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Background: Colorectal cancer (CRC) is the third most common cancer and

third leading cause of cancer-associated deaths worldwide. Diagnosing CRC

patients reliably at an early and curable stage is of utmost importance to reduce

the risk of mortality.

Methods:We identified global differentially expressed genes with copy number

alterations in patients with CRC. We then identified genes that are also

expressed in blood, which resulted in a blood-based gene signature. We

validated the gene signature’s diagnostic and prognostic potential using

independent datasets of gene expression profiling from over 800 CRC

patients with detailed clinical data. Functional enrichment, gene interaction

networks and pathway analyses were also performed.

Results: The analysis revealed a 17-gene signature that is expressed in blood

and demonstrated that it has diagnostic potential. The 17-gene SVM

classifier displayed 99 percent accuracy in predicting the patients with

CRC. Moreover, we developed a prognostic model and defined a risk-

score using 17-gene and validated that high risk score is strongly

associated with poor disease outcome. The 17-gene signature predicted

disease outcome independent of other clinical factors in the multivariate

analysis (HR = 2.7, 95% CI = 1.3–5.3, p = 0.005). In addition, our gene

network and pathway analyses revealed alterations in oxidative stress,

STAT3, ERK/MAPK, interleukin and cytokine signaling pathways as well as

potentially important hub genes, including BCL2, MS4A1, SLC7A11, AURKA,

IL6R, TP53, NUPR1, DICER1, DUSP5, SMAD3, and CCND1.

Conclusion: Our results revealed alterations in various genes and cancer-

related pathways that may be essential for CRC transformation. Moreover,

our study highlights diagnostic and prognostic value of our gene signature as

well as its potential use as a blood biomarker as a non-invasive diagnostic

method. Integrated analysis transcriptomic data coupled with copy number

aberrations may provide a reliable method to identify key biological
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programs associated with CRC and lead to improved diagnosis and

therapeutic options.
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Introduction

Colorectal cancer (CRC) is the third most common cancer

and the third highest cancer-related mortality worldwide

(American Cancer Society, 2021; Sung et al., 2021). Despite

all the advances in cancer therapies and raising awareness,

colorectal cancer continues to be one of the deadliest cancers

worldwide (Rawla et al., 2019; Xi and Xu, 2021). Diagnosing

CRC patients during the early stages of the tumor

development is essential, as that is when CRC is most

curable. Therefore, it is of utmost importance to identify

robust non-invasive diagnostic biomarkers for early

detection of the cancer in order to achieve a better

outcome. In addition, it is also essential to have biomarkers

that would prognosticate patients with high-risk profiles to

guide for personalized treatment.

Changes in gene expression and gene copy number are

closely related to diseases such as cancer (Colak et al., 2010;

Colak et al., 2013; Shao et al., 2019). Since tumorigenesis genes

show associations with copy number variations (CNVs) and

expression levels, it is possible to increase the diagnostic

reliability as well as the predictive potential of prognosis by

integrating CNV and gene expression data (Sheng et al., 2011;

Miao et al., 2014; Shao et al., 2019; Kaya et al., 2022). Indeed, the

previous studies, including our own, reported that the multi-

omics approach may increase the robustness and reliability of

biomarkers associated with complex diseases, including cancer

(Miao et al., 2014; Aldosary et al., 2020; Das et al., 2020; Al-

Harazi et al., 2021a; Baloni et al., 2021; Kaya et al., 2022; Ruan

et al., 2022). Additionally, it has been reported that network-

based approaches have high efficacy in identifying biomarkers for

many complex diseases, including several different types of

cancer (Wang et al., 2017; Chen et al., 2019; Liu et al., 2019;

Uddin et al., 2019; Khan et al., 2020; Al-Harazi et al., 2021b).

However, most biomarkers identified thus far require invasive

procedures.

