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Genetic selection for resilience is essential to improve the long-term sustainability

of the dairy cattle industry, especially the ability of cows to maintain their level of

production when exposed to environmental disturbances. Recording of daily milk

yield provides an opportunity to develop resilience indicators based on milk losses

and fluctuations in daily milk yield caused by environmental disturbances. In this

context, our study aimed to explore milk loss traits and measures of variability in

daily milk yield, including log-transformed standard deviation of milk deviations

(Lnsd), lag-1 autocorrelation (Ra), and skewness of the deviations (Ske), as indicators

of general resilience in dairy cows. The unperturbed dynamics of milk yield as well

asmilk losswerepredictedusing an iterative procedureof lactation curvemodeling.

Milk fluctuations were defined as a period of at least 10 successive days of negative

deviations in which milk yield dropped at least once below 90% of the expected

values. Genetic parameters of these indicators and their genetic correlation with

economically important traits were estimated using single-trait and bivariate animal

models and 8,935 lactations (after quality control) from 6,816 Chinese Holstein

cows. In general, cows experienced an average of 3.73 environmental disturbances

with a milk loss of 267 kg of milk per lactation. Each fluctuation lasted for 19.80 ±

11.46 days. Milk loss traits are heritable with heritability estimates ranging from

0.004 to 0.061. The heritabilities differed between Lnsd (0.135–0.250), Ra

(0.008–0.058), and Ske (0.001–0.075), with the highest heritability estimate of

0.250±0.020 for Lnsdwhen removing the first and last 10 days inmilk in a lactation

(Lnsd2). Based onmoderate to high genetic correlations, lower Lnsd2 is associated

with lessmilk losses, better reproductive performance, and lowerdisease incidence.

These findings indicate that among the variables evaluated, Lnsd2 is the most

promising indicator for breeding for improved resilience in Holstein cattle.
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1 Introduction

Dairy cows are affected by many environmental disturbances

throughout their lives (Friggens et al., 2017; Berghof et al., 2018;

Silpa et al., 2021), including diseases (Rajala-Schultz et al.,

1999a), heat stress (Polsky and von Keyserlingk, 2017; Shi

et al., 2021; Wankar et al., 2021), cold stress (Hu et al.,

2021a), reproductive events (Macciotta et al., 2011; Guarini

et al., 2019), and feed availability and quality (Friggens et al.,

2016). These disturbances often result in temporary drop or

continuous fluctuations in daily milk yield, which can be

considered as milk losses relative to the expected lactation

curve (Ben et al., 2021). The pattern of milk losses differs

among cows and events and can last for long periods. For

instance, mastitis events could affect milk yield for more than

30 days, with a milk loss of 50–300 kg per event (van Soest et al.,

2016; Adriaens et al., 2021a). Milk fever can result in lower milk

yield for up to 6 weeks with milk losses ranging from 1.1 to 2.9 kg

per day (Rajala-Schultz et al., 1999b). Intensive genetic selection

for milk production traits has led high-yielding cows to

experience negative energy balance (NEB) more often in early

lactation, which in turn can result in higher incidences of

metabolic disorders (Friggens et al., 2013; Brito et al., 2021).

Heat stress also contributes to a reduction in milk yield by

affecting endocrine and metabolism processes (Wankar et al.,

2021), with reports of milk yield declining by approximately

0.41 kg/d when the temperature and humidity index (THI)

exceeds 69 (Bouraoui et al., 2002). However, in the past,

production performance and lactation dynamics were mainly

analyzed using low frequency test-day records (e.g., weekly or

monthly; Adriaens et al., 2021b) due to limitations in large-scale

data recording. Disturbances are difficult to be monitored when

they are of short duration and in the middle of a test-day interval

(Elgersma et al., 2018). With the spread of high frequency milk

recording equipment, longitudinal data generated by sensors

may contain additional information for deriving novel

breeding goals (Peng et al., 2009; Brito et al., 2020, 2021).

To study perturbations in milk production, a theoretically

undisturbed lactation curve–the expected lactation curve (ELC),

needs to be predicted. The overall objective of predicting an ELC

is to eliminate the effect of short-term environmental

perturbations on daily milk yield and to reduce the variability,

thus enabling the characterization of the lactation potential of

each cow in the absence of environmental perturbations (Ben

et al., 2021). Identifying environmental perturbations to fit ELC is

difficult as information about disturbances is often unavailable

(Garcia-Baccino et al., 2021). Therefore, it becomes a mainstream

approach to calculate ELC from the actual daily milk yield.

Compartment model (Ben et al., 2021), fourth-order

polynomial quantile regression model (Poppe et al., 2020),

nonparametric trend model (Poppe et al., 2020), and Wood

model incorporating iterative procedures (Adriaens et al.,

2021a; 2021b) have been used to fit ELC. An important

limitation of these approaches is the generalization of the ELC

to a single model, thus ignoring differences in lactation trends

among cows, which is a topic interest of this current study.

The deviation between the observed and expected daily milk

yield can be used for describing the longitudinal dynamics of milk

yield and identifying milk losses (Adriaens et al., 2021b). Describing

deviations in daily milk yield is needed for evaluating the impact of

environmental disturbances in milk yield and for applying effective

management decisions. Meanwhile, this provides an opportunity for

studying the resilience of lactating cows. Resilience can be defined as

the animals’ ability to maintain their level of production under

environmental disturbances or to recover rapidly to the state

pertained before exposure to an environmental disturbance

(Colditz and Hine, 2016). Resilience has not been included in

any national dairy cattle selection goal to date (Berghof et al.,

2018; Poppe et al., 2022b). This is due to the insufficient research

on the definition of the best approaches for quantifying resilience,

biological validation of resilience indicators, and the selection

directions for resilience which are partially encompassed by

health, reproduction, and longevity traits in the current selection

goals. Genetically selecting for improved resilience could improve

herd productivity (Colditz and Hine, 2016; Poppe et al., 2022b),

result in better animal welfare (Mulder and Rashidi, 2017), reduce

the use of drugs and antibiotics for treating diseases (Konig andMay,

2019), and is significantly associated with easier management and

lower production cost of herds (Berghof et al., 2018). Many studies

have proposed a data-driven approach to derive resilience indicators

based on longitudinal data such as daily milk yield (Elgersma et al.,

2018; Poppe et al., 2020; Adriaens et al., 2021b; Ben et al., 2021).

These methods rely on the assumption that individuals with less

fluctuation in longitudinal records are more resilient than those with

greater variability. Poppe et al. (2020) used fluctuations in daily milk

yield to derive resilience indicators and proposed the log-

transformed variance of deviations from lactation curves as the

best indicator. Elgersma et al. (2018) defined three traits related to the

number of drops inmilk yield using the Student t test and found that

the variance of milk production is the best resilience indicator to

predict udder health, ketosis, and longevity. Optimal resilience

indicators should have high heritability to enable effective genetic

selection for practical applications and ideally favorable genetic

correlation with economically important traits. However, the

potential of milk loss traits, which directly reflect fluctuations in

daily milk yield (e.g., magnitude and duration of milk loss), as

suitable resilience indicators has not been previously explored.

Furthermore, although resilience indicators based on variability in

longitudinal data have been proposed, the calculation of resilience

indicators and the genetic relationships with traits already included

in selection indexes need to be explored in Chinese Holstein herds.

In this context, the main objectives of this study were 1) to

characterize lactation curves and milk yield variability in

Holstein cattle; and 2) to investigate the genetic background

of milk loss traits and variability traits as resilience indicators and

their genetic correlations with economically important traits.
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Results of this study will contribute to the identification of

appropriate resilience indicators to be used for genetically

improving resilience of high-yielding Holstein cattle.

2 Materials and methods

2.1 Datasets

A total of 11,536,488 daily milk yield records from

22,666 Holstein cows raised in three herds (owned by a single

entity) located in Hebei (China) were available for this study. The

data was collected from January 2017 to January 2021. The daily

milk yield of each cow was extracted from the farm management

software. Animals were housed in free-stall systems, fed total

mixed rations, and milked three times per day on rotary milking

systems. The pedigree of cows with phenotypic records after data

editing were traced back as many generations as possible. The

final pedigree included 21,574 females and 2,447 males born

from 1907 to 2018.

Additional economically important traits were also included in

this study. Five reproduction traits were evaluated, including age at

first calving in heifers (AFC), age at first insemination in heifers

(AFS), interval from first to last insemination in heifers (IFL_H) and

cows (IFL_C), and interval from calving to first insemination (ICF),

all measured in days. Additional details about the definition of the

reproduction traits can be found in Guo et al. (2014) and Liu et al.

(2017). Three longevity traits, also measured in days, included the

number of days from the first calving to the end of the first (Lon1)

and second (Lon2) lactation or culling, and productive life (PL),

which refers to the number of days from the first calving to culling or

death. The definitions of the longevity traits are described in Zhang

et al. (2021). Furthermore, four health traits included udder health

(UDDE), reproductive disorders (REPR), metabolic disorders

(METB), and digestive disorders (DIGS), as detailed in Wang

et al. (2022). The health traits were defined as binary traits with a

value of one indicating if a cowhad at least one health problem at any

time during the corresponding lactation, and 0 otherwise. The

number of individuals with reproduction traits, longevity traits,

and health traits ranged from 3,871 (IFL_H) to 8,860 (ICF), 883

(PL) to 2,610 (Lon1), and 5,921 (METB and DIGS) to 7,347 (UDDE

and REPR), respectively. These traits were recorded until June 2021.

