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Objective: Sepsis is a common disease in internal medicine, with a high

incidence and dangerous condition. Due to the limited understanding of its

pathogenesis, the prognosis is poor. The goal of this project is to screen

potential biomarkers for the diagnosis of sepsis and to identify competitive

endogenous RNA (ceRNA) networks associated with sepsis.

Methods: The expression profiles of long non-coding RNAs (lncRNAs),

microRNAs (miRNAs) and messenger RNAs (mRNAs) were derived from the

Gene Expression Omnibus (GEO) dataset. The differentially expressed lncRNAs

(DElncRNAs), miRNAs (DEmiRNAs) and mRNAs (DEmRNAs) were screened by

bioinformatics analysis. DEmRNAswere analyzed by protein-protein interaction

(PPI) network analysis, transcription factor enrichment analysis, Gene Ontology

(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and

Gene Set Enrichment Analysis (GSEA). After the prediction of the relevant

database, the competitive ceRNA network is built in Cytoscape. The gene-

drug interaction was predicted by DGIgb. Finally, quantitative real-time

polymerase chain reaction (qRT-PCR) was used to confirm five lncRNAs

from the ceRNA network.

Results: Through Venn diagram analysis, we found that 57 DElncRNAs,

6 DEmiRNAs and 317 DEmRNAs expressed abnormally in patients with

sepsis. GO analysis and KEGG pathway analysis showed that 789 GO terms

and 36 KEGG pathways were enriched. Through intersection analysis and data

mining, 5 key KEGG pathways and related core genes were revealed by GSEA.

The PPI network consists of 247 nodes and 1,163 edges, and 50 hub genes are

screened by the MCODE plug-in. In addition, there are 5 DElncRNAs,
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6 DEmiRNAs and 28 DEmRNAs in the ceRNA network. Drug action analysis

showed that 7 genes were predicted to be molecular targets of drugs. Five

lncRNAs in ceRNA network are verified by qRT-PCR, and the results showed

that the relative expression of five lncRNAs was significantly different between

sepsis patients and healthy control subjects.

Conclusion: A sepsis-specific ceRNA network has been effectively created,

which is helpful to understand the interaction between lncRNAs, miRNAs and

mRNAs. We discovered prospective sepsis peripheral blood indicators and

proposed potential treatment medicines, providing new insights into the

progression and development of sepsis.

KEYWORDS

bioinformatics analysis, competing endogenous RNA network (ceRNA network),
mRNA-miRNA-lncRNA, sepsis, therapeutic targets

Introduction

Sepsis is an infection-related condition characterized by a

systemic inflammatory reaction, often resulting in extensive

tissue damage, such as the development of multi-organ

dysfunction, systemic hypotension, renal hypoperfusion and

renal ischemia-reperfusion (Singer et al., 2016). About

18 million new cases of sepsis are diagnosed worldwide each

year, and the number is increasing year by year (Zhou et al.,

2013). According to relevant epidemiological surveys, sepsis’

morbidity and mortality rate has surpassed that of myocardial

infarction, and approximately 14,000 people die from sepsis

complications every day, making it the leading cause of death

among non-cardiac patients in intensive care units (ICUs),

posing a great threat to human health (Keppler et al., 2018;

Pellegrini et al., 2021).

Although sepsis was treated appropriately, the overall clinical

outcome was unsatisfactory. In addition, available studies suggest

that early diagnosis is quite difficult due to several complications

and the lack of effective predictive techniques (Novosad et al.,

2016). Therefore, new biomarkers linked with sepsis are urgently

needed for early diagnosis, monitoring, and therapeutic

intervention in sepsis. Many researchers have sought to

discover novel sepsis biomarkers. Previous studies suggested

that triggering receptor expressed on myeloid cells-1 (TREM-

1), IL-27, neutrophil CD64, preprotease, and cell-free plasma

DNA (cfDNA) were new promising biomarkers for sepsis

diagnosis and therapy (Sandquist and Wong, 2014). Newly

discovered biomarker classes, including microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and the

human microbiome, are also of widespread interest (Kim and

Choi, 2020). Despite the increased number of putative

biomarkers, these efforts have yet to provide satisfying

findings, necessitating more validation.

MiRNAs are single-stranded ncRNA molecules with a length

of 21–24 nucleotides that bind to complementary sequences in

the 30 untranslated regions (UTRs) of target messenger RNAs

(mRNAs), causing mRNA degradation or inhibition (Sandquist

andWong, 2014). Mirna-186 has been shown to ameliorate renal

injury caused by sepsis via the PTEN/PI3K/Akt/p53 pathway (Li

et al., 2020). LncRNAs are non-protein-coding RNAs with a

length of more than 200 nucleotides that play key roles in

biological processes, participating in post-transcriptional

regulation, cell-cell signaling, and protein metamorphosis

regulation (Mattick and Rinn, 2015). In animal experiments,

researchers have found that lncRNA-NEAT1 gene knockout can

inhibit TLR2/NF-κB signaling pathway improves myocardial

injury induced by sepsis (Wang et al., 2019). Salmena et al.

