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Non-coding regions are areas of the genome that do not directly encode

protein and were initially thought to be of little biological relevance. However,

subsequent identification of pathogenic variants in these regions indicates there

are exceptions to this assertion. With the increasing availability of next

generation sequencing, variants in non-coding regions are often considered

when no causative exonic changes have been identified. There is still a lack of

understanding of normal human variation in non-coding areas. As a result,

potentially pathogenic non-coding variants are initially classified as variants of

uncertain significance or are even overlooked during genomic analysis. In most

cases where the phenotype is non-specific, clinical suspicion is not sufficient to

warrant further exploration of these changes, partly due to the magnitude of

non-coding variants identified. In contrast, inborn errors of metabolism (IEMs)

are one group of genetic disorders where there is often high phenotypic

specificity. The clinical and biochemical features seen often result in a

narrow list of diagnostic possibilities. In this context, there have been

numerous cases in which suspicion of a particular IEM led to the discovery

of a variant in a non-coding region. We present four patients with IEMs where

the molecular aetiology was identified within non-coding regions.

Confirmation of the molecular diagnosis is often aided by the clinical and

biochemical specificity associated with IEMs. Whilst the clinical severity

associated with a non-coding variant can be difficult to predict, obtaining a

molecular diagnosis is crucial as it ends diagnostic odysseys and assists in

management.
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Introduction

The human genome comprises three billion base pairs of

deoxyribonucleic acid (DNA), and only 2% of these bases directly

encode for protein. The remaining 98% of the genome (including

introns, regulatory elements and intergenic sequences) was

originally thought to be “junk DNA” (Ohno, 1972). However,

it has become apparent that larger non-coding regions

distinguish complex eukaryotes from prokaryotes (Belshaw

and Bensasson, 2006), suggesting that many of these regions

must have some physiological role. In 1987, Walter Gilbert

suggested through his ‘intron-early’ theory that introns played

a role in formation of modern genes, by allowing for

restructuring of mini-exons that later formed a gene (Gilbert,

1987). However, there have been additional roles subsequently

identified, including regulation of transcription initiation and

termination, and genomic organization (Chorev and Carmel,

2012).

Many mechanisms by which non-coding variants can be

responsible for disease have been established and

comprehensively summarized by Ellingford and colleagues

(Ellingford et al., 2022). However, due to limited population-

wide whole genome sequencing (WGS) data, there is a lack of

understanding of normal human variation in these non-coding

areas. In most cases where the phenotype is non-specific, the

clinical index of suspicion is not strong enough to warrant further

exploration of non-coding changes, partly due to the large

number of variants identified.

In contrast, inborn errors of metabolism (IEMs) often have

highly specific phenotypes. The clinical and (in particular)

biochemical features aid in differentiating individual disorders,

narrowing the list of diagnostic possibilities. In this context, there

have been numerous cases where high clinical suspicion of a

particular IEM led to the discovery of a variant in a non-coding

region (Perez et al., 2010). Moreover, variants identified in genes

associated with IEMs are more likely to be classified as likely

pathogenic or pathogenic, as there is often supportive

biochemical evidence. Identifying a non-coding variant in a

patient with an IEM is of substantial utility, as it confirms a

molecular diagnosis, assists with reproductive planning, and may

have management implications.

We present four illustrative cases of patients with IEMs

where a molecular aetiology was identified within non-coding

regions. The molecular diagnoses were only possible because of a

pre-existing strong biochemical suspicion, which influenced

variant classification.

Methods

All patients with reportable intronic variants (those that were

classified by the laboratory as likely pathogenic or pathogenic and

were potentially disease causing based on zygosity) were

compiled from an in-house massively parallel sequencing

database (the Children’s Hospital at Westmead Molecular

Genetics Department). Whole exome sequencing (SureSelect

CREv2, Agilent Technologies, with sequencing on

NovaSeq6000, Illumina) was performed to an average read

depth of 100x, and only variants in the genes requested by

clinicians were analysed. The subset of these patients with

IEMs was ascertained by filtering using the PanelApp ‘Inborn

Errors of Metabolism Superpanel’ (Stark et al., 2021). Five

patients were identified: however, one patient was excluded as

they had been previously published (Sajeev et al., 2021).

Results

Patient 1: 6-pyruvoyl-tetrahydropterin
synthase deficiency

Patient 1, detected by newborn screening (NBS), has

hyperphenylalaninaemia (244 → 692 μmol/L), which was

strongly responsive to BH4 supplementation (92% response).

