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Aging is a complicated process characterized by progressive and extensive

changes in physiological homeostasis at the organismal, tissue, and cellular

levels. In modern society, age estimation is essential in a large variety of legal

rights and duties. Accumulating evidence suggests roles for microRNAs

(miRNAs) and circular RNAs (circRNAs) in regulating numerous processes

during aging. Here, we performed circRNA sequencing in two age groups

and analyzed microarray data of 171 healthy subjects (17–104 years old)

downloaded from Gene Expression Omnibus (GEO) and ArrayExpress

databases with integrated bioinformatics methods. A total of 1,403 circular

RNAs were differentially expressed between young and old groups, and

141 circular RNAs were expressed exclusively in elderly samples while

10 circular RNAs were expressed only in young subjects. Based on their

expression pattern in these two groups, the circular RNAs were categorized

into three classes: age-related expression between young and old, age-limited

expression-young only, and age-limited expression-old only. Top five

expressed circular RNAs among three classes and a total of 18 differentially

expressed microRNAs screened from online databases were selected to

validate using RT-qPCR tests. An independent set of 200 blood samples

(20–80 years old) was used to develop age prediction models based on

15 age-related noncoding RNAs (11 microRNAs and 4 circular RNAs).

Different machine learning algorithms for age prediction were applied,

including regression tree, bagging, support vector regression (SVR), random

forest regression (RFR), and XGBoost. Among them, random forest regression

model performed best in both training set (mean absolute error = 3.68 years, r =

0.96) and testing set (MAE = 6.840 years, r = 0.77). Models using one single type

of predictors, circular RNAs-only or microRNAs-only, result in bigger errors.

Smaller prediction errors were shown in males than females when constructing

models according to different-sex separately. Putative microRNA targets

(430 genes) were enriched in the cellular senescence pathway and cell

homeostasis and cell differentiation regulation, indirectly indicating that the

microRNAs screened in our study were correlated with development and aging.

This study demonstrates that the noncoding RNA aging clock has potential in
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predicting chronological age and will be an available biological marker in

routine forensic investigation to predict the age of biological samples.
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1 Introduction

Forensic age estimation in the identification of unknown

deceased and unknown donors of a trace can provide valuable

clues for the police and investigators to narrow down the

investigation scope and clear the cognizance of potential

criminal suspects. Many conventional morphological methods

such as measuring bones (Scendoni et al., 2020) or teeth (Koh

et al., 2017) have been expanded to various new strategies based

on the use of age-related molecular changes such as analyzing the

amino acid racemization of teeth (Matteussi et al., 2022) and

other tissue specimens such as skin and cartilage tissues

(Tiplamaz et al., 2018). However, these methods have

limitations in cases where a skeleton is not present. It is

desirable to use molecular methods that allow retrieving a

donor’s age information from various human biological

samples including body fluids such as blood, which are

amongst the most important biological evidence recovered

from crime scenes (Zubakov et al., 2016).

To date, numerous studies have investigated the ability of

molecular indicators in blood to predict chronological age in

forensic examinations, including telomere shortening

(Vaiserman and Krasnienkov, 2020), mitochondrial DNA

deletion(Zapico and Ubelaker, 2016), signal-joint T-cell

receptor excision circle (sjTRECs) (Yamanoi et al., 2018),

and others. The first DNA methylation (DNAm) epigenetic

aging clock was developed by Hannum in 2013 (Hannum et al.,

2013). For a long time, DNAm became a “black spot” for

forensic scientists (Naue, et al., 2017). DNAm, which has

emerged as a most promising method for predicting age in

forensics with an uncertainty mean absolute deviation of about

3–5 years in the predicted age, provides high accuracy but has

several limitations such as requiring relatively large amounts of

DNA and complicated bioinformatics analysis (Park et al.,

2016). The quantity and quality of DNA in postmortem

cases and traces in crime scene investigations are often

restricted (Koop et al., 2021). Age estimation in these

circumstances is confined, which pushes researchers to

search for novel tools to aid in forensic practice as a

supplemental method. Recently, some potential candidate

biomarkers for age estimation have come into play.

Accumulating evidence suggests roles for microRNAs

(miRNAs) and circular RNAs (circRNAs) in regulating a

large variety of processes during aging. These non-coding

RNAs (ncRNAs) generally act as post-transcriptional

regulators of gene expression. Specifically, miRNAs either

suppress translation or degrade the targeted mRNA, or both,

by binding to miRNA-recognition elements (MREs) in target

transcripts (Victoria et al., 2017). While circRNAs regulate gene

expression, via interaction with miRNAs and RNA binding

proteins as molecular sponges (Hansen et al., 2013; Memczak

et al., 2013).

MiRNAs are a class of small ncRNAs, short and single-

stranded, typically 18–22 nt in length with post-transcriptionally

regulatory functions. Lin-4 was the first miRNA discovered by

Lee et al., in 1993 with the finding of its functional ability to

regulate protein production (Lee et al., 1993). Whereas the first

forensic application of miRNAs was in 2009. Hanson et al.

proposed miRNAs as potential biomarkers for forensic body

fluid identification (Hanson et al., 2009). Numerous

experimental data demonstrated that miRNAs involve in the

modulation of physiological and pathophysiological aging, for

instance, Zhang et al. (Zhang et al., 2015) identified significantly

down-regulated age-dependent miRNAs in serum miRNA

profiles from adults (40–70 years old), such as miR-29b, miR-

106b; and up-regulated miRNAs, such as miR-92a, miR-222, and

miR-375. Therefore, some forensic scientists proposed the

potential forensic application of miRNAs in estimating the age

of a donor of biological samples. Fang et al. (Fang et al., 2020)

established age prediction models for bloodstains based on six

age-related miRNAs (miR-98-3p, miR-324-3p, miR-32-3p, miR-

330-5p, miR-374c-5p and miR-342-3p) using seven machine

learning models. Results showed that the mean absolute error

(MAE) ranged from 6.56 to 9.262 years. Fang’s study elucidated

the possibility of performing forensic age prediction using

miRNAs. CircRNAs are another class of ncRNAs newly

discovered in recent years, originating through back-splicing

events from linear primary transcripts and presenting as a

special covalent loop without a 5′ cap or 3′ tail (Cai et al.,

2019). They are resistant to RNase R activity since they are

covalently closed, giving rise to their stability than linear RNA.

CircRNAs are widely expressed in eukaryotes and can function as

miRNA sponges. Recent reports showed that there is an

accumulated trend for circRNA expression in various species

(Gruner et al., 2016; Du et al., 2017; Cortes-Lopez et al., 2018;

TONG ZHOU et al., 2018) and could play a role in aging, such as

neural aging (Zhang et al., 2022), muscle aging (Cai et al., 2019),

skin aging (Wang et al., 2021), and age-related diseases like

Alzheimer’s disease (Mo et al., 2020; D’Anca et al., 2022; Liu et al.,

2022). CircRNAs have emerged as promising candidate

biomarkers in aging due to their expression patterns and

stability (Cai et al., 2019; Pan et al., 2020). Both miRNAs and
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circRNAs have shown satisfactory stability and are highly

correlated with age (Glynn, 2020; Zhao et al., 2021), we

suggest they can be considered as biological age predictors. In

our previous work (Wang et al., 2022), we developed several age

predictive models to investigate the potential of circRNAs in

predicting chronological age in human blood. Results showed a

relatively big error with MAE values of 8.77–12.19 years, which

cannot meet the demands of forensic practice.