(Salmena et al., 2011) suggested that molecules may have a

regulatory function in competing for endogenous RNAs

(ceRNA) by competing with the same miRNA response

element, and the ceRNA hypothesis indicates that lncRNAs

can sponge-bind and inactivate miRNAs, eventually lowering

mRNA degradation or suppressing mRNA translation and

thereby influencing protein coding. In the background of

ceRNA network, there are few comprehensive analyses on the

association between ceRNA network and sepsis. The

identification of the interaction between ceRNA network and

sepsis may provide important enlightenment for us to better

understand the pathogenesis of sepsis.

In this work, we utilized bioinformatics approaches to detect

differentially expressed lncRNAs (DElncRNAs), miRNAs

(DEmiRNAs), and mRNAs (DEmRNAs) in the sepsis gene

expression datasets from the National Center for

Biotechnology Information Gene Expression Omnibus (NCBI

GEO) database. We created a protein protein interaction (PPI)

network and recognized hub genes. Then, in order to further

investigated the key biological functions of DEmRNAs, we

performed transcription factor (TF) enrichment, Gene

Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis and Gene set enrichment

analysis (GSEA) on DEmRNAs. Next, we built a lncRNA-

miRNA-mRNA network based on the ceRNA theory to define

the functional lncRNAs in sepsis, screen critical lncRNAs
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substantially linked to the disease, predict their molecular

regulation mechanisms, and find new targets for diagnostic

and therapy. Finally, using qRT-PCR, key lncRNAs were

molecularly confirmed (Figure 1). To the best of our

knowledge, this is the first research to analyze the differential

expression profiles of the ceRNA network in sepsis using

bioinformatics tools.

Materials and methods

GEO dataset collection

Seven expression profile datasets (GSE145227, GSE134358,

GSE174507, GSE134347, GSE28750, GSE95233, GSE57065)

were downloaded from the GEO database. GSE145227 is a

lncRNAs expression profile, involving 22 plasma samples

(10 pediatric sepsis patients vs. 12 healthy controls) and was

detected on the platform of GPL23178 (Affymetrix Human

Custom lncRNA Array). GSE134358 and GSE174507 are

expression profiles of miRNAs. 158 ICU patients with sepsis

and 82 healthy subjects were selected in GSE134358, and the

detection platform was GPL21572 (Affymetrix Multispecies

miRNA-4 Array). GSE174507 contained 12 sepsis patients and

6 control donors, and was associated the GPL25134 platform

(Agilent-070156 Human_miRNA_V21.0_Microarray 046064).

GSE134347, GSE28750, GSE95233 and GSE57065 are

expression profiles of mRNAs. The GSE134347 dataset

included gene expression profiling based on arrays of whole

blood from 156 ICU patients with sepsis and 83 healthy subjects,

and the detection platform was GPL17586 (Affymetrix Human

Transcriptome Array 2.0). The GSE28750 dataset included gene

expression profiling from 10 sepsis patients and 20 healthy

controls, and the detection platform was GPL570 (Affymetrix

Human Genome U133 Plus 2.0 Array). 51 septic shock patients

and 22 healthy volunteers were included in GSE95233, septic

shock patients were sampled twice after admission, and the

detection platform was GPL570 (Affymetrix Human Genome

U133 Plus 2.0 Array). GSE57065 included 28 ICU patients. Blood

samples were collected within 30 min, 24 h and 48 h after septic

shock and compared to 25 healthy volunteers, and the detection

platform was GPL570 (Affymetrix Human Genome U133 Plus

2.0 Array). Table 1 shows the information collected from the

FIGURE 1
Flowchart of the present study.

TABLE 1 Basic information of the 7 microarray datasets from GEO.

Type Series Platform Source name Samples (c)

lncRNA GSE14522 GPL23178 blood 22 (12/10)

miRNA GSE13435 GPL21572 blood 240 (82/15

miRNA GSE17450 GPL25134 blood 18 (6/12)

mRNA GSE13434 GPL17586 blood 239 (83/15

mRNA GSE28750 GPL570 blood 30 (20/10)

mRNA GSE95233 GPL570 blood 124 (22/10

mRNA GSE57065 GPL570 blood 107 (25/82)
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datasets. Because all data had been published into the public

domain, no Institutional Review Board approval was necessary

for this study.

Differential expression analysis

Firstly, we preprocess the original files obtained from the

GEO database, and probes relating to multiple molecules are

eliminated; when probes related to the same molecule are

discovered, only the probe with the highest signal value is

maintained. Gene analysis of differences between samples was

performed using the limma package (v3.42.0) in R software

(v3.6.3). The criteria for DElncRNAs were FDR (adjusted

p-value) < 0.05 and |log2 fold-change|>0.75. The criteria for

DEmiRNAs were FDR < 0.05 and |log2FC|>0.5. The criteria for
DEmRNAs were FDR < 0.05 and |log2FC|>1. The VennDiagram
R package was used to create a Venn diagram. The

ComplexHeatmap package (v2.2.0) and the ggplot2 package

(v3.3.3) were used to create the heatmap and volcano.

Construction of the PPI network

The PPI network was built using the online tool STRING

(https://string-db.org/) (Szklarczyk et al., 2019) and a filter

condition (combined score>0.4) based on all DEmRNAs.

Next, we used Cytoscape software (v3.8.2) to download the

interaction data and improve the PPI network to find

the important modules and hub genes (Shannon et al.,

2003). The functional modules were predicted using the

MCODE plug-in (v2.0.0) (Bader and Hogue, 2003), and the

module with a score greater than 3.5 was chosen for KEGG

pathway analyses.