The descriptive statistics of these traits used to estimate genetic

correlations are presented in Supplemental Table S1.

2.2 Data analyses

2.2.1 Data pre-processing
From the initial dataset, only milk yield records measured

from days in milk (DIM) 1–305 days, milk yield from 2.5 to

100 kg per day, and non-duplicated records were retained for

further analyses. Only cows with age at first calving between

600 and 1,800 days were included in the study. The specific data

editing steps, with information on the quality control used, the

number of cows, lactations, and records after each editing step,

are presented in Supplemental Table S2 (Items 1–9). After the

quality control, 22,366 lactations (parity 1 = 7,995; parity 2 =

6,160; parity 3 + = 8,211) were kept for further analyses. A total of

27.61% of lactations had more than 300 milk yield records and

1.85% of the lactations had all 305 milk yield records.

2.2.2 Lactation clustering
Cluster analysis was performed on all lactations in order to

group lactations with similar patterns of daily milk yield. The

objectives of clustering were 1) to identify and eliminate outliers

in each group, 2) to obtain the expected milk yield for missing

values for DIM 1–4 days and DIM 305 within the imputation

process of missing daily records described in Section 2.2.3, and 3)

to account for differences in lactation patterns in the statistical

models fitted for resilience indicators.

To minimize clustering divergences caused by differences in

the range of milk yield per lactation and emphasize inter-cluster

homogeneity (Lee et al., 2020), the phenotypic records were

normalized based on the Z-score transformation method.

Afterwards, for DIM 31 to 270 within each lactation, the

average milk yield for each 10 days was calculated, and

24 average values for each lactation per cow were obtained.

Based on these average milk yield records, a principal component

analysis (PCA) was performed, and the first five principal

components (PC1 to PC5) accounting for 70% of the total

variation were considered as attribute points to further

measure the similarity across lactations.

The Agglomerative Hierarchical Clustering algorithm

(Murtagh and Contreras, 2011) was used to cluster and group

lactations, and Euclidean distance was used to measure intra-

class distances between two lactations as (Warren Liao, 2005):

d(A, B) �

��������������∑N
i�1
(mA,i −mB,i)2√√

where d(A, B) is the distance between lactations A and B; mA,i

and mB,i are the ith PC in lactation A and B, respectively; and, N is

the total number of PCs (equal to 5). Tominimize the square sum

of intra-class deviations and maximize the square sum of inter-

class deviations, the Ward linkage method was used to measure

inter-class distance between group pairs (Murtagh and

Contreras, 2011).

The silhouette coefficient was adopted for the selection of the

number of clusters (Aranganayagi and Thangavel, 2007). Six was

the most appropriate number of clusters due to the highest

silhouette coefficient, and additional details about the

silhouette coefficient of different number of clusters were

presented in Supplemental Table S3. The average trends of

daily milk yield for each cluster are presented in Figure 1.
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Among the six groups, the largest cluster (Figure 1A) included

10,192 lactations (45.57%), while only 173 lactations (0.77%)

were included in the smallest cluster (Figure 1F). Descriptive

statistics on lactation clustering of the final dataset are detailed in

Section 3.1. Within each group, the records deviating three or

more SD from the mean were removed for each DIM. A total of

96,601 outlier records (1.50%) were removed as detailed in

Supplemental Table S2 (Item 10).

2.2.3 Phenotypic data imputation
To obtain complete daily milk yield records from DIM 1 to

305, the missing records were imputed for each lactation. For

missing values for DIM 1–4 days and DIM 305, the normalized

average milk yield of the corresponding DIM in each cluster was

used. Missing milk yield was calculated as the normalized value

multiplied by the standard deviation of the non-missing milk

yield of the lactation and then added to the mean. After a series of

quality control on the record distribution, there was little

difference between the average milk yield calculated via non-

missing values and the true average milk yield. For DIM five to

304, the missing records were sequentially imputed using linear

regression interpolation in order of DIM. A total of five records

from days n − 4, n − 3, n − 2, n − 1, and n + k was used to fit a first-

order linear regression model, where k was the number of days

between day n and the next day where daily milk yield was

recorded. The regression value for day n was the filled value on

that day until all missing values were filled in for each lactation.

After imputation, 305 records of daily milk yield for

FIGURE 1
Average daily milk yield in six lactation clustering groups. The number in the upper right corner indicates the number of lactations in each
cluster. (A–F) refer to cluster group (a), (b), (c), (d), (e), and (f), respectively.
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22,366 lactations were obtained as detailed in Supplemental

Table S2 (Item 11).

2.3 Fitting individual lactation curves

To obtain the expected lactation curve (ELC) of each

parity, an iterative procedure was implemented for each

lactation with the method presented in Figure 2, and the

detailed steps are as follows:

1) A 2-sided weighted moving average filter with a window of

5 days was established in process (a), which means that the

expected milk yield on a certain day (xt) is the weighted

average of the milk yield in day xt−2, xt−1, xt, xt+1, and xt+2.
The formula is as follows:

xt � 0.1xt−2 + 0.2xt−1 + 0.4xt + 0.2xt+1 + 0.1xt+2

2) In the first iteration, it was assumed that the expected shape of

the optimal lactation curve for each lactation was different. In

process (b), four lactation curve models were used to fit each

lactation on all data, including the Wood (Wood, 1967),

Nelder (Nelder, 1966), Wilmink (Wilmink, 1987), and Ali-

Schaeffer (Ali and Schaeffer, 1987) models. The four models

can be described as:

Yt � atbe−ct(Woodmodel)
Y−1

t � a + bt−1 + ct(Neldermodel)
Yt � a + bt−0.05t + ct(Wilminkmodel)

Yt � a + bt + ct2 + dlog t + e(log t)2(Ali − Schaeffermodel)

Where Yt is the daily milk yield, t is DIM and a, b, c, d, and e are

the model parameters.

3) Calculate determination coefficient (R2) of the four models and

select the model with the highest R2 as the optimal model for

that lactation for the subsequent iterative procedure.

4) Calculate the deviations between the actual values and the

fitted values for each DIM currently retained (for the first

iteration, the number of deviations is 305), as well as the lower

quartile (LQ) and the interquartile ranges (IQR) of these

deviations.

FIGURE 2
Illustrative scheme of the process of fitting the expected lactation curve (ELC).

FIGURE 3
An illustrative example of the definition of themilk fluctuation
phase. The scatter indicates the actual daily milk yield, the red line
represents the expected lactation curve (ELC), the section AB is a
fluctuation phase, point A is the start of the fluctuation, point
B is the end of the fluctuation, and point C is the highest decrease
of the fluctuation.
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5) Remove all data with deviation less than LQ-1.5*IQR as

outliers to obtain the filtered data resulting from the iteration.

6) Check whether the number of outliers is 0 (as process (c)

showed). If not, fit the same lactation curve model on the

filtered data from the previous step, and calculate the R2 of the

model.

7) Repeat steps (4) to (6) until no outliers are identified. Up to

this step, we obtained ELC for each lactation.

8) In process (d), a secondary quality control for ELC was

performed. Only ELC with daily milk yield between 0 and

100 kg and R2 (based on the last iteration) > 0.75 were kept in

this study.

Furthermore, the lactations with 305 days milk yield

deviating three or more SD from the mean and cows with

unknown parents were excluded. Finally, 8,935 lactations were

obtained for 6,816 cows, as detailed in Supplemental Table S2

(Items 12–14).

2.4 Definition of milk loss traits and
variability traits as resilience indicators

In this study, the deviations between actual records and the

ELC fitted values for each lactation were calculated and expected

to contain information about resilience and response to

environmental disturbances in Holstein cows. These

deviations were expected to be around zero in the absence of

perturbations, while during perturbations they would be

consistently negative. The number of deviations was 305 for a

lactation. A fluctuation was defined as a period of at least

10 successive days of negative deviations for which the milk

yield dropped at least once below 90% of the ELC fitted values.

An example to illustrate the definition is presented in Figure 3,

where the scatters are the daily milk yield in a lactation and the

red line indicates the ELC. The section AB is a fluctuation phase.

The DIM at points A and B are the beginning and ending of this

fluctuation, and the DIM at point C is the highest decrease of this

fluctuation. Based on the definitions of deviation and fluctuation,

two types of traits were considered as potential resilience

indicators in this study: milk loss traits which directly reflect

fluctuations in daily milk yield and variability traits obtained by

the deviations.

The 305 days milk yield (MY305) and milk loss traits such as

the milk loss (ML; in Kg), the number of ML events (NML), the

total duration of ML events within a lactation (TDML; in days),

the percentage of ML to MY305 (MLP; in %), the duration of

each ML period (DML; in days), and milk loss in each ML period

(MLF; in Kg) were calculated for each parity. MY305 is calculated

by summing up the imputed daily milk yield which included both

measured and imputed daily records. ML refers to the sum of the

daily milk yield which dropped in all fluctuation phases in a

lactation. NML refers to the number of fluctuation events for

daily milk yield per lactation (i.e., number of ML). TDML refers

to the total duration (in days) of all fluctuation per lactation. MLP

refers to the proportion of ML to MY305 per lactation. DML and

MLF refer to the duration (in days) and ML in each fluctuation

per lactation, respectively. Thus, there may be more than one

DML and MLF per lactation.

