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During the process of drug discovery, exploring drug-protein interactions (DPIs)

is a key step. With the rapid development of biological data, computer-aided

methods are much faster than biological experiments. Deep learning methods

have become popular and aremainly used to extract the characteristics of drugs

and proteins for further DPIs prediction. Since the prediction of DPIs through

machine learning cannot fully extract effective features, in our work, we

propose a deep learning framework that uses variational autoencoders and

attention mechanisms; it utilizes convolutional neural networks (CNNs) to

obtain local features and attention mechanisms to obtain important

information about drugs and proteins, which is very important for predicting

DPIs. Compared with some machine learning methods on the C.elegans and

human datasets, our approach provides a better effect. On the BindingDB

dataset, its accuracy (ACC) and area under the curve (AUC) reach 0.862 and

0.913, respectively. To verify the robustness of the model, multiclass

classification tasks are performed on Davis and KIBA datasets, and the ACC

values reach 0.850 and 0.841, respectively, thus further demonstrating the

effectiveness of the model.
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Introduction

Finding gene-drug relationships is important not only for understanding a certain

mechanism of drug molecules, but also for developing treatments for patients. The gene-

drug relationship is many-to-many, which is much more complex than a gene-to-drug or

a drug-to-gene, and also explains the complex relationship between gene-drug. The gene-

drug relationship has similarities to the drug-protein relationship (Chen et al., 2019;

Huang et al., 2021).

In the prediction of RNA-binding proteins, limited by the huge cost of biological

experiments, it is difficult to fully understand the underlying mechanisms of alternative

splicing (AS) and related RNA-binding proteins (RBPS) in regulating the epithelial-

mesenchymal transition (EMT) process. This needs to be achieved by means of
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computational methods (Qiu et al., 2021b) proposed an inductive

matrix-based model to study the relationship between RBP and

AS during EMT. The main purpose of the model is to

compensate for missing and unknown RBP-AS relationships

(Qiu et al., 2021a) proposed a method based on weighted data

fusion with sparse matrix tri-factorization to conduct

experiments. The AS-RBP relationship is explored by

assigning different weights to the source data. Both methods

achieve good results. At the same time, this has parallels with the

drug-protein relationship. It achieves the desired effect by

looking for a drug to inhibit an binding site of a protein.

Drug-protein interactions (DPIs) exploration is a critical step

in the drug discovery process. With the discovery of new drugs,

the field of drug development continues to expand, and

awareness regarding the repositioning of existing drugs and

new interactions involving approved drugs is of increasing

concern (Oprea and Mestres, 2012). Based on biological

experiments, it usually takes 10–20 years and much money

(US$ 0.5–260 million) to develop a new drug (Avorn, 2015),

so it is important to explore the interactions between drugs and

proteins. In recent years, computer-aided methods have achieved

good results and contributed significantly to the prediction of

DPIs. The application of artificial intelligence in chemical

research can accelerate the development of high-precision

DPIs prediction methods.

In the past decade, the problem of predicting the interactions

between drugs and proteins has been solved using traditional

machine learning methods, which solve binary classification

problems (Yamanishi et al., 2010; Liu et al., 2016; Nascimento

et al., 2016; Keum andNam, 2017). Due to the rise and popularity

of deep learning, it has become a popular choice for solving DPIs

predictions (Unterthiner and Mayr, 2014; Tian et al., 2016) used

a deep neural network (DNN) to explore the interactions

between drugs and proteins instead of traditional machine

learning methods, which directed the subsequent research on

drug and protein interactions toward deep learning approaches,

such as convolutional neural networks (CNNs), recurrent neural

networks (RNNs) (Gao et al., 2018; Mayr et al., 2018) and stacked

autoencoders (Wang et al., 2018).