The purpose of our study was to identify circRNAs with

better correlations with age, building age predictive models with

higher accuracy. We considered combinations of different age-

related predictors to reduce predictive errors, thus we searched

for age-related miRNAs from public databases. Here, we

identified age-related circRNAs by comparing circRNA

expression profiles of elder subjects (50–62 years old) to

young subjects (20–29 years old) using circRNA next-

generation sequencing (NGS). Age-related miRNAs were

screened using integrated bioinformatics methods. miRNA

microarray data of 171 samples (17–104 years old) was

downloaded from Gene Expression Omnibus (GEO) and

Arrayexpress databases. Age-associated ncRNAs were

validated utilizing RT-qPCR assays. Regression models were

developed and evaluated using multiple machine learning

algorithms based on 200 samples (20–80 years old).

2 Materials and methods

2.1 Participants and RNA extraction

The participants of this study were classified into three

independent sets: a screening set, a validation set and a

modeling set. The screening set consisted of four young

subjects (20–29 years) and four elderly subjects (50–62 years)

from circRNA-seq and 171 samples of miRNA microarray from

public datasets. The validation set consisted of 40 samples aged

between 19–73 years old for the evaluation of age-related

ncRNAs using RT-qPCR. The modeling set was used for

predictive models’ construction, including an independent

cohort of blood samples collected from 200 volunteers of

20–80 years of age (102 females and 98 males). Blood samples

(10 ml) were drawn by venipuncture from 248 healthy unrelated

subjects with informed consent. The age distribution and sex

distribution of 248 samples were displayed in Supplementary

Figure S1. Our study was approved by the Medical Ethics

Committee of Hebei Medical University (No. 20190013).

Three hundred microliters of the whole blood samples were

used for RNA extraction using nine hundred microliters TRIzol

reagent (Thermo Scientific, United States) according to the

manufacturer’s instructions. NanoDrop ND-1000 (NanoDrop

Technologies) was used for RNA quantification. RNA integrity

was assessed on the Bioanalyzer 2100 system (Agilent

Technologies, CA, United States).

2.2 Circular RNAs next-generation
sequencing

A total amount of 5 μg RNA per sample was used as input

material for the RNA sample preparations. Libraries were prepared

and generated using NEBNext® UltraTM Directional RNA Library

Prep Kit for Illumina® (NEB, United States) following the

manufacturer’s recommendations. Barcoded libraries were

sequenced at Novogene Co., LTD. (Beijing, China) on an

Illumina HiSeq 4,000 platform and 150 bp paired-end reads were

generated. Raw data of fastq format were firstly processed to obtain

clean reads. Clean data (clean reads) were obtained by removing

reads containing adapter, ploy-N and low-quality reads from raw

data. All the downstream analyses were based on clean data with

high quality. Subsequently, paired-end clean reads were aligned to

the reference genome (hg38) using Bowtie (Langmead et al., 2009).

Find_circ (Memczak et al., 2013) and CIRI2 (Gao et al., 2015) were

used to detect and identify circRNAs. To account for variability due

to differences in library size, counts attributes to individual circRNAs

were normalized to total read count to obtain circRNA TPM values.

Raw FASTQ files from the RNA-seq data were deposited at the

NCBI Sequence Read Archive (BioProject: PRJNA682456).

2.3 Microarray data

The inclusion criteria of public datasets were 1) studies

conducted in human blood samples; 2) researches using miRNA

microarray technology; 3) a sample size of at least 30 healthy subjects

of different ages; 4) publication before 2020 and restricted to

reporting in the English language. There are three public datasets

were selected from the ArrayExpress and the GEO databases. The

miRNA microarray datasets were preprocessed through several

steps: normalization, log2 transformation, batch effect

removement, filtering and ID annotation of probes. The ordinary

data of two datasets were downloaded from the ArrayExpress

database. The dataset E-MTAB-1231 used Affymetrix GeneChip

miRNA 2.0 Array and E-MTAB-3303 was performed on Illumina

Human microRNA V2 BeadChip. R packages “oligo” and “limma”

were applied to calibrate, normalize, remove batch effects and

log2 transform the raw data, respectively. The series matrix files

and platform information of one microarray dataset with accession

GSE89042 were downloaded from the NCBI GEO database. We

analyzed them with the R package “Biobase” for normalization and

log2 transformation. The basic information of three public datasets

was listed in Supplementary Table S1.

2.4 Reverse transcription and
quantification

For age-related circRNAs, total RNAs were reverse

transcribed into cDNAs using the PrimerScript Reverse
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Transcription Kit with gDNA Eraser (Takara Bio Inc.) and

cDNAs were quantified using the QuantiNova™ SYBR Green

PCR kit. For age-related miRNAs, total RNAs were treated with

DNase Ⅰ to remove genomic DNA using Recombinant DNaseⅠ
Kit (Takara Bio Inc.). cDNA synthesis and quantitation were

performed utilizing Mir-X™ miRNA First-Strand Synthesis and

TB Green qRT-PCR Kit (Takara Bio Inc.). Both age-related

circRNAs and miRNAs were quantified on an ABI 7500 real-

time PCR system according to the manufacturer’s protocol. The

relative expression level of each ncRNA was calculated using the

normalized threshold cycle number (ΔCt), in which ΔCt = [Ct

(ncRNA)—[Ct (reference gene)]. Sequences of primers used in

our study are available in Supplementary Table S2.

2.5 Statistical analyses

2.5.1 Screening of age-related circular RNAs
The relationship between circRNA expressivity and age was

used to classify the circRNAs into three classes: age-limited

expression-young only, age-limited expression-old only, and

age-related expression. To select the differentially expressed

circRNAs between young and old, the “limma” package in the

Bioconductor package (http://www.bioconductor.org/) was used

to perform the selection of age-related differentially expressed

circRNAs. CircRNAs satisfied the following criteria were

considered as age-related candidates: absolute-value of log

(foldchange) > 2 and p-value < 0.001.

2.5.2 Selection of age-related microRNAs
The Spearman correlation method was used to screen age-

related miRNAs for datasets GSE89042 and E-MTAB-3303, in

which the response variable (i.e. age) is a continual variable.

MiRNAs with an absolute Spearman’s correlation coefficient

value >0.2 and an adjusted p-value < 0.05 were considered as

age-related candidate biomarkers for subsequent analyses. Dataset

E-MTAB-1231 consisted of 50 samples which can be naturally

classified into the young group (<40 years old) and the old group

(70–104 years old). Thus, we used the “limma” package in the

Bioconductor package to perform differential expression analysis to

select age-related miRNAs. MiRNA candidates matched the criteria

as follows: absolute-value of log(foldchange) > 2 and adjusted

p-value < 0.05. The lists of age-associated miRNAs screened

from three datasets were saved as TXT files.

2.5.3 Age-related microRNAs and circular RNAs
used for experimental validation

An independent set of samples was used to experimentally

evaluate ncRNAs screened from circRNA-seq and public databases.

