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Accumulating evidence indicated that the interaction between lncRNA and

miRNA is crucial for gene regulation, which can regulate gene transcription,

further affecting the occurrence and development of many complex diseases.

Accurate identification of interactions between lncRNAs and miRNAs is helpful

for the diagnosis and therapeutics of complex diseases. However, the number

of known interactions of lncRNA with miRNA is still very limited, and identifying

their interactions through biological experiments is time-consuming and

expensive. There is an urgent need to develop more accurate and efficient

computational methods to infer lncRNA–miRNA interactions. In this work, we

developed a matrix completion approach based on structural perturbation to

infer lncRNA–miRNA interactions (SPCMLMI). Specifically, we first calculated

the similarities of lncRNA and miRNA, including the lncRNA expression profile

similarity, miRNA expression profile similarity, lncRNA sequence similarity, and

miRNA sequence similarity. Second, a bilayer network was constructed by

integrating the known interaction network, lncRNA similarity network, and

miRNA similarity network. Finally, a structural perturbation-based matrix

completion method was used to predict potential interactions of lncRNA

with miRNA. To evaluate the prediction performance of SPCMLMI, five-fold

cross validation and a series of comparison experiments were implemented.

SPCMLMI achieved AUCs of 0.8984 and 0.9891 on two different datasets, which

is superior to other compared methods. Case studies for lncRNA XIST and

miRNA hsa-mir-195–5-p further confirmed the effectiveness of our method in

inferring lncRNA–miRNA interactions. Furthermore, we found that the

structural consistency of the bilayer network was higher than that of other

related networks. The results suggest that SPCMLMI can be used as a useful tool

to predict interactions between lncRNAs and miRNAs.
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1 Introduction

Non-coding RNAs (ncRNAs) are a type of RNAs that do not

translate into proteins, and they were regarded transcriptional

byproducts for a long time (Adelman and Egan, 2017). Along

with the development of next-generation sequencing technology,

researchers have found that there are only about 2% of RNA-

encoding proteins in the whole human genome, while roughly up

to 98% are identified as ncRNAs (Yamamura et al., 2018).

However, ncRNA plays a crucial role in regulating various

biological processes, such as cell cycle regulation, cell

development, and tumor metastasis (Salmena et al., 2011). In

human transcript expression, the length of ncRNA ranges from

22 nucleotides (nts) to hundreds of kb. Long non-coding RNAs

(lncRNAs) and microRNAs (miRNAs), the two main types of

ncRNAs, have attracted increasing attention for their important

roles in regulating gene expression (Ambros, 2004; Bartel, 2004;

Persengiev et al., 2011). miRNA is an endogenous short ncRNA

molecule with a length of about 20–25 nts, which is usually

involved in the gene expression regulation in post-transcription

(Alvarez-Garcia and Miska, 2005; Zeng, 2006). Increasing

evidence suggests that miRNAs play critical roles in many

physiological and pathological processes including embryo

development, tissue differentiation, cell growth, tumorigenesis,

and metastasis (Liu et al., 2013; Fang et al., 2015; Sun et al., 2015).

On the other side, as a kind of ncRNA with a length of more than

200 nts, lncRNAs are also widely involved in various complex

biological processes such as chromatin modification, immune

response and cell differentiation, growth, and apoptosis (Li et al.,

2016a; Engreitz et al., 2016; Chen et al., 2018). More importantly,

studies have shown that the abnormal expression of both

lncRNAs and miRNAs is closely related to complex human

diseases such as lung cancer, liver cancer, and gastric cancer

(Huang et al., 2016; Pan et al., 2019). For example, the

overexpression of lncRNA HOTAIR is related to breast

cancer, colon cancer, and liver cancer; the expression of

miRNA miR-145 is reduced in prostate and colon cancers

(Takagi et al., 2009; Zaman et al., 2010). In recent years, with

the rapid development of gene sequencing technology, more and

more lncRNAs and miRNAs have been discovered, but only a

small number of them have been annotated with experimental

information.

A number of studies suggest that lncRNAs exert biological

function roles by interacting with proteins, RNAs, and DNAs

(Atianand and Fitzgerald, 2014). Such lncRNA–biomolecule

interactions are very important in regulating life activities. For

example, the interaction of lncRNA PVT1 with the

FOXM1 protein accelerates the development of gastric cancer

(Xu et al., 2017); the lncRNA loc285194 acts as a tumor

suppressor by interacting with the p53 gene (Liu et al., 2013).