In general, DPIs approaches can be divided into three

categories: docking-based methods, machine learning-based

methods, and deep learning-based methods. Docking-based

methods require the best site and protein structure to be

found and combined, but such a technique usually time-

consuming, and many datasets lack three-dimensional protein

structures (Gschwend et al., 1996). Machine learning-based

methods (Faulon et al., 2008; Bleakley and Yamanishi, 2009;

Ballester and Mitchell, 2010) usually require manual features,

and the features passed to the model before modeling occurs

require manual participation, which demands considerable

feature extraction experience and expertise. Deep learning-

based methods have been applied to many fields in biology

(Min et al., 2016; Zeng et al., 2019; Zhang et al., 2019, 2021;

Wu et al., 2022b); DPIs prediction performance has been

improved through the framework structure and network

parameters of deep learning. For example, the DeepDTA

approach of (Öztürk et al., 2018) learns internal high-level

features by extracting the features of drugs and proteins as the

network inputs and then predicts the relationships between drugs

and proteins. The WideDTA method proposed by (Öztürk et al.,

2019) is similar to DeepDTA, and the network framework is

roughly unchanged; the main difference is that when inputting

features, WideDTA extracts the features of drug proteins from

multiple aspects as model inputs. Notably, a graph-based

network architecture called GraphDTA (Nguyen et al., 2019),

which treats drugs as a graph structure to predict DPIs, has also

been developed. A Novel Graph Neural Network for Predicting

Drug-Protein Interactions called BridgeDTA (Wu et al., 2022a),

which introduces a class of nodes named hyper-nodes, which

bridge different proteins/drugs to work as the protein-protein

and drug-drug associations. HOGMMNC is a higher order graph

matching with multiple network constraints model. It mainly

obtains the fixed structural relationship in multi-source data

through hypergraph matching, so as to identify the relationship

between genes and drugs, and improve the accuracy and

reliability of the identification relationship (Chen et al., 2019).

These deep learning methods all have three similarities. 1) They

encode drugs and proteins. 2) They extract the high-level features

of drugs and proteins through their network structures. 3) They

predict the features obtained in 2) through a fully connected (FC)

layer. The advantage of these methods is that the process is not

too cumbersome (it is simple). Furthermore, we exploit the

strengths of these network frameworks for the prediction

of DPIs.

A variational autoencoder (VAE) is a machine learning

model that can reconstruct a variable x based on a latent

feature Z. Unlike a simple autoencoder, it can learn the

distribution of latent variables and then sample from this

distribution to generate new samples. The model has been

shaped and used in various fields, such as image processing

(Walker et al., 2017; Liu et al., 2018) and text processing (Mayr

et al., 2018). We use this model to predict DPIs. Experimental

results show that better results are achieved on some datasets.

Our contributions are as follows.

1) A variational autoencoder is designed to provide a

probabilistic way of describing the latent representation of

drugs and proteins, denoted via mean and variance of the

hidden state distribution. Such generative way effectively

reduce the redundant information in the raw samples to

ease for leaning drug-protein interactions.

2) Discriminative local features on drugs and proteins are

extracted via deep CNN. A specially designed attention

mechanism is incorporated to focus on the key interactive

information on both drugs and proteins, thus obtaining

strong drug-to-drug and protein-to-protein relationships.
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3) Extensive experiments on C.elegans and Human dataset,

BindingDB dataset, Davis dataset and KIBA dataset.

Datasets demonstrate that the proposed method can

robustly identify the drug-protein interactions.

Methods

A VAE network to identify drug and protein
interactions

We input a set of drug molecules D and a protein sequence T,

and a VAE (Kingma andWelling, 2014) learns the distribution of

a multidimensional variable x based on an independent and

identically distributed latent variable (X � {xi}N1 , where N is the

number of samples). The framework of this strategy is shown in

Figure 1, where x(j)
i represents the jth feature of the ith sample.

First, a data point xi is input into the encoder. Through the

neural network, we obtain the parameters of the approximate

posterior distribution q∅(z|xi) obeyed by the hidden variable z.