Gene ontology and Kyoto encyclopedia of
genes and genomes enrichment analysis

To gain a better understanding of the DEmRNAs’ potential

functional annotation and pathway enrichment, the

clusterProfiler package (v3.14.3) (Yu et al., 2012) was used to

perform Gene Ontology (GO) analyses, including biological

process (BP), cellular component (CC), molecular function

(MF), and KEGG pathway analyses, with p < 0.05 indicating

statistically significant differences.

Gene set enrichment analysis

GSEA was used to determine the key pathways and core

genes during the development of sepsis (Subramanian et al.,

2005). The default weighted enrichment method was applied for

enrichment analysis. The random combination was set for

1,000 times. FDR < 0.25, p-value < 0.01 and |NES|> 1 were

considered significant enrichment. ClusterProfiler package

(v3.14.3) (Yu et al., 2012) was applied to visualize the results,

which presented the dysfunctional pathways in sepsis population

compared with the normal population. Ggplot2 package (v3.3.3)

was used for ridge plot.

Transcription factor enrichment analysis

We performed an enrichment analysis of transcription factor

(TF) using the ChEA3 software for DEmRNAs, as these TFs were

likely to be useful in further research into the mechanism of

sepsis.

Construction of the ceRNA network

The lncRNA-miRNA-mRNA network was built according to

ceRNA’s hypothesis. Target DEmRNAs were predicted for

DEmiRNAs using miRDB (http://www.mirdb.org/) (Wang,

2016), miRWalk (http://mirwalk.umm.uni-heidelberg.de/)

(Sticht et al., 2018), and TargetScan database (http://www.

targetscan.org/) (Fromm et al., 2015) respectively. The key

mRNAs, we thought, were the intersection results of mRNAs

predicted in the database and DEmRNAs analyzed in the R

software. Then, we used DIANA-LncBase (v2) database

(Agarwal et al., 2015) databases to predict miRNA-bound

lncRNAs. Accordingly, the intersection of lncRNAs predicted

in the database and DElncRNAs analyzed in R software is

considered the important lncRNAs. Finally, all of the data was

imported into Cytoscape to create a lncRNA-miRNA-mRNA

network.

Drug prediction

DGIgb (v3.0) was used to forecast drugs for mRNAs in the

lncRNA-miRNA-mRNA network.

Verification of key lncRNAs

To validate the key identified lncRNAs, we selected nine

blood samples from sepsis patients (Table 2) and nine blood

samples from healthy control subjects for qRT-PCR molecular

validation. We extracted total RNA from the blood using the

TRIpure reagent (ELK Biotechnology, EP013). M-MLV

Reverse Transcriptase reagent Kit (ELK Biotechnology,

EQ002) was used to synthesize cDNA according to the

manufacturer’s instructions. Then, qRT-PCR was performed

using the QuFast SYBR Green PCR Master Mix Kit (ELK
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Biotechnology, EQ001) to quantify the expression levels of

lncRNAs, on a real-time PCR system (StepOnePlus; Applied

Biosystems). GAPDH was used as the internal reference gene.

Finally, we analyzed the data by the comparative quantitative

cycle (Cq) (2-ΔΔCq) method. The research was approved by

the Ethics Committee of Hubei Provincial Hospital of

Traditional Chinese Medicine. All patients provided written

informed consent for research on their specimens.

Supplementary Table S1 shows the primer sequences used

for qRT-PCR.

Statistical analysis

The data were given as mean ± standard deviation (SD).

Statistical analyses were operated by SPSS 26.0 (SPSS, Inc.,

Chicago, IL, United States) and GraphPad Prism 7.0 software.

Each experiment was carried out at least three times. The

student’s t-test was applied to analyze two sets of parameters.

The statistical significance was p < 0.05.

Results

Differential expression analysis

Seven microarray datasets from the GEO were included in

this study. GSE145227 contained 57 DElncRNAs

(32 downregulated and 25 upregulated) (Figure 2A).

GSE134358 contained 153 DEmiRNAs (122 downregulated

and 31 upregulated) (Figure 2B), and GSE174507 contained

60 DEmiRNAs (31 downregulated and 29 upregulated)

(Figure 2C). Besides, GSE134347 and GSE63492 contained

601 (313 downregulated and 288 upregulated) (Figure 2D)

and 1,261 (613 downregulated and 648 upregulated)

DEmRNAs (Figure 2E), respectively. GSE95233 contained

1,306 DEmRNAs (546 downregulated and 760 upregulated)

(Figure 2F), and GSE57065 contained 1,126 DEmRNAs

(583 downregulated and 543 upregulated) (Figure 2G). Next,

heatmap and volcano plot analyses were used to visualize these

DEGs. Volcano plot analyses were shown in Figures 2A–G,

heatmap plot analyses were shown in Supplementary Figures

S1–S7. Venn diagram identified 6 (3 downregulated and

3 upregulated) common DEmiRNAs and 317

(128 downregulated and 189 upregulated) common

DEmRNAs (Figures 2H–K).

PPI network analysis

Online tool STRING generated a PPI network of

differentially expressed mRNAs with 247 nodes and

1,163 interaction connections (Supplementary Figure S8).