In the past, the influence of lncRNA–miRNA interactions on the

occurrence and progression of human diseases has not attracted

enough attention. Recently, studies have demonstrated that

lncRNA can inhibit the expression of miRNA by exerting the

function of an endogenous miRNA sponge and can also act as a

decoy for miRNAs to inhibit the binding of miRNA to target gene

mRNA (Li et al., 2016b; Militello et al., 2017; Wang et al., 2021).

Similarly, miRNAs can target a large number of protein-coding

genes and lncRNAs (Paraskevopoulou and Hatzigeorgiou, 2016).

For example, in glioma, knocking down the expression of

lncRNA XIST can upregulate the expression of miRNA miR-

152, thereby inhibiting the proliferation, invasion, and migration

of cancer cells and promoting apoptosis (Yao et al., 2015). In

gastric cancer, the lncRNA ANRIL regulates cell proliferation by

inhibiting the expression of miRNA miR-99a and miR-499a

(Zhang et al., 2014). For this reason, the lncRNA ANRIL may

be used as a prognostic biomarker and new therapeutic target for

gastric cancer. Although the lncRNA–miRNA regulatory

network in lung cancer, colon cancer, and breast cancer has

been established (You et al., 2014), there are still a large number

of lncRNA–miRNA interaction regulatory networks that have

not been discovered. However, identifying the interactions of

lncRNAs with miRNAs through biological experiments is time-

consuming, labor-compressive, and costly. In order to

comprehend and deeply understand the role of

lncRNA–miRNA interactions in pathophysiology and discover

the potential diagnostic markers and therapeutic approaches for

some specific diseases, a reasonable and effective method is

urgently needed to infer the interactions of lncRNAs with

miRNAs.

In recent years, many computational approaches have been

introduced to identify lncRNA–biomolecule interactions, such as

random forest (RF) (Wang et al., 2018), support vector machine

(SVM) (Zheng et al., 2019), and non-negative matrix

factorization (NMF) (Wang et al., 2022). However, methods

for predicting lncRNA–miRNA interactions are still very

limited. Hu et al. (2018) developed a computational method

called INLMI that infers lncRNA–miRNA interactions using a

matrix completion technique based on the known interaction

network. Huang et al. (2018) developed a graph-based approach,

named EPLMI, to predict potential interactions between

lncRNAs and miRNAs. This method represents

lncRNA–miRNA interaction data as a bipartite graph and

uses the average of the independent prediction network based

on the similarity between lncRNAs and miRNAs to calculate the

final prediction network. Wong et al. (2020) constructed a

lncRNA–miRNA bipartite network and used linear neighbor

representation to infer the potential interactions between

lncRNAs and miRNAs (LNRLMI). Xu et al. (2021) developed

a structural perturbation method to predict potential

lncRNA–miRNA interactions, but this method only

considered the expression profile information on lncRNAs

and miRNAs when constructing the lncRNA similarity

network and miRNA similarity network. In addition,

nonnegative matrix factorization (NMF) is an efficient method

and has been successfully used for data representation (Lee and
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Seung, 1999). The purpose of NMF is to approximate a matrix by

the product of two low-rank nonnegative matrices. Pauca et al.

(2006) proposed a constrained nonnegative matrix factorization

(CNMF) method for data representation, which uses

regularization constraint terms in NMF to mine the intrinsic

geometry of the data space. Wang et al. (2020) proposed a graph

regularized nonnegative matrix factorization method for

inferring interactions of lncRNAs with miRNAs (GNMFLMI).

Most of the previous methods aimed to improve the accuracy of

prediction but ignored the range of lncRNA–miRNA interactions

that can be predicted.

In this paper, we proposed a novel computational model,

called SPCMLMI, to infer potential interactions of lncRNAs with

miRNAs based on matrix structural perturbation. More

specifically, we constructed a duplex network and randomly

selected partial observed links from a duplex network to

construct the perturbation set. Then, perturbing the remaining

links, a perturbed adjacency matrix can be obtained by first-order

approximation. Finally, we rank the unobserved links according

to the scores of the perturbed matrix. In principle, the miRNAs

with higher scores in each column are more likely to interact with

the corresponding lncRNA. The proposed method has the

following advances: 1) we built a bilayer network by

integrating the confirmed lncRNA–miRNA interaction

network, the lncRNA similarity network, and the miRNA

similarity network, which can fuse more effective information

to improve the prediction performance. 2) Considering that there

is no prior knowledge on network organization in the structural

consistency index, the structural consistency index was used to

evaluate the link predictability of the lncRNA–miRNA

interaction network. The results suggest that the consistency

of the bilayer network is superior to other related networks.