Through the definitions of deviation, three variability traits

were explored within each parity: log-transformed standard

deviation of milk deviations (Lnsd), lag-1 autocorrelation of

milk deviations (Ra), and skewness of milk deviations (Ske).

To identify the effect of lactation stage on resilience, these three

variability traits were calculated based on four periods: the entire

lactation (Lnsd1, Ra1, and Ske1, from DIM 1–305), lactation

period when removing the first and last 10 days (Lnsd2, Ra2, and

Ske2, from DIM 11–295), during the lactation peak period

(Lnsd3, Ra3, and Ske3, from DIM 60–90), and the period

consisting of each DIM when the actual milk yield was below

the ELC fitted value (Lnsd4, Ra4, and Ske4).

2.5 Genetic analyses

2.5.1 Estimation of genetic parameters
The GLM procedure of the SAS software (version 9.4; SAS

Institute Inc.) was performed to identify the systematic effects

that should be included in the genetic models on milk loss traits

and variability traits. Variance and co-variance components were

estimated using the Average Information Restricted Maximum

Likelihood algorithm implemented in the DMU software

(Madsen et al., 2006). Heritability of MY305, milk loss traits

(ML, NML, TDML, and MLP), and all variability traits was

estimated based on single-trait animal model and heritability of

DML and MLF was estimated based on single-trait repeatability

animal model.

The single-trait animal model used can be described as:

yijklmnp � hysi + pj + ck +ml + af cm + an + eijklmnp (1)

where yijklmnp are the phenotypic records for MY305, milk

loss traits (ML, NML, TDML, and MLP), and all variability

traits, hysi is the fixed effect of herd-calving year-calving

season (42 levels); pj is the fixed effect of parity (five levels,

including 1, 2, 3, 4, and 5+); ck is the fixed effect of cluster

group (six levels); ml is the fixed effect of lactation curve

model (four levels–the four lactation models described in

Section 2.3); afcm is the fixed effect of age at first calving

(four levels, including 22 or less months of age, 23 to 24, 25 to

26, and 27 months and older); an is the random additive

genetic effect; eijklmnp is the random residual effect. It was

assumed that a ~ N(0,Aσ2a) and e ~ N(0, Iσ2e), where A is

the matrix of additive genetic relationships constructed

based on pedigree information, σ2a is the additive genetic

variance, I is an identity matrix, and σ2e is the residual

variance.
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The single-trait repeatability animal model can be

described as:

yijklmnpqr � hysi + pj + ck +ml + af cm + DIMn

+ap + peq + eijklmnpqr
(2)

where yijklmnpqr are the phenotypic records for DML and MLF,

DIMn is the fixed effect of lactation stage at the beginning of the

ML (four levels, including 1–44 days, 45–99 days, 100–199 days,

and 200–305 days); peq is the random permanent environmental

effect with p e ~ N(0, Iσ2pe). Other fixed and random effects are

the same as in the single-trait model.

The genetic correlations between all pairs of resilience

indicators were calculated based on bivariate animal models.

The bivariate-trait animal model included the same effects as the

single-trait model. The assumptions of additive genetic and the

residual effects are:

[ a1
a2

] ~ N[( 0
0
), A ⊗ ( σ2

a1
σa1a2

σa1a2 σ2
a2

)]
[ e1
e2
] ~ N[( 0

0
), I ⊗ ( σ2

e1
σe1e2

σe1e2 σ2
e2

)]
where ai is the additive genetic effects for trait i, σ2ai is the

additive genetic variance of trait i, σaiaj is the additive genetic

covariance between trait i and j, ei is the residual effect for trait

i, σ2ei is the residual variance of trait i, σeiej is the residual

covariance between trait i and j. The heritability, genetic

correlations, and reliability of the estimated breeding value

(EBV) for each trait were calculated as described in Su et al.

(2007) and Luo et al. (2021).

2.5.2 Genetic correlation with milk production,
reproduction, longevity, and health traits

Genetic correlations between resilience indicators with

economically important traits included milk production,

reproduction, longevity, and health traits were calculated

based on bivariate animal models. The milk production trait

refers to MY305 calculated in this study. For the milk production

trait and resilience indicators, the animal models used are the

same as model [1]. For the five reproduction traits, the fixed

effects included in the models were herd-year of measurement,

parity and calving season, and the random effects of animal

additive genetic, permanent environment, and residual effects,

which are detailed in Guo et al. (2014) and Liu et al. (2017). For

the three longevity traits, the fixed effects of age at first calving,

herd-year of birth, and birth season and the random effect of

additive genetic and residual effects were fitted and are detailed in

Zhang et al. (2021). Furthermore, for the four health traits, herd-

year of measurement, parity, and calving season were fitted as

fixed effects in the model and animal additive genetic, permanent

environment, and residual as random effects, as detailed inWang

et al. (2022). These analyses were implemented using the DMU

software (Madsen et al., 2006).

2.6 Validation

To validate the resilience indicators evaluated in this study and

determine whether selection on these indicators can improve the

“true” resilience of offspring, thirty-four bulls with at least

40 daughters in first parity with divergent resilience indicators

were retained. For each bull, the daughters were divided in

prediction and validation datasets based on their birth date with

allocation of 80% (older) and 20% (younger) of the animals in the

prediction (n = 2,566) and validation (n = 641) datasets, respectively.

The EBV of the resilience indicators for each cow in the validation

dataset were estimated based on the phenotypes of the prediction

dataset and pedigree information, and the model was the same as

model 1. In total, the top and bottom 20% resilient animals were

selected based on their EBV for each resilience indicator. The

differences in EBV for production, reproduction, longevity, and

health traits between the top and bottom resilience EBVs were

statistically compared based on a Student t test.

3 Results

3.1 Lactation clustering and lactation
curves

The descriptive statistics for the lactation clusters of the final

dataset are presented in Supplemental Table S4. The final number of

lactations in each cluster group was reduced from the number

presented in Figure 1, but the order of numbers of lactations and the

trend of daily milk yield within cluster groups did not change. The

largest cluster [group (a)] included 3,877 lactations (43.39%), while

the smallest cluster [group (f)] contained 16 lactations (0.18%). The

differences of lactation curves among the six cluster groups mainly

focused on parity, peak day, peak yield, and lactation persistency.

The average parity for groups (a), (b), (c), (d), (e), and (f) was 2.67 ±

1.11, 2.12 ± 1.17, 2.03 ± 1.18, 1.37 ± 0.85, 1.36 ± 0.83, and 2.12 ± 1.18,

respectively. The highest peak yield was in group (a) (48.27 ±

10.40 kg), with 10.80 kg difference from the lowest group [group

(e), 37.47 ± 6.94 kg]. The peak day in group (a), (b), (c), and (f) was

at the early lactation period (DIM 1–99), while the peak day in

groups (d) and (e) was at the mid lactation (DIM 100–199). The

latest peak day was observed for group (e) with 172.14 ± 57.40 days.

For the three groups with the highest number of lactations, the

groups (a) and (b) presented the highest average parity, normal peak

day, and a clear downward phase after peak day, which is more

representative of multiparous cows’ lactation curve. The group (d)

presented a lower average parity and lower peak yield and slower

decline in late lactation than groups (a) and (b), which represents the

majority of primiparous cows. The groups (c), (e), and (f) exhibited

an atypical pattern (5.3%) characterized by higher milk yield in early

lactation, a delayed lactation peak, or a slower decline ofmilk yield in

late lactation, while some reversal shaped curves and continuously

increasing curve were also included in these groups.
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The comparisons of four lactation curve models are

presented in Supplemental Table S5. There were

5,137 lactations with the Ali-Schaeffer model as the optimal

model in fitting ELC, accounting for 57.49%. While the Nelder

model included the lowest number of lactations (731 lactations).

After the iterative procedure and quality control, the average

amount of data used to predict the ELC was 283.02 ± 14.76, and

the average R2 of the ELC was 0.89 ± 0.06. The major difference

between the four models was the percentage of the first parity.

There were 66.94%, 82.17%, 31.15%, and 37.03% of lactations in

which the first parity data were fitted with Wood, Nelder,

Wilmink, and Ali-Schaeffer model, respectively.

In this study, cluster group and lactation curve model had a

significant effect (P < 0.05) on milk loss traits and variability

traits. The least squares mean estimates (LSM) of various levels

on ML and Lnsd2 and multiple comparisons based on

Bonferroni t corrected are presented in Supplemental Table

S6. The LSM of ML and Lnsd2 in group (c) and (f) were

significantly higher than that in other groups (P < 0.05), and the

ML and Lnsd2 were lowest in group (a). For the lactation curve

model, the ELC calculated by Ali-Schaeffer model had the

highest ML and Lnsd2, whereas the lowest ones were

calculated by Wilmink model.

3.2 Descriptive statistics and genetic
parameters of resilience indicators

The distributions of MY305, milk loss traits, and variability

traits are presented in Supplemental Figure S1. MY305, NML,

and TDML were normally distributed and other milk loss traits

(ML, MLP, DML, and MLF) showed a right skewed distribution.