Following MCODE’s functional module study, four clusters

were proposed as functional modules (scores>3.5). In cluster

1, there were 27 downregulated mRNAs (Figure 3A); in cluster 2,

there were 12 upregulated and one downregulated mRNAs

(Figure 3C); in cluster 3, there were 1 upregulated and four

downregulated mRNAs (Figure 2F); and in cluster 4, there were

5 upregulated and one downregulated mRNAs (Figure 3G).

According to function analysis, genes in cluster 1 were

predominantly related with Th17 cell differentiation,

hematopoietic cell lineage, and Th1 and Th2 cell

differentiation (Figure 3B); those in cluster 2 were primarily

associated with IL-17 signaling pathway (Figure 3D); those in

cluster 3 were primarily associated with tuberculosis,

phospholipase D signaling pathway, natural killer cell

mediated cytotoxicity, platelet activation, sphingolipid

signaling pathway, T cell receptor signaling pathway, Fc

epsilon RI signaling pathway, viral myocarditis, and asthma

(Figure 3F); and those in cluster 4 were primarily associated

with Salmonella infection (Figure 3H).

TABLE 2 Detailed clinical information of 9 sepsis patients.

Patients Age (year) Sex Body mass
index (kg/m2)

SOFA score APACHE II
score

Patient1 49 Female 22.07 11 25

Patient2 55 Female 26.44 10 28

Patient3 71 Male 22.54 12 23

Patient4 69 Female 18.45 9 26

Patient5 77 Male 20.72 8 25

Patient6 58 Male 25.65 9 24

Patient7 70 Female 19.32 10 26

Patient8 66 Male 17.78 10 27

Patient9 74 Female 21.83 8 25

SOFA: sequential organ failure assessment; APACHE: acute physiology and chronic health evaluation.
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Transcription factor enrichment analysis

The TF targets of common DEmRNAs were enriched by

using ChEA3 so that their distribution and biological roles could

be investigated further. TFs can regulate transcription and so

perform a regulatory role. The results showed that the functions

of the TF targets included transcription, immune response, and

animal organ morphogenesis (Figure 4A). The TFs were

FIGURE 2
DElncRNAs, miRNAs and mRNAs between the sepsis and normal samples. (A) Volcano map of the GSE145227 dataset. (B) Volcano map of the
GSE134358 dataset. (C) Volcano map of the GSE174507 dataset. (D) Volcano map of the GSE134347 dataset. (E) Volcano map of the
GSE63492 dataset. (F) Volcano map of the GSE95233 dataset. (G) Volcano map of the GSE57065 dataset. Red spots represent upregulated genes,
and blue spots represent downregulated genes in volcano maps. (H,I) Venn diagrams represent the intersections of upregulated and
downregulated DEmiRNAs in the GSE134358 and GSE174507 datasets. (J,K) Venn diagrams represent the intersections of upregulated and
downregulated DEmRNAs in the GSE134347, GSE63492, GSE95233 and GSE57065 datasets. DElncRNAs, differentially expressed lncRNAs;
DEmiRNAs, differentially expressed miRNAs; DEmRNAs, differentially expressed mRNAs.
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FIGURE 3
PPI network of DEmRNAs and four cluster modules extracted by MCODE. The interaction network between proteins coded by DEmRNAs was
comprised of 317 nodes and 1,163 edges (Supplementary Image 8). (A, C, E, G) Use Cytoscape plugin MCODE to filter the important modules in
DEmRNAs, and then filter the final 4 important modules according to the filtering criteria. The nodes represent proteins of DEmRNAs, while each edge
represents one protein–protein association. Larger and darker nodes (proteins) indicatemore interactions (higher degree). Red diamonds represent
the upregulated genes, and green hexagons represent the downregulated genes. Ellipses represent downregulated mRNAs and rectangles represent
upregulated mRNAs. (B, D, F, H) Results of the 4 important modules pathway enrichment analyses. DEmRNAs, differentially expressed mRNAs.
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FIGURE 4
The functions, locations, and the top-ranking TF targets of the 317 DEmRNAs. (A) The main biological functions of the 317 DEmRNAs. (B) The
tissue distributions of the TF targets of the 317 DEmRNAs. (C) The top 10 TF targets of the 317 DEmRNAs. DEmRNAs, differentially expressedmRNAs;
TF: transcriptional factor.
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validated that were distributed into diverse tissues, such as the

brain, testis, and adipose tissue (Figure 4B). The top 10 TFs

included LTF, STAT4, TABX21, ZNF831, FOXP3, SCML4,

NFATC2, TFEC, ZNF80, and SP140L (Figure 4C).