Under five-fold cross validation, SPCMLMI achieved AUC

values of 0.8984 and 0.9891 on two different datasets,

respectively, which outperformed other comparative methods.

In addition, compared to the correlation network, the bilayer

network also showed the best performance. The experimental

results suggest that SPCMLMI can effectively infer

lncRNA–miRNA interactions and provide valuable

information for biomedical research.

2 Materials and methods

2.1 Datasets

For investigating the potential interactions of lncRNAs with

miRNAs, we downloaded the lncRNASNP database from http://

bioinfo.life.hust.edu.cn/lncRNASNP as the baseline dataset

(Gong et al., 2015). In the lncRNASNP database, there are

8,091 laboratory study-verified records of known interactions

between lncRNAs and miRNAs which were collected from

108CLIP-Seq datasets. After deleting the invalid lncRNAs and

miRNAs and the duplicated records, we obtained 5,118 valid

lncRNA–miRNA interaction pairs used as the benchmark data in

our study, including 780 lncRNAs and 275 miRNAs. In order to

better describe the lncRNA–miRNA interactions, we constructed

the lncRNA–miRNA adjacency matrix LMm×n, where m and n

represent the number of lncRNAs andmiRNAs, respectively. The

element value LM(i, j) of the adjacency matrix is assigned 1 if

lncRNA li is related to miRNA mj; otherwise, it is 0.

2.2 Method overview

In this study, to infer the undiscovered interactions of

lncRNAs with miRNAs, we proposed a link prediction

approach called SPMCLMI, which achieved matrix completion

based on the structural perturbation of the bilayer network. The

overall process of SPMCLMI is given in Figure 1. First, we

calculated the expression similarity network using Pearson’s

correlation coefficient based on the expression profile of

lncRNAs and miRNAs, respectively. Considering that some

RNAs have no expression similarity, we calculated the second

type of similarity network for RNAs based on sequence

information. According to the aforementioned two

similarities, the integrated similarity network for lncRNAs and

miRNAs was constructed, respectively. Second, we constructed

the bilayer network A based on the lncRNA similarity network

SL, miRNA similarity network SM, and lncRNA–miRNA

interaction network LM. Finally, the scores of all unobserved

lncRNA–miRNA links were obtained by structural perturbation.

2.3 Construction of the lncRNA–miRNA
bilayer network

The lncRNA–miRNA bilayer network consists of three

networks, namely, the known lncRNA–miRNA interaction

network, lncRNA similarity network, and miRNA similarity

network.

In this work, for calculating the similarities among

RNAs, two different types of lncRNA/miRNA

information were collected to construct lncRNA and

miRNA similarity networks, including expression profiles

and sequence information on nucleotides. Based on the

hypothesis that functionally similar miRNAs/lncRNAs

tend to interact more with a cluster of lncRNAs/miRNAs

which share similar functions, Pearson’s correlation

coefficient (PCC) has been widely utilized to calculate the

similarity of ncRNAs (Wang et al., 2020). Here, we used

PCC to calculate the first kind of similarity based on the

expression profiles of lncRNAs and miRNAs. For each

lncRNA, the expression profiles can be collected from

NONCODE (Bu et al., 2012), while the expression

profiles of each miRNA can be obtained from the
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microRNA.org database (Betel et al., 2008). Therefore, given

two expression profiles of lncRNA li and lncRNA lj
(Xl � {xl1, xl2,/, xlt} and Zl � {zl1, zl2,/, zlt}), the

similarity score is defined as follows:

PS L(li, lj) �
∣∣∣∣∣∣∣∣∑h

i�1(xli − �Xl)(zli − �Zl)
∣∣∣∣∣∣∣∣������������∑t

i�1(xli − �Xl)2
√ ������������∑t

i�1(zli − �Zl)2
√ (1)

where Xl and Zl represent the average value of Xl and Zl,

respectively. h is the number of attributes of the expression

profile. In general, a larger PS L(li, lj) represents a more

similar expression between lncRNAs li and lj. Similarly, the

expression similarity PS M of each pair of miRNAs can be

also calculated.