TABLE 1 Descriptive statistics of 305 days milk yield and resilience indicators in Chinese Holstein cattle.

Trait1 N Mean SD Min Max Coefficient of
variation

MY305, kg 8,935 9,603.12 2,354.72 2,534.32 17,845.34 24.52

NML, time 8,935 3.73 1.37 0 9 36.73

TDML, d 8,935 73.12 26.42 0 211 36.13

ML, kg 8,935 267.00 185.04 0.00 2,170.31 69.30

MLP, % 8,935 2.90 2.14 0.00 30.47 73.79

DML, d 31,606 19.80 11.46 10 167 57.88

MLF, kg 31,606 67.48 77.80 2.82 1,989.74 115.29

Lnsd1 8,935 1.11 0.41 −0.01 2.62 36.94

Lnsd2 8,935 0.97 0.38 −0.11 2.41 39.18

Lnsd3 8,935 0.89 0.44 −0.47 2.65 49.44

Lnsd4 8,935 0.78 0.46 −0.52 2.38 58.97

Ra1 8,935 0.83 0.08 0.36 0.98 9.64

Ra2 8,935 0.87 0.05 0.66 0.99 5.74

Ra3 8,935 0.83 0.07 0.46 0.99 8.43

Ra4 8,935 0.77 0.10 0.37 0.98 12.99

Ske1 8,935 −1.82 1.92 −10.65 6.81 105.49

Ske2 8,935 −0.96 0.79 −4.97 3.29 82.29

Ske3 8,935 −0.68 0.76 −3.24 4.18 111.76

Ske4 8,935 −1.57 0.57 −5.16 0.10 36.31

1N, the number of records or indicators; MY305, 305 days milk yield; NML, number of milk loss events; TDML, total number of days for milk loss per lactation; ML, sum of the milk yield

which dropped in all fluctuation phases in a lactation; MLP, the percentage of ML, to MY305; DML, length of each milk loss period in days; MLF, milk loss in each milk loss period; Lnsd,

log-transformed standard deviation of milk deviations; Ra, lag-1, autocorrelation of milk deviations; Ske, skewness of milk deviations. These three variability traits were calculated based on

records from the entire lactation (Lnsd1, Ra1, and Ske1, from DIM 1–305), lactation period when removing the first and last 10 days (Lnsd2, Ra2, and Ske2, from DIM 11–295), during the

lactation peak period (Lnsd3, Ra3, and Ske3, from DIM 60–90), and the period consisting of each DIM, when the actual milk yield was below the expected lactation curve (ELC) fitted value

(Lnsd4, Ra4, and Ske4), respectively.

FIGURE 4
The distribution of days inmilk (DIM) at the start of milk loss in
each lactation.
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The variability traits had different distribution characteristics in

the four periods evaluated. All four Lnsd variables were normally

distributed and the four Ra variables showed a left skewed

distribution. Ske1, Ske2, and Ske4 were left skewed while

Ske3 was right skewed.

The descriptive statistics for MY305, milk loss traits, and

variability traits are presented in Table 1. MY305 ranged from

2,534.32 kg to 17,845.34 kg, with an average of 9,603.12 ±

2,354.72 kg. In general, cows experienced 3.73 ±

1.37 perturbations per lactation, ranging from 0 to 9. Cows in

parity 1, 2, and 3 + experienced 3.70 ± 0.02, 3.76 ± 0.03, and

3.78 ± 0.03 perturbations per lactation, respectively. Only

32 lactations (0.36%) had no perturbations, while 3.54%,

14.08%, 26.98%, 27.53%, and 27.51% lactations had 1, 2, 3, 4,

and 5 or more perturbations, respectively. The average TDML

was 73.12 ± 26.42 days, with an average ML of 267.00 ± 185.04 kg

(2.90% to average MY305). For the cows with the most severe

milk loss, the TDML was 221 days, with ML of 2,170.31 kg

(30.47% of average MY305). For each perturbation, the

average DML was 19.80 ± 11.46 days and MLF was 67.48 ±

77.80 kg on average. The coefficient of variation for DML and

MLF was 57.88% and 115.29%, respectively. The highest MLF

was 1,989.74 kg, which lasted for 167 days. The distribution of

DIM at the beginning of ML is presented in Figure 4. There were

larger risks for ML from DIM 5–15, DIM 90–110, and DIM

270 and greater based on the prevalence of variability, while

lower risks in mid-late lactation stage (DIM 120–250). The

greatest risk of ML was in early lactation, with 12.73% ML

events beginning within the first 20 days after calving. The

average Lnsd1 was 1.11 ± 0.41, which meant the range of the

95% confidence interval for the deviation of actual milk yield

from the expected values was ±5.94 kg. Among the Lnsd

variables, the largest and lowest variation was observed for

Lnsd4 and Lnsd1 with a coefficient of variation of 58.97% and

36.94%, respectively. Among the four Ra variables, the highest

mean value was Ra2 (0.87) which was 0.04–0.10 higher than the

other Ra, and its minimum value was 0.66 (0.2–0.3 higher than

the other Ra variables). The coefficient of variation for Ra

variables was small, with the highest being Ra4 (12.99%) and

the lowest being Ra2 (5.74%). The average of four Ske variables

were all less than 0. Ske3 had the highest average of −0.68 ±

0.76 and Ske1 had the lowest average of −1.82 ± 1.92. The

variation of the four Ske variables was quite different, with the

coefficient of variation ranging from 36.31% to 111.76%.

Estimates of variance components and heritability for

MY305, milk loss traits, and variability traits are presented

in Table 2. The heritability for milk loss traits ranged from

0.004 ± 0.003 (DML) to 0.061 ± 0.016 (ML), all of which had

low heritability estimates. All four Lnsd variables had

moderate heritability estimates (from 0.135 to 0.250).

Lnsd2 had the highest heritability at 0.250 ± 0.021,

followed by Lnsd4 at 0.184 ± 0.021. Similar heritability

estimates were observed for Lnsd1 and Lnsd3. The

heritabilities for Ra and Ske were all below 0.10, ranging

from 0.001 ± 0.005 (Ske2) to 0.075 ± 0.016 (Ske1). Ra1

(0.058 ± 0.015) and Ske1 (0.075 ± 0.016) had the highest

heritability estimates among Ra and Ske variables.

The genetic correlations among the variability traits are

presented in Table 3. The genetic correlations within each

trait were high among the four periods. For instance, the

genetic correlations among the four Lnsd variables ranged

from 0.93 ± 0.02 to 0.99 ± 0.00, and among the four Ra

variables ranged from 0.69 ± 0.17 to 0.99 ± 0.12. Within each

lactation period, the genetic correlations across the variability

traits were not consistent. The genetic correlations between Lnsd

and Ra were positive across the different periods, with a

minimum of 0.28 ± 0.14 (Lnsd1 and Ra1) and a maximum of

0.77 ± 0.06 (Lnsd2 and Ra2). The genetic correlations between

Lnsd and Ske as well as Ra and Ske varied considerably across

lactation periods. For instance, positive genetic correlations were

observed in the first (between Lnsd1 and Ske1; and, Ra1 and

TABLE 2 Estimates of additive genetic variance (σ̂2a ), permanent
environment variance (σ̂2pe), residual variance (σ̂2e), and heritability
(ĥ2) for 305 days milk yield, milk loss traits, and variability traits.

Trait1 N σ̂2
a (σ̂2pe) σ̂2

e ĥ2

MY305, kg 8,935 861,242.143 2,704,320.109 0.242 ± 0.036

NML, time 8,935 0.043 1.740 0.024 ± 0.010

TDML, d 8,935 9.155 647.551 0.014 ± 0.008

ML, kg 8,935 1,758.075 26,958.841 0.061 ± 0.016

MLP, % 8,935 0.182E-04 0.397E-03 0.044 ± 0.013

DML2, d 31,606 0.546 (0.698) 125.352 0.004 ± 0.003

MLF, kg 31,606 29.506 (167.004) 5,430.781 0.005 ± 0.003

Lnsd1 8,935 0.016 0.100 0.137 ± 0.020

Lnsd2 8,935 0.027 0.080 0.250 ± 0.020

Lnsd3 8,935 0.020 0.131 0.135 ± 0.020

Lnsd4 8,935 0.031 0.137 0.184 ± 0.020

Ra1 8,935 0.304E-03 0.495E-02 0.058 ± 0.015

Ra2 8,935 0.539E-04 0.187E-02 0.028 ± 0.011

Ra3 8,935 0.578E-04 0.407E-02 0.014 ± 0.008

Ra4 8,935 0.809E-04 0.975E-02 0.008 ± 0.007

Ske1 8,935 0.221 2.732 0.075 ± 0.016

Ske2 8,935 0.496E-03 0.553 0.001 ± 0.005

Ske3 8,935 0.019 0.495 0.037 ± 0.012

Ske4 8,935 0.004 0.304 0.013 ± 0.008

1N, the number of records or indicators; MY305, 305 days milk yield; NML, number of

milk loss events; TDML, total number of days for milk loss per lactation; ML, sum of the

milk yield which dropped in all fluctuation phases in a lactation; MLP, the percentage of

ML toMY305; DML, length of each milk loss period in days; MLF, milk loss in eachmilk

loss period; Lnsd, log-transformed standard deviation of milk deviations; Ra, lag-1

autocorrelation of milk deviations; Ske, skewness of milk deviations. These three

variability traits were calculated based on records from the entire lactation (Lnsd1, Ra1,

and Ske1, from DIM 1–305), lactation period when removing the first and last 10 days

(Lnsd2, Ra2, and Ske2, from DIM 11–295), during the lactation peak period (Lnsd3,

Ra3, and Ske3, from DIM 60–90), and the period consisting of each DIM when the

actual milk yield was below the expected lactation curve (ELC) fitted value (Lnsd4, Ra4,

and Ske4), respectively.
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Ske1) and fourth periods (between Lnsd4 and Ske4; and, Ra4 and

Ske4) and negative correlations in the third period (between

Lnsd3 and Ske3; and, Ra3 and Ske3).