GO and KEGG analysis

To further investigate the biological function of the

DEmRNAs, the clusterProfiler package in R was used to

perform GO and KEGG enrichment analyses. In the

DEmRNAs upregulation group, 373 GO terms and 2 KEGG

pathways were enriched, and in the DEmRNAs downregulation

group, 416 GO terms and 34 KEGG pathways were significantly

enriched. In the biological process (BP) group, upregulated

DEmRNAs were primarily enriched in neutrophil activation,

neutrophil degranulation, neutrophil activation involved in

immune response, and neutrophil mediated immunity

(Figure 5A). In contrast, downregulated DEmRNAs were

mostly enriched in T cell activation, lymphocyte differentiation,

and immune response-activating cell surface receptor signaling

pathway (Figure 5B). In the cellular component (CC) group,

upregulated DEmRNAs were primarily enriched in specific

granule and tertiary granule (Figure 5A). In contrast,

downregulated DEmRNAs were mostly enriched in external

side of plasma membrane and plasma membrane receptor

complex (Figure 5B). In the molecular function (MF) group,

upregulated genes were primarily enriched in transferase

activity (transferring glycosyl groups), carbohydrate binding,

and transferase activity (transferring hexosyl groups)

(Figure 5A), while downregulated DEmRNAs were mostly

enriched in protein serine/threonine kinase activity, DNA-

binding transcription activator activity (RNA polymerase II-

specific), and cytokine binding (Figure 5B). Moreover, KEGG

pathway analysis showed that the upregulated DEmRNAs were

significantly enriched in fluid shear stress and atherosclerosis,

starch and sucrose metabolism (Figure 5C). In contrast,

downregulated DEmRNAs were considerably enriched in

hematopoietic cell lineage, Th17 cell differentiation, and

Th1 and Th2 cell differentiation (Figure 5D).

GSEA enrichment of expression datasets

To determine the potential function of bona fide hub genes in

sepsis, we performed GSEA on expression data sets from the

GPL570 and GPL17586 platforms, searching for KEGG pathways

enriched in high-expression samples. The results showed that five

KEGG pathways were enriched after screening: primary

immunodeficiency, T cell receptor signaling pathway, natural

killer cell mediated cytotoxicity, antigen processing and

presentation, cell adhesion molecules cams (Table 3) (Figure 6).

FIGURE 5
Analysis results of co-expressed genes in the GO and KEGG pathways. (A,B) Results of GO enrichment analysis of UP and DOWN DEmRNAs.
(C,D) Results of KEGG pathway analysis of UP and DOWNDEmRNAs. DEmRNAs, differentially expressed mRNAs; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; UP, upregulated; DOWN, downregulated.
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Construction of the lncRNA-miRNA-
mRNA

We used the miRDB database to predict target mRNAs of

DEmiRNAs, these mRNAs were also found in the miRWalk

database and TargetScan database. Then, we found 28 mRNAs

(17 downregulated and 11 upregulated) by intersecting the mRNAs

in the predicted mRNA database and DEmRNAs (Figures 7A,B).

Furthermore, the LncBasev.2 database was utilized to predict the

lncRNAs that regulate miRNAs (threshold>0.7), and the Venn

TABLE 3 The significant enriched KEGG pathways from GSEA results (p < 0.01, FDR < 0.25).

ID NES P-value FDR

GPL57065 GSE134347 GPL57065 GSE134347 GPL57065 GSE134347

Primary_immunodeficiency -2.197614 -2.2530588 0.00188 0.0017762 0.046734 0.0307762

T_cell_receptor_signaling_pathway -1.948881 -2.0513538 0.001927 0.0016474 0.046734 0.0307762

Natural_killer_cell_mediated_cytotoxicity -1.693193 -1.8844068 0.001996 0.0016393 0.046734 0.0307762

Antigen_processing_and_presentation -2.155499 -2.6139374 0.002016 0.0016667 0.046734 0.0307762

Cell_adhesion_molecules_cams -1.876137 -2.2705177 0.002028 0.0016393 0.046734 0.0307762

NES: normalized enrichment score; FDR: false discovery rate.

FIGURE 6
Gene set enrichment analysis (GSEA) was used to analyze the KEGG pathways enrichment in different groups. (A)GSEA using three data sets of
GPL57065. (B) GSEA using GSE134347. (C) GPL57065 ridge plot. (D) GSE134347 ridge plot.
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diagram was used to intersect DElncRNAs with the predicted

lncRNAs. The ceRNA hypothesis states that between lncRNAs

and mRNAs, there is a positive regulatory interaction, but

between miRNAs and mRNAs, there is a negative regulatory

relationship. Finally, we identified 5 lncRNAs (3 downregulated

and 2 upregulated) with substantial variations in expression during

sepsis (Figures 7C,D). Using Cytoscape, we built the ceRNA

network. When lncRNAs were downregulated, the network

consisted of 3 downregulated lncRNA nodes, 3 upregulated

miRNA nodes, 17 downregulated mRNA nodes, 4 lncRNA-

miRNA pairs, and 49 miRNA-mRNA pairs (Figure 7E). When

lncRNAs were upregulated, the network consisted of 2 upregulated

lncRNA nodes, 3 downregulated miRNA nodes, 11 upregulated

mRNA nodes, 2 lncRNA-miRNA pairs, and 27 miRNA-mRNA

pairs (Figure 7F).