The posterior distribution is a Gaussian distribution, and the

output of the encoder includes the parameters σ2i and μi of the

Gaussian distribution that z|xi obeys. With the parameters σ2i
and μi of the z|xi distribution, we sample one ϵi fromN (0, I) and
use the reparameterization trick to set zi � μi + σ i⨀ϵi where zi
represents the value of a similar sample xi and ⨀ represents the

elementwise multiplication operation. The decoder needs to fit

the likelihood distribution p∅(X|zi) and feed a zi to the decoder,
which returns the parameters of the distribution that X|zi obeys;
the likelihood also obeys a Gaussian distribution. After obtaining

the parameters of the distribution of |zi , we sample from the

distribution to generate a sample xi. In the last step, we do not

sample and directly regard the μ′i output by the model as the

sample xi generated by zi. Then, we can obtain the objective

function of the VAE, and we only need to maximize L.
L(pθ , q∅) � −DKL(q∅, p) + Eq∅[logpθ(X|z)]

−DKL(q∅, p)is the Kullback-Leibler (KL) divergence of the

two distributionsp and q and is also a regular term.

Eq∅[logpθ(X|z)] is often referred to as the reconstruction loss.

FIGURE 1
Structural diagram of the utilized VAE.

FIGURE 2
The graphical structure of the VAE model for DPIs prediction.
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With the theoretical support of the VAE, we apply it to the

prediction of DPIs. Here, xd and xt represent the drug and

protein vectors, respectively, and y represents the interaction

relationship or affinity value between drug and protein. We

assume that the hidden variables of xd and xt are zd and zt,

respectively. Our aim is to learn a model that predicts drug and

protein interactions.

The model diagram for applying variational autoencoding to

DPIs prediction is shown in Figure 2. The model has two

encoders, which are mainly used to generate latent variables

zd and zt for drug xd and protein xt, respectively. Three

important decoders are used to generate xd and xt from the

latent variables zd and zt and generate the drug-protein

relationship y. Finally, for each drug-protein pair, the

objective function of the VAE model is to maximize L′.
L′ � LDrugVAE + LPorteinVAE

� { −DKL(q∅d
, pd) + Eq∅d

[logpθd(Xd|zd)]}
+{ −DKL(q∅t , pt) + Eq∅t

[logpθt(Xt|zt)]}

Attention mechanism for feature
extraction

Attention mechanisms, as effective means of feature

screening and enhancement, have been widely used in

many fields of deep learning. A structural model based on

an attention mechanism can not only record the positional

relationships between pieces of information but also measure

the importance levels of different information features

according to the weight of the information. Dynamic

weight parameters are established by making relevant and

irrelevant choices for the information features to strengthen

the key information and weaken the useless information,

thereby improving the efficiency of deep learning

algorithms and improving some of the defects of

traditional deep learning techniques.

Utilizing an attention mechanism for the prediction of

DPIs can enable effective atomic feature extraction because

the structures of the molecular sequences of drugs and

proteins are very similar to the structures of natural

language sentences, and the context information of atoms

is very important for understanding molecular features

(Jastrzębski et al., 2018). In detail, we should pay attention

to the interaction information of each atom and its adjacent

atoms; each atom is also connected to the simplified

molecular-input line-entry system (SMILES (Weininger,

1988), which is a symbol for molecular structure encoding).

Information about the interactions of atoms that are farther

away in the sequence can also have an impact on the predicted

results. The molecular sequences of proteins are very long, and

the best way to extract features is to use an attention

mechanism.

Attention mechanisms are widely used in the natural

language processing (NLP) field, and they have also been

shown to be powerful for processing textual data. The core of

such a mechanism is an attention function (Vaswani et al., 2017).

The attention function can be described as mapping a query (Q)

and a set of key-value (K-V) pairs to an output. Among them, dot

product attention with Q, K and V is a widely used attention

approach. Let the dimensions of Q and K be dk and the

dimensionality of V be dv. Then, attention can be expressed

by the following formula.