The genetic correlations among the milk loss traits and between

milk loss traits and variability traits are presented in Table 4. The

three traits with the highest heritability among the three variability

traits (Lnsd2, Ra1, and Ske1) are presented. Positive genetic

correlations were observed between different milk loss traits,

ranging from 0.21 ± 0.21 (ML and NML) to 0.78 ± 0.13 (TDML

and MLP). Lnsd2 and Ra1 had positive genetic correlations with

milk loss traits, ranging from 0.09 ± 0.32 (Ra1 and TDML) to 0.96 ±

0.01 (Lnsd2 and ML), with the exception of Ske1 which had mostly

negative genetic correlations. However, only Lnsd2 had statistically

significant genetic correlations with all four milk loss traits at the 5%

level. There were moderate to high genetic correlations between

Lnsd2 and all milk loss traits, ranging from 0.45 ± 0.14 (NML) to

0.96 ± 0.01 (ML).

3.3 Genetic correlation with milk
production, reproduction, longevity, and
health traits

The genetic correlations of resilience indicators with

production, reproduction, longevity, and health traits are

presented in Table 5. The genetic correlations of DML and

MLF with routinely evaluated traits are not presented because

the analyses did not converge.

The estimated genetic correlations between milk loss traits

(NML, TDML, and MLP) and MY305 were negative and ranged

from −0.46 ± 0.14 (NML) to −0.75 ± 0.15 (TDML), except for a

positive genetic correlation between ML and MY305 (0.60 ± 0.08).

The genetic correlation between variability traits and MY305 were

positive and ranged from 0.53 ± 0.09 (Ske1) to 0.80 ± 0.04 (Lnsd2).

The estimated genetic correlations between milk loss traits,

variability traits and reproduction, longevity, and health traits

TABLE 3 Genetic (rG) and phenotypic (rP) correlations among variability traits1.

Lnsd1 Lnsd2 Lnsd3 Lnsd4 Ra1 Ra2 Ra3 Ra4 Ske1 Ske2 Ske3 Ske4

Lnsd12 0.93 (0.02) 0.96 (0.02) 0.93 (0.02) 0.28 (0.14) 0.43 (0.15) 0.62 (0.15) 0.38 (0.25) 0.09 (0.13) — −0.61 (0.12) 0.45 (0.24)

Lnsd2 0.79 (0.00) 0.99 (0.01) 0.99 (0.00) 0.70 (0.07) 0.77 (0.06) 0.76 (0.10) 0.70 (0.14) 0.51 (0.10) — −0.68 (0.09) 0.74 (0.17)

Lnsd3 0.57 (0.01) 0.74 (0.01) 0.99 (0.01) 0.67 (0.10) 0.15 (0.28) 0.50 (0.16) 0.57 (0.19) 0.35 (0.13) — −0.75 (0.10) 0.85 (0.17)

Lnsd4 0.76 (0.00) 0.93 (0.00) 0.67 (0.01) 0.63 (0.09) 0.70 (0.08) 0.73 (0.12) 0.54 (0.16) 0.56 (0.11) — −0.67 (0.10) 0.74 (0.20)

Ra1 0.15 (0.01) 0.49 (0.01) 0.31 (0.01) 0.47 (0.01) 0.78 (0.10) 0.69 (0.17) 0.77 (0.19) 0.88 (0.06) — −0.09 (0.21) 0.81 (0.18)

Ra2 0.45 (0.01) 0.66 (0.01) 0.43 (0.01) 0.62 (0.01) 0.57 (0.01) 0.80 (0.16) 0.99 (0.12) 0.61 (0.15) — 0.15 (0.28) 0.54 (0.28)

Ra3 0.24 (0.01) 0.35 (0.01) 0.60 (0.01) 0.32 (0.01) 0.29 (0.01) 0.50 (0.01) 0.74 (0.32) 0.32 (0.24) — −0.37 (0.29) 0.50 (0.35)

Ra4 0.46 (0.01) 0.60 (0.01) 0.37 (0.01) 0.70 (0.01) 0.48 (0.01) 0.82 (0.00) 0.40 (0.01) — — 0.53 (0.46)

Ske1 0.46 (0.01) 0.09 (0.01) 0.07 (0.01) 0.03 (0.01) 0.48 (0.01) 0.09 (0.01) 0.04 (0.01) 0.05 (0.01) — −0.17 (0.19) 0.61 (0.19)

Ske2 --3 — — — — — — — — — —

Ske3 0.15 (0.01) 0.17 (0.01) 0.21 (0.01) 0.30 (0.01) 0.05 (0.01) 0.12 (0.01) 0.18 (0.01) — 0.13 (0.01) — −0.78 (0.31)

Ske4 0.07 (0.01) 0.05 (0.01) 0.11 (0.01) 0.16 (0.01) 0.05 (0.01) 0.09 (0.01) 0.07 (0.01) 0.23 (0.01) 0.29 (0.00) — 0.14 (0.01)

1The genetic correlations are presented above the diagonal while the phenotypic correlations are below the diagonal.
2Lnsd, log-transformed standard deviation of milk deviations; Ra, lag-1, autocorrelation of milk deviations; Ske, skewness of milk deviations. These three variability traits were calculated

based on records from the entire lactation (Lnsd1, Ra1, and Ske1, from DIM 1–305), lactation period when removing the first and last 10 days (Lnsd2, Ra2, and Ske2, from DIM 11–295),

during the lactation peak period (Lnsd3, Ra3, and Ske3, from DIM 60–90), and the period consisting of each DIM, when the actual milk yield was below the expected lactation curve (ELC)

fitted value (Lnsd4, Ra4, and Ske4), respectively.
3-- means that the analyses did not converge.

TABLE 4 Genetic and phenotypic correlations among milk loss traits and genetic correlations between milk loss traits and variability traits.

s N2 ML NML TDML MLP Lnsd2 Ra1 Ske1

ML, kg 8,935 0.21 (0.21) 0.29 (0.23) 0.48 (0.13) 0.96 (0.01) 0.62 (0.13) 0.51 (0.16)

NML, time 8,935 0.39 (0.01) 0.69 (0.20) 0.58 (0.18) 0.45 (0.14) 0.23 (0.24) −0.27 (0.21)

TDML, d 8,935 0.66 (0.01) 0.67 (0.01) 0.78 (0.13) 0.58 (0.14) 0.09 (0.32) −0.41 (0.30)

MLP, % 8,935 0.89 (0.00) 0.39 (0.01) 0.67 (0.01) 0.54 (0.08) 0.16 (0.20) −0.02 (0.18)

1The genetic correlations among milk loss traits are presented above the diagonal while the phenotypic correlations are below the diagonal in the first four columns, while the genetic

correlations between milk loss traits and variability traits are presented in the last three columns; ML, sum of the milk yield which dropped in all fluctuation phases in a lactation; NML,

number of milk loss events; TDML, total number of days for milk loss per lactation; MLP, the percentage of ML to MY305; Lnsd2, log-transformed standard deviation of milk deviations

based on the lactation when removing first and last 10 DIM; Ra1, lag-1 autocorrelation of milk deviations based on the entire lactation; Ske1, skewness of milk deviations based on the entire

lactation. Lnsd1, Ra2 and Ske2 are the traits with the highest heritability among the three variability traits, respectively.
2N: number of records that were used to calculate the genetic correlations.
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were mostly moderate to high while most of them were not

significantly different from zero because of the high standard

errors. There were favorable and unfavorable genetic

correlations for ML with AFC (0.25 ± 0.05), AFS (−0.22 ±

0.39), IFL_H (−0.86 ± 0.66), IFL_C (−0.16 ± 0.36), and ICF

(0.41 ± 0.18), while the genetic correlations between NML and

reproduction traits were all positive. For variability traits, the

genetic correlations between Lnsd2 and reproduction traits

were positive and ranged from 0.05 ± 0.03 (AFS) to 0.59 ±

0.20 (IFL_C), and were all statistically significant at the 5%

level. However, for the other two variability traits, the genetic

correlations ranged from −0.19 ± 0.06 (Ske1 and IFL_H) to

0.49 ± 0.17 (Ske1 and ICF). There were negative genetic

correlations between NML and Lon2, TDML and Lon2, MLP

and all longevity traits, ranging from -0.97 ± 0.03 (MLP and

Lon1) to −0.19 ± 0.03 (TDML and Lon2), whereas the other

estimates between milk loss traits and longevity traits were not

significantly different from zero. The genetic correlations

between variability traits and longevity traits were positive

and ranged from 0.02 ± 0.10 (Lnsd2 and Lon2) to 0.49 ±

0.23 (Lnsd2 and PL). Positive genetic correlations, ranging

from 0.18 ± 0.30 (NML and UDDE) to 0.70 ± 0.19 (MLP

and REPR) were obtained between milk loss traits and UDDE

and REPR. The genetic correlations between milk loss traits and

METB and DIGS were mostly unfavorable. Similar correlations

were obtained in the genetic correlations between variability

traits and health traits. Among all health traits, UDDE had the

highest genetic correlation with Lnsd2 (0.87 ± 0.07). Among all

genetic correlations with economically important traits, the

standard errors were on average higher for the milk loss

traits than for the variability traits and Lnsd2 had the lowest

standard errors on average. For instance, the standard errors for

estimates of genetic correlations between milk loss traits and

reproduction traits ranged from 0.05 to 0.96, while the standard

errors ranged from 0.03 to 0.44 for the variability traits.