Drug prediction for mRNA in lncRNA-
miRNA-mRNA network

Drug action analysis was done for twenty-eight differential

mRNAs included in the lncRNA-miRNA-mRNA network, and

FIGURE 7
Construction of ceRNA network in sepsis. (A,B) Venn diagram showing the number of distinct and overlapping mRNAs among the
downregulated and upregulated DEmRNAs, and the mRNAs identified with miRDB, miRWalk, and TargetScan. The overlapping areas show the
downregulated and upregulated mRNAs identified by three online tools. (C,D) Venn diagram showing the number of distinct and overlapping
lncRNAs among the downregulated and upregulated DElncRNAs, and the lncRNAs identified with LncBase. The overlapping areas show the
downregulated and upregulated lncRNAs identified by Lncbase online tool. (E,F)Construction of a complete lncRNA-miRNA-mRNA ceRNA network
according to the upregulation and downregulation of lncRNAs. The yellow rectangles represent DElncRNAs, the pink ellipses represent DEmiRNA,
and the red diamonds represent DEmRNAs. DElncRNAs, differentially expressed lncRNAs; DEmiRNAs, differentially expressed miRNAs; DEmRNAs,
differentially expressed mRNAs.
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seven genes were predicted as molecular targets of drugs,

involving 45 drug-target pairs (Figure 8). We found that

alkaline phosphatase, biomineralization associated (ALPL) was

targeted by 27 drugs. Adrenomedullin (ADM) was targeted by

7 drugs. UDP-glucose ceramide glucosyltransferase (UGCG) and

CD5 molecule (CD5) were targeted by 4 drugs. ST6 beta-

galactoside alpha-2,6-sialyltransferase 1 (ST6GAL1), DNA

damage regulated autophagy modulator 1 (DRAM1) and

ADAM metallopeptidase domain 9 (ADAM9) were targeted

by 1 drug.

Verification of key lncRNAs

We chose nine blood samples from sepsis patients and nine

blood samples from healthy control subjects for qRT-PCR

molecular validation to ensure the authenticity of the major

lncRNAs we found. The results showed that the relative

expression of five lncRNAs were significantly different (p <
0.05) between sepsis patients and healthy control subjects

(Figure 9).

Discussion

Sepsis is one of the most serious medical diseases nowadays.

Sepsis and severe sepsis account for 30% and 37% of patients in

European intensive care units, respectively (Vincent et al., 2006).

Gaieski et al. (Gaieski et al., 2013) point out that after heart

disease and cancer, severe sepsis is the third leading cause of

mortality in the United States. However, the paucity of

FIGURE 8
Drug prediction for mRNA in lncRNA-miRNA-mRNA network. The orange ellipses represent mRNAs, and the yellow rectangles represent drugs
targeted by mRNAs.

FIGURE 9
Comparison of the relative expression of lncRNAs between
sepsis patients and healthy control subjects. pp, p < 0.001; ppp,p <
0.001.
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biomarkers for the diagnosis of sepsis provides a significant

hurdle for the early and accurate clinical diagnosis of sepsis.

High-throughput biotechnology was developed lately and is now

frequently employed in fundamental research (Layton et al.,

2019). From a genetic standpoint, it is possible to demonstrate

hundreds of genetic differences in illness progression, which may

give a biological basis for the early and accurate diagnosis of

sepsis (van der Poll et al., 2017). The hub genes of sepsis were

obtained through comprehensive analysis and the ceRNA

network was constructed, which laid the foundation for future

research into the mechanism of sepsis progression.

In the present study, 57 DElncRNAs (32 downregulated and

25 upregulated), 6 DEmiRNAs (3 downregulated and

3 upregulated) and 317 DEmRNAs (128 downregulated and

189 upregulated) were obtained from 7 different datasets in

the GEO database. Seven mRNAs (ALPL, ADM, UGCG, CD5,

ST6GAL1, DRAM1 and ADAM9) were predicted to interact with

drugs among twenty-eight mRNAs in the network. Both PPI and

lncRNA-miRNA-mRNA networks confirmed that ETS proto-

oncogene 1 (ETS1), C-Cmotif chemokine receptor 7 (CCR7) and

CD5 are key genes of the ceRNA network in sepsis. The Ets

family is made up of proteins that share a DNA binding domain

(winged helix-turn-helix motif), which enables Ets proteins to

interact with GGAA/T-containing DNA elements and play a

crucial role in mammalian immune regulation (Wasylyk et al.,

1993). ETS1, a member of the family, interacts with AP-1 and

NF-B, among other transcription factors, and has a role in the

regulation of Tumor necrosis factors, integrins, extracellular

proteases, and genes involved in the survival of inflammatory

cells (Barthel et al., 2003; Chung et al., 2005). Ryter et al. (Ryter

et al., 2002) found that ETS1 is an important regulator of human

natural killer (NK) cell development and terminal differentiation.

Ruan et al. (Ruan et al., 2019) found that ETS1 plays an

important role in the establishment of intercellular crosstalk

and contributes to the commitment of cardiac lineage in

pluripotent state. Heme oxygenase (HO)-1 is a cytoprotective

enzyme that also has anti-inflammatory properties (Ryter et al.,

2002). It has been found that EST1 can induce the activity of HO-

1 promoter, drive the expression of HO-1 and prevent excessive

inflammatory reaction and oxidative tissue damage during

endotoxemia (Chung et al., 2005).