The top five differentially expressed circRNAs among three classes

that showed age-limited or age-related expression, and miRNAs

differentially expressed in at least two datasets as age-related

ncRNAs were chosen for validation using the RT-qPCR strategy.

ncRNAs with an absolute Spearman’s correlation coefficient

value >0.2 were selected for further work. Statistical analyses

were performed using IBM SPSS Statistics V.21, Graph Pad

Prism (Version 8.0, Inc., CA, United States) and R software (4.1.2).

2.6 MicroRNAs targets prediction and
functional enrichment analysis

Three online databases miRTarbase (http://mirtarbase.mbc.

nctu.edu.tw/), miRWalk (http://mirwalk.umm.uni-heidelberg.

de/), TargetScan (http://www.targetscan.org/vert_72/) were

used to search miRNA target genes, including predicted genes

and validated genes. The putative miRNA targets from three

databases were intersected to obtain the list of target genes for

further functional and pathway analysis.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were conducted for miRNA

targets using the “clusterProfiler” package in R software. The cut-

off criterion was set as an adjusted p-value of <0.05. Both GO and

KEGG enrichment analyses outcomes were visualized using

“GOplot” in the R package.

2.7 Construction of age predictive models

Age-related ncRNAs experimentally validated were used for

age predictive model construction in additional 200 blood

samples. All samples were randomly divided into two sets: a

training set (80% of all subjects) to construct the age-predictive

model and a testing set (the remaining 20%) to evaluate the

model’s prediction performance. Several machine learning

algorithms were applied to fit models, including regression

tree, bagging, random forest regression (RFR), support vector

regression (SVR) and XGBoost. R project for statistical

computing software version 4.1.2 was employed using rpart,

ipred, randomForest, e1071, xgboost packages, respectively. To

determine the performance of different models, the root mean

square error (RMSE) and mean absolute error (MAE) from the

chronological age were calculated for the testing set.

2.8 Sex effect analysis

For the analyses of the relationship between age-related

ncRNAs expression and sex effect, statistical comparisons

between males and females were performed using

nonparametric t-tests (Mann-Whitney test) in Graph Pad

Prism (Version 8.0, Inc., CA, United States). Additionally, the

female andmale samples were used for modeling separately using

abovementioned machine learning algorithms to investigate

whether sex effect have an impact on the accuracy of age

prediction models in our study.

Frontiers in Genetics frontiersin.org04

Wang et al. 10.3389/fgene.2022.1031806

http://www.bioconductor.org/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://www.targetscan.org/vert_72/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1031806


3 Results

Figure 1 depicts the workflow of our study. In this study, we

conducted circRNA-seq and analyzed several miRNA

microarray datasets with integrated bioinformatic methods.

15 age-related ncRNAs (11 miRNAs and 4 circRNAs) were

identified to construct age estimation models. These

differentially expressed ncRNA biomarkers may play a role in

forensic age prediction.

3.1 Circular RNAs expression profiles and
microRNAs microarray preprocessing

Results output an average of 93.8 million total reads and

an average of 78.3 million mapped reads per sample. A total of

43,325 circRNAs were identified in young and old individuals.

A vast majority of circRNA (>85%) were generated from

annotated protein-coding genes. Comparing young with

old, circRNAs were classified into three classes: 1) age-

related expressed circRNAs: a total of 1,403 circRNAs were

differentially expressed. 2) age-limited expression-old only

(141 circRNAs, 10%). 3) age-limited expression-young only

(10 circRNAs, 0.7%). Box plots of quality assessment were

shown in Figures S2.

3.2 Age-related non-coding RNAs
selection and experimental validation

Of the 1,403 circRNAs that were differentially expressed in

young and old samples, 921 exhibited increasing expression from

young to old, and 482 showed a decreasing trend. Among them,

27 circRNAs with a p-value < 0.001. We finally selected

13 circRNAs for RT-qPCR validation: the top five expressed

exclusively in the young subjects; the top five expressed

exclusively in the old subjects; and the top five expressed in

both groups but showed the most discrepant expression (two

FIGURE 1
Flow chart of this study.
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circRNAs were overlapped). However, 4 circRNAs (circCAMLG,

circNCOA5, circCNTRL and circBMPR2) were excluded because

they failed in the primer design and one (circNFATC3) was

eliminated due to barely detectable (with Ct values higher than

37). Therefore, there were a total of eight age-related circRNAs

used for further analyses. We chose miRNAs differentially

expressed in at least two datasets as age-related miRNAs. The

dataset E-MTAB-1231 contained 117 age-related miRNAs all

upregulated expressed with age. The GSE89042 dataset screened

40 differentially expressed miRNAs, including 30 upregulated

miRNAs and 10 downregulated miRNAs from young to old. A

total of 55 miRNAs were significantly differentially expressed in

dataset E-MTAB-3303, including 40 upregulated and

15 downregulated miRNAs (Supplementary Table S1). A set

of 26 overlapping age-related miRNAs were identified, however,

8 miRNAs were excluded due to their inconsistent expression

trend between different datasets. Their expression patterns and

locations on human chromosomes were presented in

Supplementary Table S3. Finally, 18 age-related miRNAs were

selected for further experimental validation.

An independent cohort of samples was used to

experimentally evaluate ncRNAs (8 circRNAs and

18 miRNAs) screened from circRNA-seq and public

databases. Finally, 4 circRNAs and 11 miRNAs with an

absolute Spearman’s correlation coefficient >0.2 were chosen

for modelling: hsa_circ_0104,147, hsa_circ_0005400,

circMYH11, circPPP2R5A, miR-107, miR-339-5p, miR-940,

miR-27a-3p, miR-1281, miR-1228, miR-330-3p, miR-491-5p,

miR-500a-3p, miR-222 and miR-744. Most of these ncRNAs

were upregulated with age and the RT-qPCR validation was

consistent with NGS or microarray results, except for circRNA

hsa_circ_0005400, which was downregulated in NGS but

significantly upregulated in RT-qPCR.

3.3 Identification of target genes and
functional analysis

Each age-related miRNA was predicted target genes

according to the intersection of three databases (miRTarbase,

miRWalk, and TargetScan). A list of 430 target genes was

identified, which was input into R for GO and KEGG

analyses. Analysis revealed the top 10 most enriched GO

terms, including homeostasis of the number of cells,

erythrocyte homeostasis, myeloid cell homeostasis, erythrocyte

differentiation, myeloid cell differentiation, cellular response to

abiotic stimulus, cell response to environmental stimulus,

regulation of interferon-beta production, response to radiation

and interferon-beta production, as represented in Figure 2A and

Supplementary Table S4. A KEGG pathway analysis showed

target genes mainly enriched in cellular senescence, and FOXO

signaling pathway, as displayed in Figure 2B and Supplementary

Table S5.