3.4 Validation

The comparisons of the milk loss, production, reproduction,

longevity, and health traits of the top and bottom 20% EBVs in

the validation dataset for Lnsd2 are presented in Table 6. The

results for Lnsd1, Lnsd3, and Lnsd4 are presented in

Supplemental Tables S7–S9. The top 20% of Lnsd EBVs

represent the 20% most resilient cows. The top 20% group

was significantly better in MLP and 0.72% lower on average

than the bottom 20% group. AFC, IFL_H, and Lon1 were

significantly better in the top 20% group than in the bottom

20% group among the ten production, reproduction, longevity,

and health traits. For AFC and IFL_H, the top 20% group was

17.83 and 17.08 days less than the bottom 20% group,

respectively, and Lon1 was 14.98 days longer. However, for

the other traits, although the differences between the two

groups were not statistically significant, there was still a trend

TABLE 5 Genetic correlations between milk loss traits, variability traits and production, reproduction, longevity, and health traits.

s N2 ML NML TDML MLP Lnsd2 Ra1 Ske1

MY305, kg 8,935 0.60 (0.08) −0.46 (0.14) −0.75 (0.15) −0.65 (0.11) 0.80 (0.04) 0.56 (0.10) 0.53 (0.09)

AFC, d 4,222 0.25 (0.05) 0.04 (0.10) 0.03 (0.07) 0.64 (0.29) 0.32 (0.03) 0.31 (0.07) −0.17 (0.06)

AFS, d 4,222 −0.22 (0.39) 0.28 (0.41) 0.87 (0.42) −0.05 (0.37) 0.05 (0.03) 0.19 (0.07) 0.37 (0.07)

IFL_H, d 3,871 −0.86 (0.66) 0.34 (0.64) −0.49 (0.83) −0.91 (0.42) 0.12 (0.03) −0.11 (0.11) −0.19 (0.06)

IFL_C, d 4,476 −0.16 (0.36) 0.25 (0.42) −0.88 (0.96) −0.32 (0.35) 0.59 (0.20) −0.02 (0.44) 0.12 (0.32)

ICF, d 8,860 0.41 (0.18) 0.38 (0.21) 0.29 (0.27) 0.48 (0.18) 0.19 (0.11) 0.14 (0.18) 0.49 (0.17)

Lon1, d 2,610 0.16 (0.17) −0.16 (0.17) 0.02 (0.11) −0.97 (0.14) 0.24 (0.09) 0.18 (0.13) 0.19 (0.15)

Lon2, d 1,350 0.01 (0.15) −0.35 (0.16) −0.19 (0.13) −0.96 (0.32) 0.02 (0.10) 0.08 (0.15) 0.28 (0.13)

PL, d 883 0.05 (0.25) −0.08 (0.10) −0.16 (0.23) −0.96 (0.74) 0.49 (0.23) 0.19 (0.15) 0.16 (0.17)

UDDE 7,347 0.58 (0.18) 0.18 (0.30) 0.21 (0.41) 0.19 (0.24) 0.87 (0.07) 0.84 (0.14) 0.62 (0.18)

REPR 7,347 0.66 (0.21) 0.49 (0.24) 0.69 (0.31) 0.70 (0.19) 0.36 (0.22) 0.30 (0.25) 0.52 (0.19)

METB 5,921 −0.49 (0.27) −0.55 (0.29) --3 0.01 (0.33) −0.47 (0.19) −0.64 (0.25) −0.95 (0.23)

DIGS 5,921 −0.87 (1.77) −0.88 (1.94) — −0.87 (1.96) 0.05 (0.89) −0.55 (1.29) −0.33 (1.34)

1MY305, 305 days milk yield; ML, sum of the milk yield which dropped in all fluctuation phases in a lactation; NML, number of milk loss events; TDML, total number of days for milk loss

per lactation; MLP, the percentage of ML to MY305; AFC, age at first calving in heifers; AFS, age at first insemination in heifers; IFL_H, interval from first to last insemination in heifers;

IFL_C, interval from first to last insemination in cows; ICF, interval from calving to first insemination; Lon1, the days from the first calving to the end of the first lactation or culling; Lon2,

the days from the first calving to the end of the second lactation or culling; PL, productive life referring the days from the first calving to culling or death; UDDE, udder health; REPR,

reproductive disorders; METB, metabolic disorders; DIGS: digestive disorders; Lnsd2, log-transformed standard deviation of milk deviations based on the lactation when removing first and

last 10 DIM; Ra1, lag-1 autocorrelation of milk deviations based on the entire lactation; Ske1, skewness of milk deviations based on the entire lactation. Lnsd1, Ra2, and Ske2 are the traits

with the highest heritability among the three variability traits, respectively.
2N: number of records that were used to calculate the genetic correlations.
3-- means that the analyses did not converge.
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by most traits towards less milk loss, better productive

performance, and lower disease incidence in the top 20%

group (more resilient animals). For instance, ML was 22.92 kg

lower, MY305 was 284.48 kg higher and UDDE was 2% lower in

the top 20% group. Nevertheless, AFS, ICF, Lon2, and REPR

showed a more favourable trend in the bottom 20% group.

4 Discussion

4.1 Analyses of longitudinal data

Traits with repeated records over time for the same

individual are known as longitudinal traits (Ning et al.,

2018; Oliveira et al., 2019), which can be expressed as a

series of independent continuous functions (Pletcher and

Geyer, 1999; Oliveira et al., 2019). When selecting a

longitudinal trait to analyze resilience in cattle, there are

several points to be considered. Firstly, the trait should be

susceptible to monitorable fluctuations by environmental

disturbances. Secondly, the time interval between record

points should be less than the duration of the fluctuation

(Mehrabbeik et al., 2021), otherwise the short-term

fluctuations will not be captured. In the process of

recording daily milk yield by automatic monitoring

equipment, missing data would inevitably occur due to

errors in identifying cows or recording. For lactations

missing more than 10 consecutive days, it was assumed

that the true fluctuations in that phase could not be known.

Afterwards, the quality of raw records is an important factor.

The two steps in the quality control which removed the most

records were the number of records within a lactation and

lactation curve, which caused removal of 19,836 and

9,780 lactations, respectively (the total number of lactations

removed was 40,183). In our study, 42.2% lactations did not

meet the threshold for the number of records within a

lactation. Culling, damage to monitoring equipment,

diseases, and a variety of other unknown reasons can result

in missing records. In particular, when cows are not milked

due to disease, data imputation in milk loss period cannot

accurately reflect the disturbance. Matching the two types of

data, milk yield and environment disturbance, could be

beneficial when possible. To ensure the lactation curve,

extreme values and R2 were controlled. This step is

important because the empirical lactation model tends to

be a quantitative representation of the phenomenon and

therefore would be more susceptible to extremes (Macciotta

et al., 2011). In addition to the observed phenotypic outliers,

some daily milk yield records derived from the imputation

analyses were also out of the expected range. The DIM

1–4 days and DIM 305 of data used for the data imputation

were based on normalized values for different cluster groups.

When the standard deviation of non-missing milk yield is too

high, the values converted back to the original scale would

likely be negative or too high. As a result, the proportion of

extremes in our study was increased. The low R2 for some

lactation curves may be due to the atypical shape, as discussed

in Section 4.2. Finally, the methodology for analyzing

longitudinal data should be precisely tailored to the

characteristics of the data. In our study, a weighted moving

average filter was established to effectively eliminate the

effects of random fluctuations in the raw data (Poppe et al.,

2020). This study serves as an example of the analysis of

longitudinal data and provides a reference for the future

processing of continuous datasets.

4.2 Lactation curve and perturbations

Lactation curve is a mathematical model used to describe the

trend of daily milk yield in a lactation (Kong et al., 2018; Oliveira

et al., 2019). There are individual differences in the shape of this

variation in daily milk yield, and even atypical lactation curves,

where the shape is completely opposite to the standard curve or

shows a linear shape with no peak yield (Lee et al., 2020). These

TABLE 6 Comparison of top 20% and bottom 20% estimated breeding
values (EBVs) in the validation dataset of Lnsd2.