The second type of RNA similarity was measured based on

the sequence information on nucleotides. The sequence

information on lncRNAs and miRNAs was obtained from the

LNCipedia database (Volders et al., 2013) and miRBase database

(Kozomara and Griffiths-Jones, 2014), respectively. Given the

sequence information on lncRNAs, the sequence similarity

QS L(li, lj) between lncRNA li and lncRNA lj can be

calculated using the Needleman–Wunsch pairwise sequence

alignment (Cock et al., 2009). Considering that a few

lncRNAs and miRNAs have no corresponding expression

profiles, we integrated two different types of similarity

networks so as to complement the missing similarity

information. Specifically, the average values of the expression

profile similarity and sequence similarity were used to denote the

comprehensive similarity of lncRNAs and miRNAs. The final

lncRNA similarity was calculated as follows:

SL(li, lj) � PS L(li, lj) + QS L(li, lj)
2

(2)

By applying the same method for miRNAs, the final

similarity of miRNAmi andmiRNAmj was calculated as follows:

SM(mi,mj) � PS M(mi,mj) + QS M(mi,mj)
2

(3)

Finally, by integrating the lncRNA similarity network SL,

miRNA similarity network SM, and the lncRNA–miRNA

interaction network LM, we constructed a lncRNA–miRNA

bilayer network and denoted it by the matrix A ∈ RN×N as

follows:

A � [ SL LM
LMT SM

] (4)

The sizes of SL, SM, and LM are m × m, n × n, and

m × n (m � 780, n � 275), respectively. N is the total number

of lncRNAs and miRNAs.

2.4 Structural consistency index

In 2015, Lü et al. (2015) developed a new approach named

structural consistency for quantifying the link predictability of

complex networks. This approach mainly considers the

FIGURE 1
Flowchart of the prediction process of SPCMLMI.
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consistency of the structural features of existing networks before

and after randomly removing a small set of associations. In this

study, we used structural consistency to evaluate the

lncRNA–miRNA bilayer network A. The weights of the

bilayer network are LM values, SL values, and SM values,

respectively. We used a graph G (T, E, and W) to represent

the weighted bilayer network A, where T denotes the set of nodes

consisting of lncRNA and miRNA nodes, E denotes the set of

edges, and W denotes the weights of each edge. We randomly

select partial edges from the bilayer network to construct a

perturbation set Ep, and the remaining edges are represented

as Er. The perturbation set Ep and the remaining of the edge set

Er are represented as the matrices Ap and Ar, respectively. In

fact, the matrices of A � Ap+Ar, Ap, and Ar are real symmetric.

Therefore, we can diagonalize the matrix Ar as follows:

Ar � ∑N

k�1λkxkx
T
k , (5)

where λk denotes the eigenvalue of Ar and xk denotes the

corresponding orthogonal and normalized eigenvector. Based

on the first-order approximation principle that keeps the

eigenvectors unchanged, Ep is used as a perturbation of the

network Ar to obtain a perturbed matrix. The eigenvalues of the

matrix may be degenerate or non-degenerate. Therefore, we

analyzed the cases with and without repeated eigenvalues

separately. The first case is that there are no repeated

eigenvalues. After perturbation, the eigenvalue and the

corresponding eigenvector change from λk and xk to λk + Δλk
and xk + Δxk, respectively. According to the definition of

eigenfunction, we obtain the following equation:

(Ar + Ap)( xk + Δxk) � (λk + Δλk) (xk + Δxk). (6)
Here, left-multiplying xT

k for Eqn. 6 and ignoring the second-

order terms xT
kA

pΔxk and ΔλkxTkΔxk, the increment of the

eigenvalue can be expressed as follows:

Δλk ≈
xT
kA

pxk

xTkxk
. (7)

The remaining eigenvectors are unchanged, the eigenvalue λk
of Ar in Eqn. 5 is replaced by the perturbed eigenvalue λk + Δλk,
and we can obtain the perturbed matrix as follows:

~A � ∑N

k�1( λk + Δλk)xkx
T
k , (8)

where ~A can be seen as a linear approximation of the network A.

The second case is that the adjacency matrix has repeated

eigenvalues. Here, we use λki to represent the eigenvalues of Ar,

the index k is the kth eigenvalue, and the index i is M-related

eigenvectors corresponding to the same eigenvalue. It is worth

noting that for the eigenvectors corresponding to the same

eigenvalue, their linear combination is still the eigenvector of

the corresponding matrix. Studies have confirmed that repeated

eigenvalues are associated with the symmetric graphs and their

automorphisms in networks. If perturbing the network Ar, the

nodes’ symmetry will be improved, so the degenerate eigenvalues

can be converted into non-degenerate eigenvalues by perturbing

the network. Therefore, we can use the non-degenerate

eigenvalue case to modify this case. Given the eigenvectors
~xki � ∑M

j�1βkjxkj, the eigenfunction can be formularized as

follows:

(Ar + Ap)~xki � (λki + Δ~λki) ~xki (9)

giving us

Δ~λki∑M

j�1βkjxkj � ∑M

j�1βkjA
pxkj. (10)