3.4 Development and evaluation of age
prediction models using several
algorithms

A total of 15 age-related ncRNAs (4 circRNAs and

11 miRNAs) quantified in an independent set of 200 blood

samples aged from 20 to 80 years old was used to develop the

age prediction models. CircRNAs hsa_circ_0104147 and

hsa_circ_0005400 in 200 samples showed a significant

correlation with age (Spearman’s rho >0.5), while in

general, miRNAs showed a relatively weak positive

correlation with age (Spearman’s rho: 0.2–0.4) compared to

circRNAs (Figure 3). The 200 samples were randomly divided

into a training set (80%) and a testing set (20%). Several

machine learning methods were introduced, including

regression tree, bagging, RFR, SVR, and XGBoost. The

MAE values for the training set ranged from 3 to 6 years,

while 6–7 years for the testing set (Table 1). Among them, RFR

performed best, followed by SVR and bagging. The RFR model

trained with age information and ncRNAs expression pattern

explained 92.7% of the total variance in the training set (R2 =

0.927), and there was a strong correlation between predicted

age and chronological age (Spearman’s rho = 0.963) with an

MAE from chronological age of 3.682 years and an RMSE of

4.783 years (Figure 4). In the testing set, the RFR model also

showed a strong correlation between predicted and

chronological ages (Spearman’s rho = 0.77) with an MAE

of 6.84 years. Additionally, we also constructed models based

on a single type of biomarkers, miRNAs or circRNAs only.

Results showed that the combination of these two types of

biomarkers obtained significantly higher accuracy than using

only one type of them, which achieved an MAE of

8.1–10.9 years in the testing set (circRNA only) and of

9.1–12.6 years (miRNA only).

We grouped the samples into five age categories (20s, 30s,

40s, 50s, 60s or more), taking RFR model and SVR model for

example. The prediction errors in older individuals were bigger,

and the predicted age of older samples was rather

underestimated, whereas the age prediction of young

individuals was overestimated (Figure 5).

As females have longer lifespans than males, we investigated

if a sex-dependent difference in the selected ncRNAs expression

exists. However, no statistically significant difference was

observed between ncRNA expression levels and sexes (Mann

Whitney test, p > 0.05). This result indicated that ncRNA

expression in our study is stronger associated with age as

compared to sex. In addition, we also performed modeling

using female samples and male samples separately. The age

prediction of male individuals was slightly superior to female

individuals with MAEs of 6.8–8.5 years for males and of

6.4–11.2 years for females in the testing set, respectively

(Table 2). Sex had a slight influence on the accuracy of the

models in the current study.
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FIGURE 2
GO annotation (A) and KEGG pathway enrichment (B) of miRNA target genes.

FIGURE 3
Final age-dependentmarkers in 200 blood samples from real-time PCR. Delta-Ct values were used to represent the relative expression levels of
age-related ncRNAs.
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4 Discussion

MiRNAs and circRNAs are highly abundant, stable, and

have been demonstrated to change with increasing age and

development, sparking interest in their use as potential

biomarkers to predict chronological age. In the current

study, we explored how the global expression of miRNAs

and circRNAs change in normal human aging in peripheral

blood samples collected from healthy individuals. We identified

age-associated ncRNAs (11 miRNAs and four circRNAs)

through NGS and integrated bioinformatics methods. Age

prediction models were developed based on these

15 ncRNAs using machine learning methods including

regression tree, bagging, RFR, SVR and XGBoost. Compared

to previous miRNA-based age prediction models, which

reported MAE for their models ranging from 6.56 to

9.262 years using 6 miRNAs (Fang et al., 2020), and our

previous study of circRNA-based prediction models with

MAE 8.77–12.19 years using 5 circRNAs (Wang et al., 2022),

models in this study exhibit higher accuracy in age prediction

with MAE of 6.8–7.9 years by combining age-related miRNAs

and circRNAs biomarkers.

TABLE 1 Comparison of different prediction models.

Models Training set Testing set

MAE (years) RMSE (years) rho MAE (years) RMSE (years) rho

Tree 6.348 8.476 0.828 7.985 10.217 0.652

Bagging 6.384 8.047 0.859 7.455 9.002 0.715

RFR 3.680 4.878 0.981 6.840 8.422 0.765

SVR 6.536 9.106 0.805 7.281 8.999 0.717

XGBoost 4.260 5.916 0.937 7.675 10.391 0.753

FIGURE 4
Predicted versus chronological ages using regression tree, bagging, RFR, SVR and XGBoost.
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It had been shown previously that some of the age-related

miRNAs used in this study upregulate with increased age in

different organisms, tissues, or cell types. For instance, the aged

Ames mice study showed increased expression of miR-27a (Bates

et al., 2010). The expression level of miR-222 was significantly

altered during aging in the human population reported by several

authors. A study on serum samples from healthy subjects of

different age groups identified upregulation of miR-222 in an

age-dependent manner (Zhang et al., 2015). Hanna and others

found that miR-27a and miR-222 were consistently upregulated

in replicative senescent cells. Additionally, miR-339-5p, miR-

222, miR-27a, miR-330 and miR-107 were associated with age-

related diseases such as Alzheimer’s Disease (AD), Parkinson’s

Disease (PD) and Mild cognitive impairment (MCI) (Kumar

et al., 2017; Reddy et al., 2017; John et al., 2020). MiR-199a-5p

and miR-27a were found up-regulated expressed in the

photoaging process and miR-330 was closely associated with

brain development (Choi et al., 2016). Some miRNAs were

reported to have biological relevance with aging but in a

different manner. For example, miR-107 was down-regulated

from infancy to childhood and had a diminishing expression

with age from young (≤35 years old) to old adults (≥35 years old)
(Lai et al., 2014). Pathway enrichment analysis of age-related

miRNAs’ target genes in this work showed they are significantly

enriched in the cell senescence pathway and FoxO signaling

pathway which is involved in many cellular physiological events

such as longevity (Martins et al., 2016; Green et al., 2022). This

finding contributed to our understanding of the pathways of

aging, however, further experiments are required to confirm the

underlying mechanisms of aging.

Three datasets analyzed in this study were derived from

different studies. Dataset GSE89042 was conducted by Maider

and others (Munoz-Culla et al., 2017), they analyzed the

expression of small non-coding RNA (sncRNA, microRNA

FIGURE 5
Deviations of the prediction from the chronological age in RFR model and SVR model. The subjects of the younger age group are rather
overestimated in comparison to older individuals that tend to be underestimated.

TABLE 2 Age prediction performance of different models between female and male individuals (the bold values represent a lower MAE value).

Models Female (n = 102) Male (n = 98)

Training set Testing set Training set Testing set

rho MAE (years) rho MAE (years) rho MAE (years) rho MAE (years)

Tree 0.752 8.191 0.84 6.410 0.813 5.799 0.506 7.596

Bagging 0.828 7.581 0.787 7.969 0.855 5.837 0.569 6.796

RFR 0.962 4.403 0.864 6.486 0.965 3.421 0.447 7.736

SVR 0.812 7.074 0.887 7.440 0.807 6.071 0.480 8.464

XGBoost 0.959 3.850 0.595 11.247 0.992 1.575 0.612 8.283
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and small nucleolar RNA -snoRNA-) by microarrays in

leucocytes from healthy donors of different ages, ranging from

24 to 79 years old. They performed a sliding window analysis to

select age-related sncRNAs and then observed that the expression

of 69 sncRNAs changed progressively with chronological age. In

this study, we filtered probes to exclusively remain miRNAs,

which we are interested in. Most age-related miRNAs screened in

this study were consistent with the study conducted by Maider

et al. But miR-1281 which showed age-associated expression in

RT-qPCR in our study did not show any difference in its

expression between young and old groups in the validation set

of Maider’s research. Dataset E-MTAB-3303 contained 211 RNA

samples, including 128 schizophrenia subjects and 83 healthy

controls (Wang et al., 2015). We extracted data from controls for

age-related analyses. Dataset E-MTAB-1231 included three age

groups of individuals, young (<40 years old), octogenarians and
centenarians (Serna et al., 2012). We regrouped them into young

vs. old to explore the general patterns of molecular change

between young and old individuals. However, Serna et al.

found that centenarians upregulate the expression of sncRNAs

whereas octogenarians downregulate it when compared to young

people. They supposed that striking maintenance of homeostatic

mechanisms and healthy aging of a population with extreme

longevity may be explained by their specific characteristic of gene

expression. This conclusion provides the basis for considering

the age prediction of centenarians separately in the future.