FIGURE 3
The framework structure of the model.
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Attenton(Q,K, V) � softmax(QKT		
dk

√ )V
where Q ∈ Rn×dk , K ∈ Rm×dk and V ∈ Rm×dv . The attention

measures the similarity between the inner product of the

matrixQand V, which is nonlinearly transformed by a softmax

function with the matrix V. Here, dk prevents the forward

propagation of the network due to excessive data content.

The network structure of the model

The network structure of the model is shown in Figure 3. It

consists of three key parts: an encoder, a decoder and a prediction

module. Both the encoder and the decoder serve to predict the

interactions between drugs and proteins. Among them, the

overall structure extracts the features of drugs and proteins,

sends the extracted features into the attention block to focus

on the important parts, and finally sends them to the FC layer to

predict the DPIs. The feature extraction process for drugs is the

same as that for proteins. Before being fed into the encoder, drugs

and proteins are sequences of text strings, which need to be

converted into digital vectors. According to the existing character

dictionary, each character is converted into an integer type, and

then each sample is converted into an embedding matrix through

embedding. In our model, three GatedCNNs are included in the

coding layer, and a rectified linear unit (RELU) (Nair and

Hinton, 2010) activation function is present after each layer of

CNNs. The filters of the last two CNNs are the first CNNs, which

are filtered two times and three times. A max pooling layer is

appended after the third GatedCNN to compress the extracted

features.

In the decoders for drugs and proteins, the input source data

are reconstructed through deconvolutional networks (Zeiler

et al., 2010). Each decoder has an FC layer and three

deconvolution layers. The last deconvolution appends an FC

layer to convert the output into drug and target sequences with

the same size as that of the input.

In the DPIs prediction module, two FC layers are used to

represent the features of drugs and proteins. To further extract

the high-level features of drugs and proteins, a self-attention

mechanism is introduced after the FC layers, focusing on

important features in drug sequences or protein sequences

and ignoring unnecessary features. Then, the final extracted

high-level features are spliced and sent to a network

containing three FC layers. A ReLU activation function and a

dropout function are placed after the first two FC layers, and the

dropout function is mainly used to prevent the network from

overfitting. The final output can be used to predict DPIs.

The model parameters used in this experiment are shown in

Table 1. Among them, we select several values [16,32,64] for the

number of CNN filters in the encoder and decoder and find that

TABLE 1 Model parameters.

Parameter Value

Number of filters in the encoder and decoder 32

Filter length (drug molecules) 5

Filter length (protein sequences) 7

Number of epochs 300

Batch size 256

Learning rate 0.001, 0.0001

FIGURE 4
The frequency histograms of the affinities in the Davis and KIBA datasets. The horizontal axis denotes the affinity values of drugs and proteins,
and the vertical axis represents the numbers of affinity values in certain intervals.
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the effect of 32 filters was best and that the filter lengths of drugs

and proteins are both in [5,7,9,11]. We choose the best results,

and the final filter lengths of drugs and proteins are 5 and 7,

respectively.

Experiment

Datasets

To verify the effectiveness of the proposed model and

compare it with the base method, we conducted experiments

on the following datasets: C.elegans and Human datasets,

BindingDB dataset, Davis dataset and KIBA dataset.

C.elegans and human datasets
In the work of (Liu et al., 2015), the authors used a systematic

scanning framework, and their dataset contained a large number

of negative samples. They constructed two datasets, C.elegans

and human. Following the requirements of (Tsubaki et al., 2019),

we used a balanced dataset with an approximately 1:1 ratio of

positive and negative samples. The C.elegans dataset includes

1876 protein targets and 1767 drug molecules, and it contains

7786 affinity sample pairs, 3893 positive samples, and

3893 negative samples. The human dataset contains

6728 affinity pairs, the number of protein targets is 2001, and

the number of drug molecules is 2726.

BindingDB dataset
BindingDB is a public, web-accessible database of measured

binding affinities that focuses chiefly on the interactions of

proteins considered to be drug targets with small, drug-like

molecules. In this experiment, the method described in the

paper of (Gao et al., 2018) was used; the dataset contains

39,747 positive samples and 31,218 negative samples.