Trait1 N Top 20% Bottom 20% P-Value

EBV 128 −0.02 ± 0.01 0.04 ± 0.01 <0.01**
Lnsd2 128 0.84 ± 0.31 0.87 ± 0.34 0.26

MY305, kg 128 8,814.02 ± 1,876.79 8,529.54 ± 2,044.03 0.12

ML, kg 128 195.80 ± 126.37 218.72 ± 151.70 0.09

NML, time 128 3.53 ± 1.35 3.70 ± 1.42 0.16

TDML, d 128 68.60 ± 27.08 69.72 ± 27.58 0.74

MLP, % 128 2.27 ± 1.55 2.79 ± 2.32 0.02*

AFC, d 128 698.08 ± 35.77 715.91 ± 86.65 0.03*

AFS, d 128 415.23 ± 11.51 400.60 ± 22.71 <0.01**
IFL_H, d 119 14.92 ± 35.05 32.00 ± 54.43 <0.01**
ICF, d 125 66.48 ± 7.18 64.60 ± 6.60 0.03*

Lon1, d 65 380.00 ± 60.21 365.02 ± 10.35 0.03*

Lon2, d 22 664.91 ± 114.05 668.77 ± 135.81 0.54

UDDE 105 0.28 ± 0.46 0.30 ± 0.46 0.43

REPR 105 0.19 ± 0.39 0.17 ± 0.38 0.68

METB 119 0.03 ± 0.18 0.04 ± 0.20 0.38

DIGS 112 0.02 ± 0.16 0.02 ± 0.14 0.65

1EBV, estimated breeding value; Lnsd2, log-transformed standard deviation of milk

deviations based on the lactation when removing first and last 10 DIM; MY305,

305 daysmilk yield;ML, sum of the milk yield which dropped in all fluctuation phases in

a lactation; NML, number of milk loss events; TDML, total number of days for milk loss

per lactation; MLP, the percentage of ML to MY305; AFC, age at first calving in heifers;

AFS, age at first insemination in heifers; IFL_H, interval from first to last insemination

in heifers; ICF, interval from calving to first insemination; Lon1, the days from the first

calving to the end of the first lactation or culling; Lon2, the days from the first calving to

the end of the second lactation or culling; UDDE, udder health; REPR, reproductive

disorders; METB, metabolic disorders; DIGS, digestive disorders.
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curves account for about 10–20% in a population (Macciotta

et al., 2005; Lee et al., 2020). In previous studies, atypical curves

have often been ignored or their influence on the overall dataset

has been diluted by using average values. Approximately 5.3% of

lactations in our population [groups (c), (e), and (f)] exhibited

atypical patterns and a greater tendency for atypical curves in low

parity cows. Lee et al. (2020) clustered lactation curves using the

K-medoids and the proportion of atypical curves was 18%, with

average parity of 1.25, which is similar to our results. The reason

for identifying fewer atypical curves in our study may be the

differences in the type of raw data. Peak yield can easily be missed

by using only DHI records to estimate lactation curve (Rekik and

Gara, 2004; Macciotta et al., 2005), making the curves

unrepresentative of trends of the true daily milk yield.

Meanwhile, when there is an abnormal record (too high or

too low) in the DHI records, it can have a large influence on

the lactation curve. The high milk loss and high Lnsd2 of group

(c), (e), and (f) indicated that the occurrence of atypical lactation

curves is unfavorable for milk production and resilience

breeding. The significant effects of the four lactation curve

models on resilience indicators also indicate individual

differences in the lactation trend. The identification and

application of atypical curves should also be considered in

future studies.

In our study, ELC and milk loss were estimated through an

iterative procedure. The inclusion of milk loss in the lactation

curve is a reasonable modification of the model based on

production reality. The assumption is that there is a

theoretical production potential for cows that corresponds to

their genetic potential, which may not be fully expressed due to

various environmental disturbances (Ben et al., 2021). The high

variability in ML suggests that fluctuations in daily milk yield

may help to identify environmental disturbances and reflect their

ability to adapt and resilience to disturbances (Dunne et al.,

2018). The maximum TDML was 221 days, which means that

221 days of a lactation had not reached lactation potential, and

the maximum DML was 167 days, indicating that the longest

period of milk loss in the population was 167 days. This is

uncommon and may be related with the low level of milk

yield that do not match the trend of milk yield before milk

loss occurred. This could also be an issue with the ELC fitted.

Although we used four lactation curve models expecting to

restore the lactation potential as much as possible, the models

still do not fit the data perfectly. Therefore, milk loss can be

further addressed by setting thresholds or changing to a more

optimal model in future studies. Adriaens et al. (2021b) detected

3.8 perturbations within a lactation, with milk losses ranging

from 0 to 29%, using a threshold of five consecutive days of milk

losses. Ben et al. (2021) considered each negative deviation as a

perturbation and obtained milk losses ranging from 2 to 19%.

Milk loss does not occur with the same frequency at all lactation

stages. As we set a higher threshold, disturbances of longer

duration such as clinical health events (LeBlanc, 2020;

Adriaens et al., 2021b) and reproductive events (Strucken

et al., 2015) were likely the main reasons for the high

probability of milk loss in early and late lactation. The

threshold could affect the number of perturbations identified,

with more milk loss periods detected when thresholds are

reduced. However, it is less directional and may detect

decreases in milk yield which last for a short number of days

without any cause, which is potentially not what we expect.

Therefore, additional studies on milk loss thresholds need to be

performed, such as milk yield per shift and specific

environmental disturbances.

4.3 Resilience in Holstein cattle

In the case of livestock, resilience is defined as “the capacity of

the livestock to maintain their level of production under

environmental disturbances or to recover rapidly to the state

existing before exposure to a disturbance” (Colditz and Hine,

2016; Berghof et al., 2018). Several concepts related to resilience

have been discussed in many studies: robustness (De La Torre

et al., 2015), tolerance (Bishop, 2012), environmental sensitivity

(Ehsaninia et al., 2019, 2020), and plasticity (Debat and David,

2001). Despite the wealth of research in humans (Feder et al.,

2019), studies on resilience in livestock are still incipient and

there is no clear distinction between these definitions in terms of

similarities and differences and their research strategies. It is

important to note that we focus on “general” resilience which is a

comprehensive breeding goal and not only “specific” resilience

(e.g., disease resilience, climatic resilience). When stressors

exceed the threshold of the “general” resilience, the

homeostasis of the livestock system is disrupted (van

Dixhoorn et al., 2018) and performance will be forced to shift

from one equilibrium to another (Nazarimehr et al., 2020). In this

study, there was a decline in daily milk yield until it reduced to a

minimum. Close to the minimum point, the rate of decline in

daily milk yield will become slower, a phenomenon known as

critical slowing down (Ren and Watts, 2015; Nazarimehr et al.,

2020; Mehrabbeik et al., 2021). As a consequence of this

phenomenon, the deviation between actual and expected milk

yield and its variation will increase, and the autocorrelation

between subsequent states will become increasingly tight (Ren

and Watts, 2015; Scheffer et al., 2018; van Dixhoorn et al., 2018).

Therefore, the standard deviation (Lnsd), autocorrelation (Ra),

and skewness (Ske) of the deviations have been proposed as

resilience indicators in a complex dynamic system. Lnsd reflects

the amplitude of fluctuation in daily milk yield within a lactation.

We applied Ln transformation to the standard deviation to make

the indicator normally distributed. The smaller the Lnsd, the

lower the fluctuation in milk yield, indicating that the cow is less

susceptible to environmental disturbance and therefore, more

resilient. Ra reflects the length and rate of variation of the milk

loss within a lactation. Resilient cows have greater independence
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between milk yield from successive DIM and therefore, smaller

Ra. Ske reflects the balance of positive and negative deviations,

with a high Ske indicating low milk loss. In addition, genetic

selection for resilience by milk loss traits to reduce milk loss of

cows in the general environment seems to be a potential direction

which we explored in this study. Several studies have proposed

other potential indicators, such as the rate of recovery (Adriaens

et al., 2021b), the slope of the reaction norm (Kause and Odegård,

2012), and the cross-correlation between different longitudinal

traits (Scheffer et al., 2018).

The best resilience indicators should have high heritability

and be genetically correlated with better production,

reproduction, longevity, and health traits (Poppe et al., 2020).