CircRNA molecules offer a promising field in aging research,

however, its forensic applications are still in the preliminary

stage. In our work, we uncovered a trend for increased circRNA

expression in the blood of old individuals versus young. We

classified the circRNAs into three classes: age-limited expression-

young only, age-limited expression-old only, and age-related

expression. The top five differentially expressed circRNAs in

the classes with age-limited or age-related expression were

validated using qPCR. Four circRNAs confirmed in a

validation set were derived from different host genes.

Although there is no research about hsa_circ_0104147, its

host gene, HERC1, encodes a member of the HERC protein

family which may be involved in membrane transport processes.

Larsson et al. reported that variants in HERC1 may influence

normal neuronal pattern development (Larsson et al., 2011).

Hsa_circ_0005400 originated from the gene ACAP2. Research

showed knockdown of ACAP2 blocks apoptosis in cancer cells in

response to the chemotherapeutic antimetabolite 5-fluorouracil

and ACAP2 expression was down-regulated in some esophageal

cancers, leukemias and lymphomas (Sullivan et al., 2015). Several

studies demonstrated that circACAP2 facilitates the proliferation

of cancers such as colorectal cancer and breast cancer by

targeting multiple miRNAs (Zhao et al., 2020; Zhang et al.,

2021). The host gene of CircMYH11 is MYH11, which was

confirmed that non-coding variants in MYH11 are associated

with dementia in women.Multiethnic studies identified ten genes

including MYH11 are differentially expressed in the context of

Alzheimer’s disease (AD) (Blue et al., 2021). The product of the

gene PPP2R5A which is the parental gene of circPPP2R5A is

implicated in the negative control of cell growth and division.

PPP2R5A is also reported to be involved in regulating DNA

repair and apoptosis through many pathways (Mao et al., 2018).

It is well known that cancer, dementia and AD are the most

important age-related disorder and occur in elderly individuals.

Intriguingly, age-related circRNA screened in our study, their

parental genes play a role in multiple cell activities and age-

related disorders. Age-related genes may regulate the aging

process by mediating numerous ncRNAs. However, the

regulation network of aging is still not fully elucidated.

The role of ncRNAs in predicting chronological age for

forensic applications is still a relatively new area of research.

Since various biological age predictors reflect different aspects of

the aging process, considering multiple combinations of different

types of predictors may shed light on the aging process and

provide a further understanding of healthy aging (Jylhava et al.,

2017). Previously published studies combined sjTRECs, mRNA

and DNA methylation. sjTRECs-based methods alone give MAE

of about 10 years, while DNA methylation-based methods give

MAE of about 3–5 years. Even higher predictive accuracy with an

MAE of about 3.3 years was exhibited when combining sjTRECs

and DNA methylation (Cho et al., 2017), while an MAE of

4.6 years was shown by a combination of DNA methylation and

mRNA predictors (Zubakov et al., 2016). In the present work, we

first simultaneously examined miRNAs and circRNAs predictors

and constructed age prediction models using these two types of

biomarkers. Results showed that the combination of these two

types of biomarkers obtained significantly higher accuracy with

MAE of about 6–7 years than using only one type of them, which

achieved MAE of 8.1–10.9 years in the testing set (circRNA only)

and of 9.1–12.6 years (miRNA only). Age group analyses exhibit

a tendency to overestimate age in young adults and to

underestimate it in older ones. This trend has already been

reported by several previous studies (Beheshti et al., 2019) (de

Lange and Cole, 2020) (Liang et al., 2019). It can be explained as a

result of the statistics used for the development of this class of

predictive age equations. AG de Lange et al. explained this

phenomenon as the limiting case where a model is unable to

predict age based on the input features (de Lange et al., 2022).

Models in our study are currently restricted to the sample size

of 200 samples and an age range of 20–80 years old that did not

incorporate children and adolescents. ncRNAs are thought to

modulate the expression of a variety of human genetic codes

involving not only the aging process but also the developmental

process. Thus, more under-aged-specific, adult-specific and

elderly-specific predictors are needed to investigate in future

work. Broadening the predictable age range may exhibit the

regulation mechanisms of biological molecules in different age

stages. Although studies reported that sex hormones can

modulate ncRNA synthesis and/or secretion (Perez-Cremades

et al., 2018; Sheinerman et al., 2018), sex had no statistically
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significant difference in the expression levels of ncRNAs and had

a small effect on age prediction in our study. More samples per

sex may facilitate exploring the rule of expression patterns of

ncRNAs between males and females. Compared to DNA

methylation markers, the accuracy of age estimation based on

ncRNAmarkers are still needed to improve. Additionally, the use

of predictors for other populations from different ethnic

backgrounds is needed to be explored. The correlations

between age and circRNA expression levels were significantly

higher than that of miRNAs. We assume that miRNAs selected

from online datasets conducted using other populations are

perhaps not suitable biomarkers for the Chinese population.

Further profound analyses are still needed to assess the

application of the current estimation models for other

specimens like saliva or semen and the application of low

template RNA samples.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Ethics statement

The studies involving human participants were reviewed

and approved by Medical Ethics Committee of Hebei Medical

University (No. 20190013). The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

BC and SL devised the experiments and reviewed the writing.

CW provided the peripheral whole blood samples. JW and HZ

conducted the laboratory work. JW and QW collated, analysed

and visualized the data. JW wrote the manuscript. SL and LF

modified the manuscript. All authors contributed to the article

and approved the submitted version.

Funding

This work was supported by the National Natural Science

Foundation of China (82072118); the Academician Team

Innovation Project (225A5602D); the Hebei Province Science

Fund (H2021206451); and the Post-graduate’s Innovation Fund

Project of Hebei Province (CXZZBS2022089).