She had a normal newborn examination. Urinary pterin analysis

demonstrated a low urine biopterin (0.49 μmol/mmol creatinine)

and biopterin/neopterin ratio (1.9%). Urinary 5-

hydroxyindoleacetic acid and homovanillic acid were normal,

though CSF studies were unable to be performed due to failed

lumbar puncture. Neurotransmitter supplementation (with 5-

hydroxytryptophan and L-DOPA) was commenced, along with

sapropterin. Molecular analysis identified bi-allelic variants

(c.286G>A and c.84-291A>G) in PTS, consistent with the

biochemistry and a diagnosis of 6-pyruvoyl-tetrahydropterin

synthase deficiency. The former is a missense variant, and the

latter is a deep intronic variant frequently observed in Han

Chinese populations (Chiu et al., 2012); both are predicted to

result in residual enzyme activity.

Patient 1 is now 2 years old. All neurotransmitters were

ceased at around 6 months of age, with no clinical

deterioration. She continues on sapropterin, is growing well

(74th centile for height, 16th centile for weight) and is

making good developmental progress.

Patient 2: Primary carnitine deficiency

Patient 2 is a 38-year-old woman who was incidentally

identified after her first-born child was noted to have low

dried blood spot acylcarnitine levels on NBS. Her baby’s

plasma acylcarnitine concentrations were normal. Patient

2 had no medical history or current muscle symptoms.

Plasma acylcarnitine analysis demonstrated low total (5 μmol/

L; RR 21-70), free (5 μmol/L; RR 13-56), and acetylcarnitine

(0 μmol/L; RR 3-23) concentrations. Carnitine transport activity

in the patient’s skin fibroblasts was markedly reduced (3% of
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controls). She remains clinically well, and had a normal cardiac

review. She was commenced on carnitine supplementation.

Initially, DNA sequencing of SLC22A5 identified two

variants; c.424G>T and c.1463G>A. These two variants have

been established as a complex pathogenic allele when in cis

(Amat di San Filippo et al., 2003); however no other disease-

causing variant was identified. Following a subsequent

publication by Ferdinandusse and colleagues (Ferdinandusse

et al., 2019), the genomic data was re-interrogated for the c.-

149G>A promoter variant, which was successfully identified.

Segregation studies have been recommended, but could not be

performed in this family.

Patient 3: Fructose-1,6-bisphosphatase
deficiency

Patient 3 is a seven-year-old girl and the first child of

consanguineous (first cousin) parents. She initially presented

to the local Emergency Department with a 24-h history of

malaise, abdominal pain, and vomiting. She, as well as her

younger brother, had a history of multiple similar episodes.

On presentation she was lethargic and hypoglycaemic

(1.6 mmol/L; RR 3.5–5.5), with a metabolic acidosis (pH 7.12,

base excess -21, lactate 11.8 mmol/L; RR 0–1.9). Urine organic

acid analysis showed gross lactic aciduria and ketonuria, with

elevations of glycerol and glycerol phosphate. She responded well

to intravenous dextrose therapy and was discharged.

Massively parallel sequencing of genes associated with

hypoglycaemia identified a previously reported (Emecen Sanli

et al., 2022) homozygous likely pathogenic variant (c.705 +

5G>A) in FBP1, confirming a diagnosis of fructose-1,6-

bisphosphatase deficiency. Segregation studies demonstrated

an identical genotype in her younger brother. They are both

managed by increasing carbohydrate intake when unwell.

Patient 4: Hyperphenylalaninaemia

Patient 4 was identified with hyperphenylalaninaemia (HP) on

NBS (303 μmol/L and 248 μmol/L; RR < 150). She has a paternal

uncle with HP, in the context of multiple loops of consanguinity in

the broader family pedigree. Antenatal ultrasounds identified a

cystic kidney, which had involuted on post-natal follow-up.

Despite having a solitary kidney, she maintained normal renal

function. She developed acquired microcephaly (z-score -2.29)

and she has marked global developmental delay. Chromosome

microarray and fragile X testing were non-contributory.

Molecular analysis of a bioinformatic panel of genes associated

with increased phenylalanine levels identified bi-allelic pathogenic

variants in PAH: a likely pathogenic missense variant (c.355C>T)
and a pathogenic intronic variant (c.969 + 5 G>A). Phase

confirmation of these variants is pending, though they are

expected to be in trans given the HP. The c.969 + 5G>A variant

is predicted to result in a mild HP phenotype based on the available

literature (Yilmaz et al., 2000). Given her mild HP has never

escalated to a level requiring treatment (<360umol/L), it does not

adequately explain her microcephaly, nor her severe developmental

delay, which are now being investigated through genomic

techniques. Maternal PKU has been excluded.