Davis
The Davis dataset contains affinity pairs measured by their

Kd value (kinase dissociation constant); it includes 68 drug

molecules and 442 proteins (Davis et al., 2011). The Kd value

can reflect the affinity between a drug and a protein. It is a bridge

for predicting affinity, and its affinity value range is [0.016,

10000]. The frequency distribution plot of affinity values for

the Davis dataset is shown in Figure 4.

KIBA
Measuring the relationships between the drugs and proteins

in the KIBA dataset is mainly achieved through the KIBA score

(Tang et al., 2014) combined the biological activities of different

sources of kinase inhibitors, such asKd,Ki and IC50, to calculate

KIBA affinity scores. We conducted experiments according to

this environment. Then, we found that the dataset contains

52498 drug molecules, 476 protein sequences, and

246088 KIBA scores and that the numerical range of the

KIBA score is [0, 17.2]. Values in this dataset with KIBA

scores that were less than 10 were removed, leaving 2111 drug

molecules and 229 proteins in the end. The frequency

distribution plot of the affinity values for the KIBA dataset is

shown in Figure 4.

Training details

The model was implemented based on Python 3.6 and

PyTorch 1.10.2. The program ran on a GTX1060 GPU with

8 GB of memory. The network parameter initialization process

was implemented by the xavier_normal_() function in the

library. During training, the network used the Adam

optimizer (Kingma and Ba, 2014) with a learning rate of

0.0001 for the Davis and KIBA datasets and a learning rate of

0.001 for the other datasets to adjust the network parameters. To

prevent overfitting, L2 regularization was added to the loss

function. Each batch contained 256 samples, and the samples

were randomly scrambled. Three hundred epochs were executed.

Finally, the model was trained by minimizing the cross-entropy

loss function.

L(y, ŷ) � −(ylogŷ + (1 − y)log(1 − ŷ)) + λ∑ ‖Θ‖2

TABLE 2 AUC, precision, recall, and F1 values obtained under different
methods.

Models AUC Precision Recall F1

BindingDB dataset

K-NN 0.776 0.762 0.791 0.776

RF 0.742 0.834 0.600 0.698

L2 0.737 0.784 0.646 0.709

SVM 0.805 0.770 0.858 0.811

BridgeDPI 0.960 0.883 0.903 0.893

Ours 0.913 0.888 0.822 0.854

C.elegans dataset

K-NN 0.858 0.801 0.827 0.814

RF 0.902 0.821 0.844 0.832

L2 0.892 0.890 0.877 0.883

SVM 0.894 0.785 0.818 0.801

BridgeDPI 0.996 0.980 0.970 0.975

Ours 0.925 0.927 0.897 0.912

Human dataset

K-NN 0.860 0.798 0.927 0.858

RF 0.940 0.861 0.897 0.879

L2 0.911 0.891 0.913 0.902

SVM 0.910 0.966 0.950 0.958

BridgeDPI 0.990 0.962 0.965 0.963

Ours 0.914 0.934 0.862 0.897

The best result was highlighted in bold, while the suboptimal is denoted by underline.
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where y is the true value, ŷis the predicted value, λis the

regularization coefficient, and Θ is the network parameter. On

the basis of the parameters in Table 1, we search the optimal value

of λ by grid searching scheme within range of [-5,+5]. Empirical

experiments show that setting the value ofλ being -3 yield the best

performances.