Acknowledgments

The authors would like to thank voluntary participants who

donated blood samples toward this project.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1031806/full#supplementary-material

References

Bates, D. J., Li, N., Liang, R., Sarojini, H., An, J., Masternak, M. M., et al.
(2010). MicroRNA regulation in Ames dwarf mouse liver may contribute
to delayed aging. Aging Cell 9 (1), 1–18. doi:10.1111/j.1474-9726.2009.
00529.x

Beheshti, I., Nugent, S., Potvin, O., and Duchesne, S. (2019). Bias-adjustment in
neuroimaging-based brain age frameworks: A robust scheme. Neuroimage. Clin. 24,
102063. doi:10.1016/j.nicl.2019.102063

Blue, E. E., Thornton, T. A., Kooperberg, C., Liu, S., Wactawski-Wende, J.,
Manson, J., et al. (2021). Non-coding variants in MYH11, FZD3, and SORCS3 are
associated with dementia in women. Alzheimers Dement. 17 (2), 215–225. doi:10.
1002/alz.12181

Cai, H., Li, Y., Niringiyumukiza, J. D., Su, P., and Xiang, W. (2019). Circular RNA
involvement in aging: An emerging player with great potential. Mech. Ageing Dev.
178, 16–24. doi:10.1016/j.mad.2018.11.002

Cho, S., Jung, S. E., Hong, S. R., Lee, E. H., Lee, J. H., Lee, S. D., et al. (2017).
Independent validation of DNA-based approaches for age prediction
in blood. Forensic Sci. Int. Genet. 29, 250–256. doi:10.1016/j.fsigen.2017.
04.020

Choi, I., Woo, J. H., Jou, I., and Joe, E. H. (2016). PINK1 deficiency decreases
expression levels of mir-326, mir-330, and mir-3099 during brain development and
neural stem cell differentiation. Exp. Neurobiol. 25 (1), 14–23. doi:10.5607/en.2016.
25.1.14

Frontiers in Genetics frontiersin.org11

Wang et al. 10.3389/fgene.2022.1031806

https://www.frontiersin.org/articles/10.3389/fgene.2022.1031806/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1031806/full#supplementary-material
https://doi.org/10.1111/j.1474-9726.2009.00529.x
https://doi.org/10.1111/j.1474-9726.2009.00529.x
https://doi.org/10.1016/j.nicl.2019.102063
https://doi.org/10.1002/alz.12181
https://doi.org/10.1002/alz.12181
https://doi.org/10.1016/j.mad.2018.11.002
https://doi.org/10.1016/j.fsigen.2017.04.020
https://doi.org/10.1016/j.fsigen.2017.04.020
https://doi.org/10.5607/en.2016.25.1.14
https://doi.org/10.5607/en.2016.25.1.14
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1031806


Cortes-Lopez, M., Gruner, M. R., Cooper, D. A., Gruner, H. N., Voda, A. I.,
van der Linden, A. M., et al. (2018). Global accumulation of circRNAs during
aging in Caenorhabditis elegans. BMC Genomics 19 (1), 8. doi:10.1186/s12864-
017-4386-y

D’Anca, M., Buccellato, F. R., Fenoglio, C., and Galimberti, D. (2022). Circular
RNAs: Emblematic players of neurogenesis and neurodegeneration. Int. J. Mol. Sci.
23 (8), 4134. doi:10.3390/ijms23084134

de Lange, A. G., Anaturk, M., Rokicki, J., Han, L. K. M., Franke, K., Alnaes,
D., et al. (2022). Mind the gap: Performance metric evaluation in brain-
age prediction. Hum. Brain Mapp. 43 (10), 3113–3129. doi:10.1002/hbm.
25837

de Lange, A. G., and Cole, J. H. (2020). Commentary: Correction procedures
in brain-age prediction. Neuroimage. Clin. 26, 102229. doi:10.1016/j.nicl.2020.
102229

Du, W. W., Yang, W., Chen, Y., Wu, Z. K., Foster, F. S., Yang, Z., et al. (2017).
Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors
associated with stress and senescence responses. Eur. Heart J. 38 (18), 1402–1412.
doi:10.1093/eurheartj/ehw001

Fang, C., Liu, X., Zhao, J., Xie, B., Qian, J., Liu, W., et al. (2020). Age estimation
using bloodstain miRNAs based on massive parallel sequencing and machine
learning: A pilot study. Forensic Sci. Int. Genet. 47, 102300. doi:10.1016/j.fsigen.
2020.102300

Gao, Y., Wang, J., and Zhao, F. (2015). Ciri: An efficient and unbiased algorithm
for de novo circular RNA identification. Genome Biol. 16, 4. doi:10.1186/s13059-
014-0571-3

Glynn, C. L. (2020). Potential applications of microRNA profiling to forensic
investigations. RNA 26 (1), 1–9. doi:10.1261/rna.072173.119

Green, C. L., Lamming, D. W., and Fontana, L. (2022). Molecular mechanisms of
dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23 (1),
56–73. doi:10.1038/s41580-021-00411-4

Gruner, H., Cortes-Lopez, M., Cooper, D. A., Bauer, M., and Miura, P. (2016).
CircRNA accumulation in the aging mouse brain. Sci. Rep. 6, 38907. doi:10.1038/
srep38907

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al.
(2013). Genome-wide methylation profiles reveal quantitative views of
human aging rates. Mol. Cell 49 (2), 359–367. doi:10.1016/j.molcel.2012.
10.016

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard,
C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges.
Nature 495 (7441), 384–388. doi:10.1038/nature11993

Hanson, E. K., Lubenow, H., and Ballantyne, J. (2009). Identification of
forensically relevant body fluids using a panel of differentially expressed
microRNAs. Anal. Biochem. 387 (2), 303–314. doi:10.1016/j.ab.2009.01.037

John, A., Kubosumi, A., and Reddy, P. H. (2020). Mitochondrial MicroRNAs
in aging and neurodegenerative diseases. Cells 9 (6), E1345. doi:10.3390/
cells9061345

Jylhava, J., Pedersen, N. L., and Hagg, S. (2017). Biological age predictors.
EBioMedicine 21, 29–36. doi:10.1016/j.ebiom.2017.03.046

Koh, K. K., Tan, J. S., Nambiar, P., Ibrahim, N., Mutalik, S., and Khan Asif, M.
(2017). Age estimation from structural changes of teeth and buccal alveolar bone
level. J. Forensic Leg. Med. 48, 15–21. doi:10.1016/j.jflm.2017.03.004

Koop, B. E., Mayer, F., Gunduz, T., Blum, J., Becker, J., Schaffrath, J., et al. (2021).
Postmortem age estimation via DNA methylation analysis in buccal swabs from
corpses in different stages of decomposition-a "proof of principle" study. Int. J. Leg.
Med. 135 (1), 167–173. doi:10.1007/s00414-020-02360-7

Kumar, S., Vijayan, M., Bhatti, J. S., and Reddy, P. H. (2017). MicroRNAs as
peripheral biomarkers in aging and age-related diseases. Prog. Mol. Biol. Transl. Sci.
146, 47–94. doi:10.1016/bs.pmbts.2016.12.013

Lai, C. Y., Wu, Y. T., Yu, S. L., Yu, Y. H., Lee, S. Y., Liu, C. M., et al. (2014).
Modulated expression of human peripheral blood microRNAs from infancy to
adulthood and its role in aging. Aging Cell 13 (4), 679–689. doi:10.1111/acel.
12225

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009). Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 10 (3), R25. doi:10.1186/gb-2009-10-3-r25

Larsson, M., Duffy, D. L., Zhu, G., Liu, J. Z., Macgregor, S., McRae, A. F., et al.
(2011). GWAS findings for human iris patterns: Associations with variants in genes
that influence normal neuronal pattern development. Am. J. Hum. Genet. 89 (2),
334–343. doi:10.1016/j.ajhg.2011.07.011