Thereafter, left multiplying xT
kp in Eqn. 10 (p � 1, 2,//,M),

Δ~λkiβkp � ∑M

j�1βkjx
T
kqA

pxkj. (11)

The aforementioned Eqn. 11 can be written in the matrix

form as follows:

HBk � Δ~λkiBk, (12)

where Bk is the column vector of βkj,H is anM × Mmatrix, and

Hqj � xT
kqA

pxkj. Finally, Δ~λki and Bk can be obtained based on

the eigenfunction Eq. 12, and the perturbed matrix is calculated

by replacing Δλk and xk with Δ~λk and ~xk in Eq. 8, respectively. In

other words, we transformed the case where the adjacency matrix

has degenerate eigenvalues into the case with non-degenerate

eigenvalues.

The eigenvectors of a matrix can be used to measure the

network structure. In general, if the eigenvectors of the perturbed

matrix ~A and the original adjacency matrix A are almost the

same, it means that the perturbation set does not sharply change

the network structure of the matrix. If so, the network has high

structural consistency. Therefore, given a network A, we

perturbed Ar by Ep to calculate the perturbed matrix ~A based

on Eq. 8. In order to measure the structural consistency, all of the

edges in A − Er and the unobserved edges were sorted in

descending order based on the values of the perturbed matrix
~A. El denotes the top-L scores in ~A, and l denotes the number of

edges in the perturbation set Ep. Structural consistency δ is

defined as follows:

δ �
∣∣∣∣El ∩ Ep

∣∣∣∣
l

(13)

where |El ∩ Ep| denotes the number of shared edges between El

and Ep. For example, we removed the edges (1,6), (2,7), (2,9),

(3,8), and (4,12) to construct a perturbation set Ep, ( i.e., l � 5).

After perturbation, the top-L edges in El were (1,6), (2,9), (4,7),

(4,8), and (4,12). Thus, the structural consistency

is δ � 3/5 � 0.6.

In this work, the structural consistency of four related

networks was calculated, including the lncRNA–miRNA

interaction network LM, LM + SL, LM + SM, and
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lncRNA–miRNA bilayer network A. During perturbation, we

randomly selected 10% of the total edges E to construct the

perturbation set. As shown in Table 1, the lncRNA–miRNA

bilayer network A achieved the highest structural consistency,

suggesting that the inclusion of more information in the network

can improve the structural consistency. Moreover, the structural

consistency δ of the LM + SL network is higher than that of the

LM + SM network, which shows that there is more helpful

information on LM + SL than LM + SM. Therefore, we can

improve the predictability by effectively integrating

information from different sources.

3 Results

3.1 Evaluation metrics

To systematically investigate the performance of SPCMLMI,

we implemented the five-fold cross validation experiments on the

lncRNASNP dataset and compared it with other methods. In the

framework of five-fold cross validation, the observed

lncRNA–miRNA interaction pairs were randomly divided into

five equally sized subsets. For these subsets, each subset was taken

in turns as the test set for validating the model, while the rest of

the four subsets served as the training set. More specifically, for

the lncRNA–miRNA bilayer network A, we infer potential

interactions between lncRNA and miRNA by using structural

perturbation. The originally known lncRNA–miRNA

interactions were partitioned into five groups. One of them

was used as the probe sample and the remaining other groups

together with SL and SM composed the training set. Then, a

fraction of links was removed from the training set to be used as

the perturbation set. Finally, we can obtain the perturbed matrix
~A by Eqn. 8. Moreover, to reduce the bias caused by perturbation

set selection, the final predicted matrix ~A was calculated by

averaging t independent perturbations.

The receiver operating characteristic (ROC) curve is an

important metric for studying the generalization performance

of a learner. We can plot the ROC curve by setting different

thresholds for a false positive rate (FPR) and true positive rate

(TPR). The area under the ROC curve (AUC) is widely used to

estimate the performance of models, which follows the principle

of the larger the better. If AUC = 0.5 represents random

performance, AUC = 1 represents perfect performance. The

FPR and TPR are calculated as follows:

FPR � FP

TN + FP
(14)

TPR � TP

TP + FN
(15)

Furthermore, to measure the performance of the proposed

model from multiple perspectives, a range of evaluation

indicators called specificity (Spe.), precision (Pre.), sensitivity

(Sen.), accuracy (Acc.), and F1-score are defined as follows:

Specificity � TN

TN + FP
(16)

Precision � TP

TP + FP
(17)

Sensitivity � TP

TP + FN
(18)

Accuracy � TP + TN

TP + TN + FP + FN
(19)

F1 − Score � 2*Pre.*Sen.
Pre. + Sen.