Discussion

Intronic variants and genotype-phenotype
correlation

The most well-characterized intronic variants are those that

affect the canonical donor and acceptor splice sites (Ellingford et al.,

2022). These four nucleotides are highly conserved, and unnatural

variation at these positions can result in retention of intronic

material or exon skipping. Canonical splice site variants are

therefore likely to have major effects on transcription of the

mRNA transcript, and have been classified accordingly in the

ACMG criteria (Richards et al., 2015; Abou Tayoun et al., 2018).

Other nucleotide positions in introns are more variable in

their conservation, and impacts of genetic variation at these

positions depends on multiple factors, as comprehensively

summarized recently (Ellingford et al., 2022). The deep

intronic PTS variant identified in Patient 1 results in the

inclusion of a 79 base-pair pseudoexon: however, the majority

of transcripts associated with this variant still express normal PTS

mRNA, predicting significant residual enzyme activity (Chiu

et al., 2012). The patient’s other PTS variant (c.286G>A) has

also been associated with residual PTS activity (Imamura et al.,

1999). Identification of the previously reported intronic variant

in our patient provided the impetus to cease neurotransmitter

supplementation, with no subsequent clinical deterioration.

Similarly, Patient 4 has mild hyperphenylalaninaemia that has

not required management, in keeping with previous reports of

the PAH c.969 + 5 variant.

There are other intronic variants where the predicted effect on

the phenotype is less clear. For instance, Patient 3 did not present

clinically in the neonatal period (similar to the previously reported

patient with the same genotype) (Emecen Sanli et al., 2022);

however, it is difficult to conclusively determine that she has a

mild form of the condition, due to the subsequent recurrent

decompensations in childhood. The effects of genetic variation in

regions of splice enhancers or splice inhibitors are similarly difficult

to predict.

There are additional examples in the literature. Ogino and

colleagues reported a patient with OTC deficiency presenting on

day one of life, who had undetectable liverOTC enzyme activity, and

a hemizygous deep intronic variant (c.540 + 265G>A)was identified
(Ogino et al., 2007). However, three other patients withmilder forms

of OTC deficiency have subsequently been reported with the same
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variant (Kumar et al., 2021). This suggests that other factors,

including physiological stressors and tissue-specific variability in

splicing efficiency (and alternative splicing), may be contributing to

the phenotypic variability.

Promoter variants and genotype-
phenotype correlation

Promoters, generally located upstream of the 5’ end of the gene,

play a crucial role in transcription initiation by recruiting regulatory

elements (Maston et al., 2006). These regulatory elements include

both general transcription factors (which maintain basal

transcriptional activity), and activators (which markedly increase

it) (de Vooght et al., 2009). Depending on the degree of interruption

of transcription factor binding, sequence variation in the promoter

region can impact gene expression.

Promoter variants in IEMs generally appear to be associated

with a milder phenotype. Patient 2 is essentially asymptomatic,

having been incidentally identified via NBS of her unaffected child.

The c.-149G>A promoter change in the SLC22A5 gene has been

previously reported as the most common disease-causing variant in

a cohort of patients with biochemically suspected primary carnitine

deficiency (Ferdinandusse et al., 2019). This variant introduces an

upstream out-of-frame translation initiation codon, suppressing

translation from the wild-type ATG of SLC22A5. This results in

reduced (but not absent) OCTN2 protein levels, and concomitantly

lower transport activity. The authors reported that no patients

carrying this change suffered severe clinical symptoms often

associated with primary carnitine deficiency, though it is true

that many patients with other variants also do not present

clinically (Spiekerkoetter et al., 2003).

We have previously reported three patients withOTCdeficiency

with late-onset disease, all of whom did not have a pathogenic

variant identified by standard molecular analysis of coding regions

(Hertzog et al., 2022). Sequencing of the promoter region identified a

c.-106C>A variant, which had been reported previously in three

other males with late-onset disease (Jang et al., 2018). A dual

luciferase assay demonstrated that this promoter variant resulted

in 10% of normal gene expression (Han et al., 2022). This was

consistent with the milder clinical features of affected males.

Provision of timely genetic diagnosis would have assisted with

family planning: for many individuals, the diagnostic odyssey can

lead families to disengage detrimentally with services (Knerr and

Cassiman, 2022), in the false belief that there is no risk of recurrence.