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75
(5), 843–854. doi:10.1016/0092-8674(93)90529-y

Liang, H., Zhang, F., and Niu, X. (2019). Investigating systematic bias in brain age
estimation with application to post-traumatic stress disorders. Hum. Brain Mapp.
40 (11), 3143–3152. doi:10.1002/hbm.24588

Liu, Y., Cheng, X., Li, H., Hui, S., Zhang, Z., Xiao, Y., et al. (2022). Non-coding
RNAs as novel regulators of neuroinflammation in alzheimer’s disease. Front.
Immunol. 13, 908076. doi:10.3389/fimmu.2022.908076

Mao, Z., Liu, C., Lin, X., Sun, B., and Su, C. (2018). PPP2R5A: A multirole protein
phosphatase subunit in regulating cancer development. Cancer Lett. 414, 222–229.
doi:10.1016/j.canlet.2017.11.024

Martins, R., Lithgow, G. J., and Link, W. (2016). Long live FOXO: Unraveling the
role of FOXO proteins in aging and longevity. Aging Cell 15 (2), 196–207. doi:10.
1111/acel.12427

Matteussi, G. T., Jacometti, V., Franco, A., and da Silva, R. H. A. (2022). Age
estimation in humans through the analysis of aspartic acid racemization from teeth:
A scoping review of methods, outcomes, and open research questions. Forensic Sci.
Int. 331, 111154. doi:10.1016/j.forsciint.2021.111154

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013).
Circular RNAs are a large class of animal RNAs with regulatory potency.Nature 495
(7441), 333–338. doi:10.1038/nature11928

Mo, D., Li, X., Raabe, C. A., Rozhdestvensky, T. S., Skryabin, B. V., and
Brosius, J. (2020). Circular RNA encoded amyloid beta peptides-A novel
putative player in alzheimer’s disease. Cells 9 (10), E2196. doi:10.3390/
cells9102196

Munoz-Culla, M., Irizar, H., Gorostidi, A., Alberro, A., Osorio-Querejeta, I., Ruiz-
Martinez, J., et al. (2017). Progressive changes in non-coding RNA profile in
leucocytes with age. Aging (Albany NY) 9 (4), 1202–1218. doi:10.18632/aging.
101220

Naue, J., Hoefsloot, H. C. J., Mook, O. R. F., Rijlaarsdam-Hoekstra, L., Zwalm, M.
C. H. V. D., Henneman, P., et al. (2017). Chronological age prediction based on
DNA methylation: Massive parallel sequencing and random forest regression.
Forensic Sci. Int. Genet. 31, 19–28. doi:10.1016/j.fsigen.2017.07.015

Pan, Y. H., Wu, W. P., and Xiong, X. D. (2020). Circular RNAs: Promising
biomarkers for age-related diseases.Aging Dis. 11 (6), 1585–1593. doi:10.14336/AD.
2020.0309

Park, J. L., Kim, J. H., Seo, E., Bae, D. H., Kim, S. Y., Lee, H. C., et al. (2016).
Identification and evaluation of age-correlated DNA methylation markers for
forensic use. Forensic Sci. Int. Genet. 23, 64–70. doi:10.1016/j.fsigen.2016.
03.005

Perez-Cremades, D., Mompeon, A., Vidal-Gomez, X., Hermenegildo, C., and
Novella, S. (2018). Role of miRNA in the regulatory mechanisms of estrogens in
cardiovascular ageing. Oxid. Med. Cell. Longev. 2018, 6082387. doi:10.1155/2018/
6082387

Reddy, P. H., Williams, J., Smith, F., Bhatti, J. S., Kumar, S., Vijayan, M., et al.
(2017). MicroRNAs, aging, cellular senescence, and alzheimer’s disease. Prog. Mol.
Biol. Transl. Sci. 146, 127–171. doi:10.1016/bs.pmbts.2016.12.009

Scendoni, R., Cingolani, M., Giovagnoni, A., Fogante, M., Fedeli, P., Pigolkin, Y.
I., et al. (2020). Analysis of carpal bones on MR images for age estimation: First
results of a new forensic approach. Forensic Sci. Int. 313, 110341. doi:10.1016/j.
forsciint.2020.110341

Serna, E., Gambini, J., Borras, C., Abdelaziz, K. M., Belenguer, A., Sanchis, P., et al.
(2012). Centenarians, but not octogenarians, up-regulate the expression of
microRNAs. Sci. Rep. 2, 961. doi:10.1038/srep00961

Sheinerman, K., Tsivinsky, V., Mathur, A., Kessler, D., Shaz, B., and Umansky, S.
(2018). Age- and sex-dependent changes in levels of circulating brain-enriched
microRNAs during normal aging. Aging (Albany NY) 10 (10), 3017–3041. doi:10.
18632/aging.101613

Sullivan, K. D., Nakagawa, A., Xue, D., and Espinosa, J. M. (2015). Human
ACAP2 is a homolog of C elegans CNT-1 that promotes apoptosis in cancer cells.
Cell Cycle 14 (12), 1771–1778. doi:10.1080/15384101.2015.1026518

Tiplamaz, S., Goren, M. Z., and Yurtsever, N. T. (2018). Estimation of
chronological age from postmortem tissues based on amino acid racemization.
J. Forensic Sci. 63 (5), 1533–1538. doi:10.1111/1556-4029.13737

Tong, Z. H. O. U., Xueying, X. I. E., Musheng, L. I., Junchao, S. H. I., Zhou, J.,
Kenneth, S., et al. (2018). Rat BodyMap transcriptomes reveal unique circular RNA
features across tissue types and developmental stages. RNA 24 (11), 1443–1456.
doi:10.1261/rna.067132.118

Vaiserman, A., and Krasnienkov, D. (2020). Telomere length as a marker of
biological age: State-of-the-Art, open issues, and future perspectives. Front. Genet.
11, 630186. doi:10.3389/fgene.2020.630186

Victoria, B., Nunez Lopez, Y. O., and Masternak, M. M. (2017). MicroRNAs and
the metabolic hallmarks of aging.Mol. Cell. Endocrinol. 455, 131–147. doi:10.1016/j.
mce.2016.12.021