(20)

where TP and TN are the number of true positive and true

negative samples, respectively, and FP and FN are the number of

false positive and false negative samples, respectively.

TABLE 1 Structural consistency of four related networks on the lncRNASNP dataset.

Network LM LM + SM LM + SL Bilayer network (A)

Structural consistency 0.2732 ± 0.0079 0.4274 ± 0.0054 0.5247 ± 0.0008 0.5617 ± 0.0008

FIGURE 2
AUC values versus parameter t.
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Here, the parameter t denotes the number of perturbations.

We investigate how the parameter t ∈ {2, 4, 6, . . . . . . , 18, 20}
influenced the performance of the bilayer network constructed

in Section 2.3. The effect of the number of perturbations t on the

prediction performance is shown in Figure 2. Each point denotes

the average of the AUC value under five-fold cross validation.

The performance is optimal when t � 16. It is worth noting that

all parameters in the compared methods are default.

3.2 Prediction performance of a structural
perturbation-based matrix completion
method to predict lncRNA–miRNA
interactions

In this work, we compared SPMCLMI with some previous

studies, including INLMI (Hu et al., 2018), EPLMI (Huang et al.,

2018), KATZ (Chen et al., 2017), LMF (Koren, 2008), NMF (Lee and

Seung, 1999), CNMF (Pauca et al., 2006), and GNMFLMI (Wang

et al., 2020). The KATZ measure, as an effective network-based link

prediction algorithm, has been widely used in bioinformatics. The

latent factor model (LFM) is a recommendation system algorithm,

which aims to find the relationshipmatrix between lncRNA/miRNA

and the latent factor and then takes the product of the

aforementioned two matrices as the score matrix for the

interaction between lncRNAs and miRNAs. As shown in

Figure 3 and Table 2, we use the AUC as an evaluation indicator

of model performance. The SPMCLMI model achieved the best

performance among eight compared methods on the lncRNASNP

dataset. Specifically, the average AUC values of SPMCLMI, INLMI,

EPLMI, LMF, KATZ, NMF, CNMF, and GNMFLMI were 0.8984,

0.8517, 0.8402, 0.8257, 0.7435, 0.8316, 0.8535, and 0.8894,

respectively. The AUC values of SPMCLMI were 4.67%, 5.82%,

7.27%, 15.49%, 6.68%, 4.49%, and 0.9% higher than those of the

aforementioned seven computational approaches, respectively. The

experimental results demonstrated that SPMCLMI is an efficient

method in inferring large-scale lncRNA–miRNA interactions.

In addition, we calculated the values of specificity, precision,

sensitivity, accuracy, and F1-score under five-fold cross-validation of

SPCMLMI on the lncRNASNP dataset. As shown in Table 3, the

average Acc. of SPCMLMI was 84.33%, and the Acc. under the five-

fold cross-validation experiment was 84.36%, 85.45%, 84.38%,

84.03%, and 83.45%, respectively, while the standard deviation is

only 0.73%. In terms of indices such as Spe., Pre., Sen., and F1-score,

the proposedmethod obtained average values of 92.34%, 90.94%, 76.

33%, and 82.97%, and their standard deviation was 1.90%, 1.90%, 2.

10%, and 0.91%, respectively. These results proved that the proposed

method is very suitable for predicting lncRNA–miRNA interactions.

In general, the predicted results obtained from the top-ranked

are more convincing than others. In other words, in the predicted

matrix, larger values suggest that the lncRNAs are more likely to

interact with the corresponding miRNAs. Here, all verified

lncRNA–miRNA interactions were used as the training sample,

and the number of correctly recovered known interactions was

used to judge the effectiveness of the model. Usually, the model is

considered more effective if more true interactions are retrieved

from the top-ranked parts. The original lncRNA–miRNA

interaction adjacency matrix and the result matrix are shown in

Figure 4. From Figure 4, we can visually observe that our proposed

model successfully retrieved the vast majority of interactions from

all the 5,118 known interactions, suggesting that SPCMLMI is an

effective approach in retrieving known lncRNA–miRNA

interactions with a lower false positive rate.

3.3 Comparison with the other three
related networks

To further investigate the impact of various networks’

information on prediction performance of SPCMLMI, we

compared the performance of four related networks including

FIGURE 3
Performance results of SPCMLMI using the bilayer network.

TABLE 2 Average AUC values achieved among different methods under five-fold cross validation on the lncRNASNP dataset.