The protein encoded by CCR7 belongs to the G protein

coupled receptor family, which activates B and T cells and is

found in many lymphoid tissues. It has been demonstrated that it

can inhibit memory T cell migration to inflammatory tissue while

also promoting dendritic cell maturation (Bill et al., 2022). In

lymph nodes, the signal mediated by this receptor regulates the

homeostasis of T cells and might possibly be involved in T cell

activation and polarization, as well as the pathogenesis of chronic

inflammation (Bill et al., 2022). Flores-Mejía et al. (Flores-Mejía

et al., 2019) examined blood samples from sepsis patients and

healthy volunteers and found that CCR7 was overexpressed in

NK cells. Yang et al. (Yang et al., 2022) found that the antigen-

presenting cell related marker CCR7 on fresh γδ T cells was

considerably greater in sepsis patients compared to the control

group. In addition, Almansa et al. (Almansa et al., 2015) believe

that quantitative analysis of the expression level of CCR7 and

other genes is helpful to evaluate the disease severity and

immunological changes of sepsis. Yin et al. (Yin et al., 2021)

found that astaxanthin can downregulate the expression of

CCR7 to avoid the immune dysfunction of dendritic cells,

which provides a novel approach for the potential treatment

of sepsis. Therefore, we speculate that CCR7 has a critical role in

the diagnosis and treatment of sepsis.

The CD5 gene produces a protein that belongs to the

scavenger receptor cysteine-rich (SRCR) class and functions as

a T cell, B1Mura cell, and B-CLL receptor (Burgueño-Bucio et al.,

2019). This receptor has been reported to be a positive and

negative regulator of T cell receptor (TCR) signal transduction, as

well as a negative regulator of B cell receptor (BCR) signal

transduction (Soldevila et al., 2011). Recent studies have

shown that CD5 promotes T cell survival by preventing

activation-induced cell death in autoreactive T cells, promotes

peripheral regulatory T cell induction from the start, regulates

Th17 and Th2 differentiation, and modulates immune response

via regulating dendritic cell function (Burgueño-Bucio et al.,

2019). Because CD5 receptor is an immune checkpoint regulator,

it can be exploited as an immunological intervention target in a

variety of diseases, including cancer, autoimmune disease, and

infection (Freitas et al., 2018). Vera et al. (Vera et al., 2009) found

that CD5 lymphocyte receptors can detect the presence of

conservative fungal components and support the therapeutic

vaule of soluble CD5 forms in the treatment of fungal sepsis.

Therefore, CD5 is predicted to become a biomarker and

therapeutic target of sepsis.

Transcription factor enrichment analysis, GO analysis and

KEGG analysis were performed on 317 DEmRNAs. The

functions of transcription factor targets mainly include

transcription, immune response and morphological changes of

animal organs, which indicates that sepsis is a systemic immune

response caused by pathogens, microorganisms or endotoxins,

and severe patients have multiple organ failure or even death

(Singer et al., 2016). GO analysis revealed that in BP, it was

primarily enriched in neutrophil activation, T cell activation and

lymphocyte differentiation. Overwhelming evidence suggests

that neutrophil activation directly associated to the emergence

and progression of sepsis (Ren et al., 2020). Recent evidence

suggests that the function and differentiation of T lymphocytes,

including the increased differentiation from Th1 (inflammation)

to Th2 (anti-inflammation) and Treg cells, are related to the

development of immunosuppression during the late stages of

sepsis (Mori et al., 2015). Among CC, it is mainly enriched in

specific granule and plasma membrane. Maitra et al. (Maitra

et al., 2010) pointed out that matrix metalloproteinase-9, which is

a crucial effector in acute inflammatory disorders like sepsis, is

deposited in the tertiary granules of polymorphonuclear
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leukocytes. Johar et al. (Rahman et al., 2021) showed that the

changes of cell permeability, gas exchange, cytokine migration

and protein transport caused by sepsis were closely related to the

plasma membrane. In MF, it is mainly enriched in transferase

activity and protein serine/threonine kinase activity. Some

studies have pointed out that in sepsis patients, glutathione

S-transferase A1-1 can be an early indicator of liver

dysfunction (Yan et al., 2014). Urinary glutathione

S-transferase can be a good early indicator of renal

dysfunction in intensive care patients with sepsis (Walshe

et al., 2009). Previous research has indicated that serine/

threonine kinases play a significant role in sepsis-induced

inflammation (Packiriswamy et al., 2016). KEGG pathway

analysis showed that it was primarily enriched in fluid shear

stress and atherosclerosis pathway, hematopoietic lineage

pathway and Th cell differentiation related pathway. No

studies have reported the direct relationship between fluid

shear stress and atherosclerosis pathway and sepsis, but

increasingly evidence show that this pathway has a strong link

to vascular oxidative stress, inflammation and atherosclerosis

(Jen et al., 2013). Muranski et al. (Muranski and Restifo, 2013)

have found that regulating the differentiation pathway of

Th17 cells can regulate the expression of interleukin-17 and

prevent excessive inflammation, which is very important for the

protection of immunity and host cells. Interestingly, allergies can

be caused by inappropriate growth of human Th2 cells, while

autoimmunity can be caused by an excessive Th1 response, so the

balance between Th1/Th2 subsets is regulated through Th1 and

Th2 cell differentiation pathways, thus playing an important role

in the treatment of sepsis (Amsen et al., 2009). These biological

processes discovered by GSEA are obviously similar to the above

results. All of the information presented above suggest that our

conclusions are quite trustworth and that these DEmRNAs play a

key role in sepsis.