Frontiers in Genetics frontiersin.org12

Wang et al. 10.3389/fgene.2022.1031806

https://doi.org/10.1186/s12864-017-4386-y
https://doi.org/10.1186/s12864-017-4386-y
https://doi.org/10.3390/ijms23084134
https://doi.org/10.1002/hbm.25837
https://doi.org/10.1002/hbm.25837
https://doi.org/10.1016/j.nicl.2020.102229
https://doi.org/10.1016/j.nicl.2020.102229
https://doi.org/10.1093/eurheartj/ehw001
https://doi.org/10.1016/j.fsigen.2020.102300
https://doi.org/10.1016/j.fsigen.2020.102300
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.1186/s13059-014-0571-3
https://doi.org/10.1261/rna.072173.119
https://doi.org/10.1038/s41580-021-00411-4
https://doi.org/10.1038/srep38907
https://doi.org/10.1038/srep38907
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1016/j.molcel.2012.10.016
https://doi.org/10.1038/nature11993
https://doi.org/10.1016/j.ab.2009.01.037
https://doi.org/10.3390/cells9061345
https://doi.org/10.3390/cells9061345
https://doi.org/10.1016/j.ebiom.2017.03.046
https://doi.org/10.1016/j.jflm.2017.03.004
https://doi.org/10.1007/s00414-020-02360-7
https://doi.org/10.1016/bs.pmbts.2016.12.013
https://doi.org/10.1111/acel.12225
https://doi.org/10.1111/acel.12225
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1016/j.ajhg.2011.07.011
https://doi.org/10.1016/0092-8674(93)90529-y
https://doi.org/10.1002/hbm.24588
https://doi.org/10.3389/fimmu.2022.908076
https://doi.org/10.1016/j.canlet.2017.11.024
https://doi.org/10.1111/acel.12427
https://doi.org/10.1111/acel.12427
https://doi.org/10.1016/j.forsciint.2021.111154
https://doi.org/10.1038/nature11928
https://doi.org/10.3390/cells9102196
https://doi.org/10.3390/cells9102196
https://doi.org/10.18632/aging.101220
https://doi.org/10.18632/aging.101220
https://doi.org/10.1016/j.fsigen.2017.07.015
https://doi.org/10.14336/AD.2020.0309
https://doi.org/10.14336/AD.2020.0309
https://doi.org/10.1016/j.fsigen.2016.03.005
https://doi.org/10.1016/j.fsigen.2016.03.005
https://doi.org/10.1155/2018/6082387
https://doi.org/10.1155/2018/6082387
https://doi.org/10.1016/bs.pmbts.2016.12.009
https://doi.org/10.1016/j.forsciint.2020.110341
https://doi.org/10.1016/j.forsciint.2020.110341
https://doi.org/10.1038/srep00961
https://doi.org/10.18632/aging.101613
https://doi.org/10.18632/aging.101613
https://doi.org/10.1080/15384101.2015.1026518
https://doi.org/10.1111/1556-4029.13737
https://doi.org/10.1261/rna.067132.118
https://doi.org/10.3389/fgene.2020.630186
https://doi.org/10.1016/j.mce.2016.12.021
https://doi.org/10.1016/j.mce.2016.12.021
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1031806


Wang, J., Wang, C., Wei, Y., Zhao, Y., Wang, C., Lu, C., et al. (2022). Circular
RNA as a potential biomarker for forensic age prediction. Front. Genet. 13, 825443.
doi:10.3389/fgene.2022.825443

Wang, L., Si, X., Chen, S., Wang, X., Yang, D., Yang, H., et al. (2021). A
comprehensive evaluation of skin aging-related circular RNA expression
profiles. J. Clin. Lab. Anal. 35 (4), e23714. doi:10.1002/jcla.23714

Wang, X., Gardiner, E. J., and Cairns, M. J. (2015). Optimal consistency in
microRNA expression analysis using reference-gene-based normalization. Mol.
Biosyst. 11 (5), 1235–1240. doi:10.1039/c4mb00711e

Yamanoi, E., Uchiyama, S., Sakurada, M., and Ueno, Y. (2018). sjTREC
quantification using SYBR quantitative PCR for age estimation of bloodstains
in a Japanese population. Leg. Med. 32, 71–74. doi:10.1016/j.legalmed.2018.
03.003

Zapico, S. C., and Ubelaker, D. H. (2016). Relationship between mitochondrial
DNAmutations and aging. Estimation of age-at-death. J. Gerontol. A Biol. Sci. Med.
Sci. 71 (4), 445–450. doi:10.1093/gerona/glv115

Zhang, G., Liu, Z., Zhong, J., and Lin, L. (2021). Circ-ACAP2 facilitates the
progression of colorectal cancer through mediating miR-143-3p/FZD4 axis. Eur.
J. Clin. Invest. 51 (12), e13607. doi:10.1111/eci.13607

Zhang, H., Yang, H., Zhang, C., Jing, Y., Wang, C., Liu, C., et al. (2015).
Investigation of microRNA expression in human serum during the aging
process. J. Gerontol. A Biol. Sci. Med. Sci. 70 (1), 102–109. doi:10.1093/gerona/
glu145

Zhang, M. X., Lin, J. R., Yang, S. T., Zou, J., Xue, Y., Feng, C. Z., et al. (2022).
Characterization of circRNA-Associated-ceRNA networks involved in the
pathogenesis of postoperative cognitive dysfunction in aging mice. Front. Aging
Neurosci. 14, 727805. doi:10.3389/fnagi.2022.727805

Zhao, B., Song, X., and Guan, H. (2020). CircACAP2 promotes breast cancer
proliferation and metastasis by targeting miR-29a/b-3p-COL5A1 axis. Life Sci. 244,
117179. doi:10.1016/j.lfs.2019.117179

Zhao, C., Zhao, M., Zhu, Y., Zhang, L., Zheng, Z., Wang, Q., et al. (2021). The
persistence and stability of miRNA in bloodstained samples under different
environmental conditions. Forensic Sci. Int. 318, 110594. doi:10.1016/j.forsciint.
2020.110594

Zubakov, D., Liu, F., Kokmeijer, I., Choi, Y., van Meurs, J. B. J., Van, I. W. F. J.,
et al. (2016). Human age estimation from blood using mRNA, DNA methylation,
DNA rearrangement, and telomere length. Forensic Sci. Int. Genet. 24, 33–43.
doi:10.1016/j.fsigen.2016.05.014

Frontiers in Genetics frontiersin.org13

Wang et al. 10.3389/fgene.2022.1031806

https://doi.org/10.3389/fgene.2022.825443
https://doi.org/10.1002/jcla.23714
https://doi.org/10.1039/c4mb00711e
https://doi.org/10.1016/j.legalmed.2018.03.003
https://doi.org/10.1016/j.legalmed.2018.03.003
https://doi.org/10.1093/gerona/glv115
https://doi.org/10.1111/eci.13607
https://doi.org/10.1093/gerona/glu145
https://doi.org/10.1093/gerona/glu145
https://doi.org/10.3389/fnagi.2022.727805
https://doi.org/10.1016/j.lfs.2019.117179
https://doi.org/10.1016/j.forsciint.2020.110594
https://doi.org/10.1016/j.forsciint.2020.110594
https://doi.org/10.1016/j.fsigen.2016.05.014
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1031806

	Forensic age estimation from human blood using age-related microRNAs and circular RNAs markers
	1 Introduction
	2 Materials and methods
	2.1 Participants and RNA extraction
	2.2 Circular RNAs next-generation sequencing
	2.3 Microarray data
	2.4 Reverse transcription and quantification
	2.5 Statistical analyses
	2.5.1 Screening of age-related circular RNAs
	2.5.2 Selection of age-related microRNAs
	2.5.3 Age-related microRNAs and circular RNAs used for experimental validation

	2.6 MicroRNAs targets prediction and functional enrichment analysis
	2.7 Construction of age predictive models
	2.8 Sex effect analysis

	3 Results
	3.1 Circular RNAs expression profiles and microRNAs microarray preprocessing
	3.2 Age-related non-coding RNAs selection and experimental validation
	3.3 Identification of target genes and functional analysis
	3.4 Development and evaluation of age prediction models using several algorithms

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