Method SPCMLMI INLMI EPLMI KATZ LMF NMF CNMF GNMFLMI

AUC 0.8984 0.8517 0.8402 0.7435 0.8257 0.8316 0.8535 0.8894
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the bilayer network A, LM + SL, LM + SM, and LM in inferring

interactions between lncRNAs and miRNAs. In Section 2.4, we

calculated the structural consistency of the aforementioned four

networks. Compared with the other three networks, the bilayer

network A obtained the highest structural consistency. Table 4

shows the AUC values of four related networks under the five-

fold cross-validation experiment. It is obvious from Table 4 that

the bilayer network A achieved the best performance among the

four cases. The AUC values of the bilayer network A, LM + SL

network, LM + SM network, and LM network were 0.8984,

0.8468, 0.8315, and 0.8209, respectively. The experimental

results show that the performance and structural consistency

of these related networks tend to be consistent. In addition, the

AUC values of the bilayer network A were 5.16%, 6.69%, and

7.75% higher than those of the other three networks, suggesting

adding similarity networks SL and SM can effectively improve the

prediction performance of lncRNA–miRNA interactions.

3.4 Experiments on two different datasets

Because the methods of NMF, CNMF, GNMFLMI, and

SPCMLMI all belong to the matrix completion models, it is

representative to put them together for comparison. In order to

TABLE 3 Sep., Sen., Pre., Acc., and F1-score values achieved by SPCMLMI on the lncRNASNP dataset.

Fold Sep. (%) Sen. (%) Pre. (%) Acc. (%) F1-score (%) AUC (%)

1st 93.75 75.00 92.31 84.36 82.76 90.36

2nd 92.19 78.71 90.97 85.45 84.40 90.29

3rd 91.21 77.54 89.82 84.38 83.23 90.41

4th 94.63 73.44 93.18 84.03 82.14 88.90

5th 89.92 76.95 88.44 83.45 82.30 89.25

Average 92.34 ± 1.90 76.33 ± 2.10 90.94 ± 1.90 84.33 ± 0.73 82.97 ± 0.91 89.84 ± 0.71

FIGURE 4
Original lncRNA–miRNA interaction adjacency matrix (left) and the result matrix (right).

TABLE 4 AUC values of four related networks by using SPCMLMI on the lncRNASNP dataset.

Network Five-fold cross validation Average (std)

1st 2nd 3rd 4th 5th

LM 0.8361 0.8124 0.8201 0.8103 0.8257 0.8209 (0.0105)

LM + SM 0.8458 0.8312 0.8401 0.8228 0.8175 0.8315 (0.0117)

LM + SL 0.8433 0.8568 0.8474 0.8383 0.8480 0.8468 (0.0068)

Bilayer network (A) 0.9036 0.9029 0.9041 0.8890 0.8925 0.8984 (0.0071)
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ensure that the prediction results aremore convincing, we compared

SPCMLMI with NMF, CNMF, and GNMFLMI under five-fold

cross-validation on two different datasets (lncRNASNP dataset and

lncRNASNP2 dataset), respectively. The lncRNASNP2 dataset was

downloaded from http://bioinfo.life.hust.edu.cn/lncRNASNP (the

January 2018 version) (Ya-Ru et al., 2018). After removing the

duplicated entries, 8,634 experimentally confirmed

lncRNA–miRNA interactions were obtained, including

262 miRNAs and 468 lncRNAs. As shown in Table 5, the AUC

values of NMF, CNMF, GNMFLMI, and SPCMLMI on the

lncRNASNP2 dataset were 0.9344, 0.9510, 0.9769, and 0.9891,

respectively. We can see that the proposed method achieved the

best performance. At the same time, the performance of our

proposed method on the lncRNASNP dataset was also the best.

We can see from Table 2 that the average AUC values of NMF,

CNMF, GNMFLMI, and SPCMLMI on the lncRNASNP dataset

were 0.8316, 0.8535, 8894, and 0.8984, respectively. The results

further demonstrated that the method of SPCMLMI is effective and

robust in predicting potential lncRNA–miRNA interactions.