During the previous several decades, including lncRNAs and

miRNAs, they have attracted more and more attention because of

their role in physiological and pathological responses. At present,

more and more researches have been conducted to give evidence to

support the ceRNA hypothesis that lncRNAs carrying MREs can

competitively combine with some miRNAs, thus, at the post-

transcriptional stage, controlling miRNA-mediated downstream

target gene silencing (Khorkova et al., 2015). For example, Zhang

et al. (Zhang et al., 2020) have demonstrated that lncRNA

TCONS_00016233 aggravates septic acute renal injury induced

by LPS by binding to miR-22-3p and preventing the down-

regulation of miR-22-3p-mediated apoptosis inducing factor

mitochondria associated 1 (AIFM1); Wang et al. (Wang et al.,

2021) found that lncRNA-LUCAT1 can regulate the expression of

ROCK1 in H9C2 cells induced by LPS by secreting miR-642a.

Knockout of lncRNALUCA T1 can inhibit myocardial injury in

sepsis induced by LPS; An et al. (An et al., 2021) believe that

LncRNA ZFAS1, as the ceRNA of miR-138-5p, up-regulates the

expression of SESN2, thus improving cardiomyocyte scorch death

induced by sepsis. Therefore, it is of great significance to investigate

the role and regulationmechanism of lncRNAs as ceRNAs in sepsis,

as well as their potential role in diagnostics.

In this research, DEmiRNAs was used to predict the

combination of lncRNAs and mRNAs of miRNAs to

construct a ceRNA network. There were five lncRNAs in the

network, including PCED1B-AS1, SATB1-AS1 and

LINC01422 down-regulated, BACH1-IT2 and FAM157C up-

regulated, but what role these lncRNAs in the progression of

sepsis is not clear. It is reported that there is a certain relationship

between PCED1B-AS1 and immune cells. Fan et al. (Fan et al.,

2021) found that PCED1B-AS1 overexpression in hepatocellular

carcinoma cells has been shown to impair the activity of co-

cultured T cells and cause immunosuppression; In addition, Li

et al. (Li et al., 2019) demonstrated that by directly binding to

miR155, PCED1B-AS1 controls macrophage apoptosis and

autophagy. Acute myeloid leukemia (AML) is an invasive

hematopoietic tumor. Zhou et al. (Zhou et al., 2021a) found

that inhibition of SATB1-AS1 can up-regulate miR-580 and

down-regulate OAS2, thus increasing the sensitivity of AML

cells. The rest of lncRNAs have not been reported before, and we

are attempting to clarify their molecular mechanism in the

occurrence and progression of sepsis using ceRNA hypothesis.

We hypothesize that BACH1-IT2 and FAM157C may influence

target gene expression in sepsis through competitive binding to

has-miR-3188. To support our prediction, miR-3188 was shown

to be downregulated in atherosclerotic patients, which

significantly promoted macrophage damage by reducing cell

viability, inducing apoptosis and increasing the production of

inflammatory cytokines (including IL-1 β, IL-6, MCP-1 and

TNF- α) (Li et al., 2017). Furthermore, Zhou et al. (Zhou

et al., 2021b) found that miR-3188 can promote cell cycle by

up-regulating cyclin cyclind1 and down-regulating p21 protein

expression in polycystic ovary syndrome, resulting in abnormal

proliferation of granulosa cells. For lncRNA SATB1-AS1-has-

miR-4286-mRNA network, studies have shown that has-miR-

4286 can improve vascular endothelial cell injury by inhibiting

transforming growth factor-β1 (TGF-β1) and reducing apoptosis
and inflammation (He et al., 2020). We speculate that PCED1B-

AS1 may competitively combine with has-miR-7977 to change

the expression of downstream sepsis-related mRNAs. Fichna

et al. (Fichna et al., 2021) suggested that miR-7977 is

increased in CD4+T cells of autoimmune Eddie’s disease

patients and plays a crucial function in autoimmune diseases;

Horiguchi et al. (Horiguchi et al., 2016) found that miR-7977 can

reduce the hematopoietic support ability of bone marrow CD34+

cells. Our results show that LINC01422 can combine not only

with has-miR-7977, but also competitively with has-miR-197-

3p. Qiao et al. (Qiao et al., 2021) demonstrated that miR-197-3p

attenuates apoptosis, inflammation and oxidation of epithelial

cells. Similarly, Akkaya-Ulum et al. (Akkaya-Ulum et al., 2021)

believe that miR-197-3p combines with the interleukin-1β
receptor type I (IL1R1) gene and plays an anti-inflammatory
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role in monocytes and macrophages. Finally, we utilized qRT-

PCR to confirm the expression levels of five important lncRNAs,

and all of them were substantially different between sepsis

patients and healthy control participants. Future research

should focus on the precise function and mechanism of these

lncRNAs in the occurrence and progression of sepsis.

Although our current findings have good clinical

implications and may serve as a foundation for future study

into the mechanism of sepsis, there are certain limitations to be

aware of. First, our sample size is relatively small, so future study

should investigate a bigger sample size to confirm the veracity of

our findings. Secondly, the particular mechanism of lncRNA-

miRNA-mRNA network of sepsis has to be researched further for

in vivo and in vitro confirmation.

Conclusion

In conclusion, we constructed a sepsis-specific ceRNA

network to help further understand the relationship between

lncRNAs, miRNAs, and mRNAs, and found that five lncRNAs

were closely related to sepsis. Moreover, these discoveries will

contribute to a better understanding of the pathogenesis and

molecular mechanism of sepsis. We believe that our research will

help to the progression of new molecular targets that will enable

the early diagnosis and targeted treatment of sepsis patients.
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