not guaranteed. Classical

research has addressed non-Gaussian Markov random fields

(Besag, 1974), but these studies are not designed for sparse

neighborhood selection. One solution would be to combine

the non-paranormal distribution in Liu et al. (2009) or the

exponential family graphical model (Yang et al., 2015) with

BMRF for further investigation.

When comparing the relative strength estimated by BMRF

with the connecting lines in current pathway/network

databases, two issues should be noted. First, databases like

KEGG collect current knowledge of relationships, such as

interactions and reactions, between molecules, and the

resulting pathways/networks represent a collection of

research findings from multiple studies involving various

types of genetic markers. These studies are not necessarily

comparable. In other words, although KEGG can be a good

source to examine if the conditional dependence detected by

BMRF has been identified before, one should bear in mind that

the comparison may not be fair, since the data sets as well as

the genetic biomarkers can be very different. Second, since the

curation of pathways/networks is based on published

literature, the definition of their connecting lines differs

from the existence probability and the inclusion probability

considered in this study. Therefore, a validation study of the

findings here, especially for the two GBM studies, would need

to be carefully designed. Disease status, tissue sample source

and conditions, and genetic markers would all need to be

incorporated for consideration.
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