3.5 Case studies

In this section, case studies were performed on the

lncRNASNP2 dataset to further validate the capability of

SPCMLMI to infer novel lncRNA–miRNA interactions. In the

experiment, we removed the interactions of a specific miRNA or

the interactions of a specific lncRNA from the dataset and used the

SPCMLMI method to predict lncRNAs interacting with “the

specific miRNA” and miRNAs interacting with “the specific

lncRNA.” We selected the lncRNA XIST (NONHSAT137542.2)

and miRNA hsa-miR-195–5p as candidate prediction objects,

respectively. The lncRNA XIST is closely related to non-small

cell lung cancer and can promote cancer cell proliferation,

invasion, and metastasis (Liu et al., 2019). The miRNA hsa-

miR-195–5p has been proven to be a critical regulator in the

progression of prostate cancer, which inhibits cell proliferation by

downregulating proline-rich protein 11 expression (Cai et al.,

2018). For the lncRNA XIST, all candidate miRNAs were

sorted in descending order according to the predicted

interaction scores after perturbing. The predicted top

10 candidate miRNAs interacting with the lncRNA XIST are

shown in Table 6. We can see that seven out of them have

been confirmed by biochemical experiments to be searched in

starBase v2.0 and lncRNASNP2 databases. Similarly, for the

miRNA hsa-miR-195–5p, we ranked all candidate lncRNAs

according to their predicted scores in the perturbed matrix. As

shown in Table 7, the top 10 candidate lncRNAs related to hsa-

mir-195–5p were verified by biochemical experiments to be

searched in starBase v2.0 and lncRNASNP2 databases. The

aforementioned results further demonstrated the effectiveness of

SPCMLMI in predicting novel interactions of miRNA with

lncRNA.

TABLE 5 AUC values of SPCMLMI and other comparedmethods under five-fold cross-validation on the lncRNASNP dataset and lncRNASNP2 dataset.

Method AUC values on lncRNASNP2 AUC values on lncRNASNP

NMF 0.9344 ± 0.0052 0.8316 ± 0.0080

CNMF 0.9510 ± 0.0054 0.8535 ± 0.0054

GNMFLMI 0.9769 ± 0.0022 0.8894 ± 0.0056

SPCMLMI 0.9891 ± 0.0020 0.8984 ± 0.0071

TABLE 6 Top 10 candidate miRNAs for lncRNA XIST using SPCMLMI.

Rank MiRNA Confirmed?

1 hsa-mir-187–3p NO

2 hsa-mir-411–5p NO

3 hsa-mir-485–5p YES

4 hsa-mir-653–5p YES

5 hsa-mir-186–5p YES

6 hsa-mir-544a YES

7 hsa-mir-495–3p YES

8 hsa-mir-137 YES

9 hsa-mir-128–3p NO

10 hsa-mir-132–3p YES

TABLE 7 Top 10 candidate lncRNAs for miRNA hsa-mir-195–5p using
SPCMLMI.

Rank LncRNA Confirmed?

1 nonhsat055673.2 YES

2 nonhsat081836.2 YES

3 nonhsat039802.2 YES

4 nonhsat119666.2 NO

5 nonhsat117948.2 YES

6 nonhsat055703.2 YES

7 nonhsat081839.2 YES

8 nonhsat039834.2 NO

9 nonhsat117289.2 YES

10 nonhsat017523.2 NO
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4 Discussion

As key molecules in the competing endogenous RNA (ceRNA)

mechanism, lncRNAs and miRNAs play critical roles in gene

regulation, and exploring their interactions shows a variety of

biological functions. In this study, we developed a computational

approach called SPCMLMI, which uses structural perturbation for

matrix completion to infer lncRNA–miRNA interactions. We first

make full use of the expression profiles and sequence information on

lncRNAs and miRNAs to calculate their respective similarities. Then,

according to the lncRNA similarity network, the miRNA similarity

network, and the lncRNA–miRNA interaction network, we

constructed the lncRNA–miRNA bilayer symmetrical network.

Structural consistency was utilized to measure the link

predictability of this network. The results suggested that the

lncRNA–miRNA bilayer network achieved the best link

predictability. Finally, we used the structural perturbation approach

to perturb the bilayer network to recover the unknown links in the

lncRNA–miRNA interaction network (i.e., to achieve the

lncRNA–miRNA interaction adjacency matrix completion).

The performance of our method was compared with other

competing methods on two different datasets. The experimental

results demonstrated that SPCMLMI is powerful in predicting

lncRNA–miRNA interactions. Although the results show that

SPCMLMI is reliable and effective, there are some limitations.

SPCMLMI only utilized two different miRNA/lncRNA-related

pieces of information to construct the miRNA/lncRNA similarity

network; we hope that more different miRNA/lncRNA-related

information will be utilized to construct their similarity network in

the future. Moreover, our method relies on the known

lncRNA–miRNA interaction network. We look forward to building

amore complete lncRNA–miRNA interaction network to improve the

prediction performance by further studying lncRNAs and miRNAs.
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