When high heritability resilience indicator is applied for genetic

selection, the accuracy of estimated breeding value as well as

genomic selection can be ensured, while genetic antagonism

resulting from selection for resilience causing a decrease in

milk yield can be avoided as much as possible. Therefore, the

selection of appropriate resilience indicators in this study was

based on heritability and genetic correlation with economically

important traits. Genetic correlations among the four milk loss

traits were all positive. Higher ML, more NML, longer TDML,

and higher MLP tended to coincide, which showed the overall

consistency of milk loss traits. These traits represent the

fluctuation of daily milk yield from different perspectives

when cows face environmental perturbations. However, the

highest heritability estimate was only 0.06 (ML) among milk

loss traits which is low. In this context, using milk loss traits for

breeding is less efficient. Milk loss traits are favorably genetically

associated with several production, reproduction, longevity, and

health traits, and in particular the high positive genetic

correlations between ML and UDDE and REPR indicate that

these health traits might be major causes of fluctuations

(decreases) in daily milk yield. There was no clear pattern of

genetic correlation between milk loss traits and economically

important traits, and the accuracy of the correlation estimates

was poor, with standard errors higher than estimates in some

cases which were on average higher than the standard errors for

the variability trait. This is unfavorable for the genetic selection

for resilience through milk loss traits. The high standard errors

might be due to the small data size used to estimate genetic

correlations, and the complex distribution of phenotypes in

different traits, especially for health traits. The low incidence

would result in imbalanced binary phenotypes which might also

have obstructed the accurate estimation of genetic correlations. A

larger data size is required to further determine the relationship

between milk loss traits and economically important traits. The

genetic correlations between milk loss traits andMY305 were not

consistent. The negative genetic correlations between NML,

TDML, and MLP and MY305 indicated that fewer milk

losses, shorter milk loss duration, and lower milk loss ratios

all contributed to higher milk production, as expected. In

contrast, the positive genetic correlation between ML and

MY305 might be due to scale effects. When high yielding

cows experience the same extent of environmental

disturbances as low yielding cows, and milk production drops

by the same percentage, the absolute value of milk loss is greater

in high yielding cows and therefore, ML tends to be greater in

high yielding cows. Nevertheless, the absolute amount of ML is

important, and it is more necessary to minimize milk loss on high

yielding cows to improving herd profitability, rather than

focusing on the relative percentage of ML. Therefore, as new

traits directly related to milk yield, milk loss traits should be

further evaluated, especially using complete datasets with less

missing records.

In this study, four periods of variability traits showed different

genetic characteristics. The heritability of Lnsd was higher than the

heritability of ML, whereas the heritabilities of Ra and Ske were

much lower than that of ML. Poppe et al. (2020) obtained

heritability estimates of 0.08–0.10 for Ra (higher than this study)

and 0.01–0.02 for Ske (lower than this study). The lower heritability

for Ra in this study may be due to the establishment of the 2-sided

weighted moving average filter which might have removed part of

the variability from the deviations. This approach resulted in more

similarity between the deviations of successiveDIMs, but the natural

correlation was broken. The higher heritability for Ske was due to

quality control. Ske was too sensitive to extreme milk yield (Poppe

et al., 2020). In our study, Ske was more stable and representative

due to the strict quality control and fitting procedures. Although

these three variability traits referred to different aspect of resilience

by definition, the moderate to high genetic correlations between the

three highest heritability variability traits (Lnsd2, Ra1, and Ske1)

showed that they contain overlapping information on resilience.

Lnsd2, which characterizes the amplitude of fluctuation, is also

representative of the information about the length of milk loss

periods (as presented by Ra) and the negative deviations of milk loss

(as presented by Ske). Ra and Ske also provide research value and

characterize specific information about resilience. Berghof et al.

(2018) pointed that a higher Ra was expected to indicate a slower

recovery. However, the results of our study do not provide

information on this aspect and individual milk loss require

further validations. The reasons for differences in heritability of

Lnsd are not the same for various periods. The lactation curves were

poorly fitted during the early and late lactation because the raw data

were more severely missing in these two periods, particularly when

DIMwas 1–10 and 296–305. Meanwhile, due to the high sensitivity

of the Ali-Schaeffer model to data distribution (Melzer et al., 2017),

the curvesmay take on an abnormally shapewhen there are episodic

extreme values in the records during the early and late lactation.

Therefore, calculating variability traits from entire lactation gave

poor results. In addition, it may also be inappropriate to use only

peak lactation period data due to the lower frequency of milk loss in

mid-lactation. For the fourth period, as DIM with positive

deviations were not included in the calculation, Lnsd would be

based on the negative deviations. However, the number of negative

deviations within each lactation is not the same, which results in the
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calculation of Lnsd not being based on the same scale of data volume

and comparability becomes poor. For instance, when only 1 day is

in negative deviation, the standard deviation is zero regardless of the

amount of milk loss. Therefore, Lnsd2, which has the highest

heritability, is the most suitable as a single resilience indicator.

Lower Lnsd2 was correlated with lower milk loss, better

reproductive performance, and lower disease incidence at the

genetic level with the smaller standard errors than other

resilience indicators. The results of validation for Lnsd2 also

supported this trend, although the results of the t-test were not

all statistically significant. These results supported Lnsd2 as a

potential resilience indicator. The moderate to high genetic

correlations of Lnsd2 with milk loss traits indicate that

Lnsd2 can characterize most aspects of milk loss with high

genetic correlation of 0.96. Genetic selection for resilience by

Lnsd2 is almost completely representative of selection directly

by ML and is more efficient. Among the reproduction traits, AFS

was less genetically correlated because the age at first insemination

tends to be consistent in the herd and phenotypic variation is

smaller than other reproduction traits (as presented in

Supplemental Table S1). In contrast, all other reproduction

traits associated with insemination showed significant genetic

correlations with Lnsd2, indicating a strong effect of

insemination success on daily milk yield. The genetic

correlation between Lnsd2 and UDDE was 0.87. Thus, it is

possible that a large part of fluctuations is caused by mastitis.

Mastitis-associated milk losses have a large impact on milk yield

and herd sustainability. Adriaens et al. (2021a) indicated that milk

losses ranged from 38.4 to 215.6 kg within -5–30 days around the

first treatment ofmastitis. Resilience indicators based on variability

in milk yield might reflect resistance to mastitis. However, METB

and DIGS were negatively genetically correlated with Lnsd2, in

contrast to UDDE and REPR, which was not expected. This might

be a statistical artifact. In this study, METB included milk fever,

ketosis, and displacement of abomasum which is mainly

concentrated in early lactation, and ML and Lnsd2 are lower in

early lactation than mid and late lactation. This might have caused

the misleading impression that ML and Lnsd2 were less in cows

which had METB. Meanwhile, the incidence of UDDE, PRER,

METB, and DIGS in the population was 29.2%, 10.7%, 6.5%, and

2.0%, respectively. The imbalance in the raw data for the two

binary traits (METB and DIGS) also affected the genetic

correlation accuracy and was the main reason for the high SE

of the genetic correlation estimates for DIGS. Poppe et al. (2020,

2021a, 2021b, 2021c) used moving average, moving median,

Wilmink model, and quantile regression models on raw daily

milk yield to explore and validate the variance of deviation,

autocorrelation, and skewness of daily milk yield, and the

results similarly demonstrated the potential of the variance as

resilience indicator. A major difference between our study and

theirs was how the lactation curves were fitted. A single

longitudinal trait is unlikely to be sensitive to all environmental

disturbances. When resilience indicators are defined using other

longitudinal traits (e.g., feed intake, activity level), additional

resilience mechanisms might be captured. Poppe et al. (2022a)

showed that fluctuations on daily step count data are more

sensitive to hoof health, fertility, and body condition score.

Therefore, the use of multiple high-throughput monitoring data

to study resilience in dairy cattle can avoid a heavy reliance on a

single trait (milk yield) and be more useful to herds in determining

and breeding more resilient cows.

There was a high positive genetic correlation between

Lnsd2 and MY305 and longevity traits, indicating that more

productive cows tend to be less resilient. The negative correlation

between resilience and milk yield may be explained based on the

“Resource Allocation Theory” (Rendel, 1963). High-producing

cows tend to have fewer resources to resist environmental

disturbances due to the high demand for resources for milk

production. As a result, high production leads to lower resilience.

Moreover, cows with high milk yield have an advantage against

active culling in the herd and therefore tend to have a higher

productive life (Hu et al., 2021b; Zhang et al., 2021), which might

explain the lower longevity of more resilient cows. Therefore,

when we improve resilience through genetic selection on

resilience indicator, we should also consider milk production,

the main breeding goal of dairy farming, to develop a balanced

selection index for sustainable production and balanced

breeding. Resilience is a comprehensive trait and its economic

value is not only related to production, health, and functional

traits, but also has additional economic values which are not

included in the current breeding goal. For instance, high resilient

cows can reduce the cost of disease treatment and human costs

for herd. It would be one of the directions of our research to find

evidence for Lnsd2 as a breeding target for the next generation of

more resilient animals through economic analyses. In summary,

the results of the genetic analyses show the high potential and

merit of continuous monitoring milk records for deriving novel

resilience indicators in dairy cattle breeding. Also, the genetic

analyses and phenotypic validation led to the selection of

Lnsd2 as the best indicator of resilience in Chinese Holstein

cattle.

5 Conclusion

The translation of daily milk yield into fluctuations and

milk loss based on ELC enables the evaluation of phenotypic

and genetic responses of cows to environmental

perturbations and the ability of cows to cope with

perturbations. Although heritability estimates for milk loss

traits are low, there is still variability which reflect variation in

daily milk yield as well as the effects of environmental

disturbances on cows. Log-transformed standard deviation

of milk yield deviations when removing the first and last

10 DIM (Lnsd2) had the highest heritability and was

favorably genetically associated with several milk loss,
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reproduction, longevity, and health traits, while the

antagonistic relationship between resilience and milk

production indicted the necessity of balanced breeding

when improving resilience. In summary, Lnsd2 is

recommended as the best resilience indicator among the

ones evaluated in this study for genetically improving

resilience in Holstein cows. This study also shows the

potential of using high frequency automatic monitoring of

daily milk yield to characterize and identify the milk yield

dynamics during perturbations, which can be used for on-

farm monitoring and precision management.
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