Results

First, we conducted experiments on the BindingDB dataset

extracted by Gao et al. According to the environment they set for

the dataset, we utilized the same division to ensure that the data in

the validation set did not appear in the training set, so that the

experiment was closer to the real-world situation. During the

training process, to prevent overfitting, we set the termination

criterion according to the ACC evaluation index of the validation

set. When the ACC of the validation set iterated for a certain

number of steps and did not increase, the program terminated. To

demonstrate the superiority of the model, we made a comparison

with k-nearest neighbors (K-NN), a random forest (RF), L2, a

support vector machine (SVM) and the BridgeDPI model (Wu

et al., 2022a). The machine learning results for these methods were

derived from the source paper on C.elegans and Human dataset

(Tsubaki et al., 2019). We conducted experiments on BindingDB

dataset. The table shows that on the BindingDB dataset, the AUC,

Precision, Recall, and F1 of the proposed model reached 0.913,

0.888, 0.822, and 0.854, respectively. Our model outperforms

traditional machine learning methods in AUC, Precision, and

F1. The unsupervised K-NNmethod yielded lower results than the

other models and methods, with AUCs and F1 scores of 0.858/

0.814 and 0.860/0.858 on the C.elegans and human datasets,

respectively. The effects of the RF, L2, and the SVM based on

supervised learning were better. The AUC on the C.elegans dataset

reached approximately 0.9, and the AUC on the human data

exceeded 0.9. Compared with traditional machine learning

methods, our model achieved the highest evaluation indicators

on the C.elegans dataset, and its AUC, precision, recall, and

F1 were 2.3%, 3.7%, 2.0%, and 2.9% higher than those of the

second-best approaches, respectively. At the same time, our

method performed slightly better on the human dataset. Since

models such as K-NN, the RF, L2, and the SVM cannot obtain

high-quality feature information, it is not easy for them to learn

complex nonlinear DPIs. However, deep learning has strong

feature extraction capabilities. Our model benefits from that.

The Table 2 shows that our model doesn’t perform as well as

BridgeDPI that extracts features from the biological perspective.

Our model is similar to nature language processing in extracting

featrues, and it’s indeed not as effective as BridgeDPI. However,

our model has some advantages: when dealing with drug features

and protein features, an attention mechanism is introduced to

realize the key sites of drug-protein binding, thereby ignoring

irrelevant site information and saving the screening time of drug-

protein interactions. This has contributed to experts to identify

drug-protein interactions.

To further demonstrate the feature extraction advantages of

deep models, we performed a multiclass prediction experiment

on the Davis and KIBA datasets, and the results are shown in

Table 3. The Davis and KIBA datasets possess continuous values,

and the pKd values of Davis and the scores of KIBA are

distributed as shown in Figure 4. We found their meansμ and

variances σ according to the relationship between the mean and

variance. We divided the data into five categories: [μ − σ, μ + σ],
[μ − 2σ, μ + 2σ], [μ − 3σ, μ + 3σ], [μ − 4σ, μ + 4σ], and other.
According to our model, the classification effect of the test was

relatively objective, and the ACC and AUC reached 0.850/

0.705 and 0.841/0.813 on the Davis and KIBA datasets,

respectively. AUC is the best on both Davis and KIBA

datasets. ACC is lower on Davis dataset due to uneven data

distribution and less data, which may affect our results. The

results show that the proposed model is robust.

Conclusion

In this work, we propose a model based on VAEs and

attention mechanisms to predict DPIs. The high-level features

of drugs and proteins are further extracted by a CNN and an

attention mechanism. Experiments show that our method

outperforms some base methods on the testing datasets and

illustrates the powerful ability of deep learning to extract features.

To further verify the robustness of the model, we perform a

multiclass prediction experiment on the Davis and KIBA

datasets. The final results of the experiment yield good metric

values.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://www.bindingdb.org/bind/index.

jsp, http://staff.cs.utu.fi/~aatapa/data/DrugTarget/, https://

wormbase.org//species/c_elegans#104–10.

TABLE 3 Multi-classification results obtained on the Davis and KIBA
datasets.

ACC AUC

Models Davis KIBA Davis KIBA

K-NN 0.854 0.777 0.581 0.574

RF 0.868 0.811 0.610 0.591

L2 0.752 0.699 0.582 0.556

SVM 0.862 0.801 0.541 0.543

Ours 0.850 0.841 0.705 0.813

The best result was highlighted in bold, while the suboptimal is denoted by underline.
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