Strong clinical suspicion of an IEM can
guide investigation of non-coding regions

Whilst there is substantial clinical phenotypic variability

associated with non-coding variants in IEMs, all of these

variants share the commonality of challenges in their

detection. There is often poor coverage on whole exome

sequencing (WES) beyond the first 100–200 base pairs of the

intron. However, in cases where the IEM in question has a highly

specific biochemical pattern, this can provide the impetus to

assess non-coding regions of the relevant gene when the

molecular aetiology has not been identified in a coding region.

In addition, even when a non-coding variant is detected in a

proband with a non-specific clinical phenotype (such as non-

syndromic intellectual disability or aortopathy), it is rare that

such a variant could be classified as pathogenic without genetic

evidence (such as segregation) or further functional evidence.

Fortunately, in the case of IEMs, there are well-established assays

that can confirm specific biochemical phenotypes. This allows

laboratories to confidently assess pathogenicity using established

criteria, even for those variants that have not been previously

reported (Zhang et al., 2020).

With the progressive utilization of WGS as a diagnostic

investigation, non-coding variants will become increasingly

recognized and, therefore, re-annotated. Many molecularly

undiagnosed patients (especially those with a characteristic

clinical or biochemical phenotype and a negative trio WES)

could benefit from progression to WGS. Additionally, re-

analysis of WGS data for pathogenic variants (Costain et al.,

2018; Deignan et al., 2019; Robertson et al., 2022) in such cases

may be beneficial.

Other “-omics” technologies can also be used in concert with

WGS to further characterize non-coding variants. For instance,

transcriptomics may be beneficial in quantifying the effects of a

genetic change on mRNA transcript production (Bournazos

et al., 2022). Proteomics facilitates the assessment of not only

whether a genetic change results in decreased (or increased)

protein expression, but also whether there are broader changes in

the associated biochemical pathway. The benefits of creating

infrastructure to accommodate functional validation in the

diagnostic pipeline will need to be balanced against the costs

of these additional studies (Bournazos et al., 2022).

Impacts of non-coding variants on
management of IEMs

IEMs are often treatable genetic disorders, through various

modalities including dietary therapy, medications, enzyme

replacement therapy, and organ transplantation (Saudubray

et al., 2006). Genotype-phenotype correlation exists in some

IEMs, enabling tailoring of therapy to maximize clinical

outcome whilst minimizing unnecessary exposure to side

effects (Clarke et al., 2019), as seen in Patient 1.

Another important aspect of management is reproductive

planning. Patients 1, 3, and 4 all now have molecular diagnoses

which can be used by their families for prenatal testing (if they

wish). In the case of Patient 4 in particular, the milder genotype

may actually provide more confidence not to pursue prenatal

Frontiers in Genetics frontiersin.org04

Hertzog et al. 10.3389/fgene.2022.1031495

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1031495


testing for what is essentially a biochemical diagnosis without

clinical sequelae.

Future directions of therapy

There are now therapeutics available for non-metabolic

conditions, which specifically target non-coding variants,

most notably a sub-type of antisense oligonucleotides

(AOs) (Kuijper et al., 2021). AOs that target non-coding

variants bind to a complementary pre-mRNA strand, and

inhibit recognition of this region by the spliceosome through

steric hindrance. An established example of this is

nusinersen, which treats spinal muscular atrophy by

inhibiting splicing of SMN2, inducing the inclusion of

exon 7 (Wurster and Ludolph, 2018). As a result, more

transcript with an intact exon 7 (essentially the same as

wild type SMN1 transcripts) is produced, leading to

improved production of full-length SMN protein. The drug

has demonstrated clear benefit in improving motor outcome

and survival in infants (Finkel et al., 2017); however it also

highlights some of the challenges associated with antisense

oligonucleotide therapy including high cost, lack of

permeability across the blood-brain barrier and

requirement of regular dosing (Rinaldi and Wood, 2018).

Similar approaches are being considered for IEMs on the

basis of promising in vitro studies (Perez et al., 2010), though

none of the AOs that promote exon inclusion or pseudoexon

exclusion have reached clinical trial (Kuijper et al., 2021). One of

the difficulties in drug development in these rare disorders is that

such splice variants are also often private mutations, meaning

each custom-designed AO therapy may only find use for a

handful of patients. As such, there are still considerable

challenges to be overcome before these therapies reach routine

clinical practice.
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