In this study, we identified a blood-based gene signature with

diagnostic and prognostic potential for CRC by utilizing an

integrated approach of transcriptomic analysis coupled with

overlapping genes associated with the copy number alterations

(CNA) in CRC. We then validated the gene signature’s

classification performance as well as the prognostic potential

using independent transcriptomics datasets from over 800 CRC

patients with detailed clinical data. The identified gene signature

may improve the diagnosis and prognosis of CRC and help to

develop therapeutic strategies.

Materials and methods

Data collection and integrated analysis

Whole-genome gene expression dataset for patients with

colorectal cancer (CRC) was gathered from GEO (GSE23878)

(www.ncbi.nlm.nih.gov/geo). In addition, CNA regions

associated with CRC in genomic data comprising thirty

samples (15 tumor and 15 adjacent normal samples) from

Saudi patients were identified as described previously in (Eldai

et al., 2013). The gene expression dataset (GSE23878) contains

samples from 35 colon tumors and 24 normal controls (Uddin

et al., 2011). The samples were probed using Affymetrix Human

Genome U133 Plus 2.0 Array. The differentially expressed genes

(DEGs) were identified using independent two-sample t-test with

adjusted p-value of <0.05 and absolute fold change (FC) ≥ 2.

0 between CRC and normal samples. Multiple hypothesis testing

was controlled by applying the Benjamini–Hochberg false

discovery rate (FDR) correction (Benjamini and Hochberg,

1995). Genes expressed in blood are identified using data

from GTEx portal (https://gtexportal.org/home/). We

implemented Venn diagram approach in order to find the

genes that have CNAs with concomitant gene expression

changes and are also expressed in blood. Our methodology is

shown in Figure 1.

Diagnostic validation of the gene
signature

For validating the diagnostic and prognostic value of our

gene signature, we used independently performed microarray

and RNA sequencing datasets from The Cancer Genome Atlas

(TCGA) database. The microarray data (TCGA data version

2016_01_28 for colorectal adenocarcinoma (COADREAD)

included 244 samples (222 tumor and 22 normal samples)

and the RNAseq data contained 675 samples (624 tumor and

51 normal). We used level 3 preprocessed and normalized gene

expression data as described in detail by the TCGA workgroup

(https://gdac.broadinstitute.org/). We performed unsupervised

principal component analysis (PCA) and hierarchical clustering

by Pearson correlation with average linkage clustering to validate

the diagnostic performance of our gene signature. Moreover,

transcription profiling datasets of blood samples from CRC

patients (n = 100) and healthy controls (n = 100) were

retrieved from ArrayExpress database (E-MTAB-1532) to test
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FIGURE 1
Schematic diagram illustrating the methodology.
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the gene signature expression levels in blood samples from

patients with CRC as compared to those from normal controls.

Colorectal cancer classifier model and
performance evaluation

We designed a 17-gene-CRC classifier using several machine

learning algorithms, including Support Vector Machine (SVM),

K-Nearest Neighbor (KNN), Linear Discriminant Analysis

(LDA), and Nearest Centroid. First, we used the

GSE23878 dataset for building the classification model, and

then tested the classification performance on an indepedent

dataset (TCGA dataset) to confirm if the 17-gene-classifier

can distinguish patients from normal controls. We evaluated

the performance of the classifier for its accuracy, specificity,

sensitivity, and area under curve (AUC), as described

previously (Al-Harazi et al., 2021a; Al-Harazi et al., 2021b).

The analyses were performed using PARTEK Genomics Suite

(Partek Inc., St. Lois, MO, United States).

Survival and multivariate analyses

We performed univariate and multivariate analyses using the

Cox proportional hazard regression model to investigate the

prognostic value of our gene signature along with other clinic-

pathological variables. We defined a risk score for each patient in

the TCGA dataset as a linear combination of expression level of

17 genes multiplied by the regression coefficient β) of each gene

extracted from the Cox proportional hazards regression model,

using the following formula: prognosis risk score = expression of

gene1 × β1+ expression of gene2 × β2 + . . . expression of genen ×

βn. Patients are defined as high and low risk groups using the

median score as the cutoff. We then used the Kaplan-Meier

method to plot survival curves. Significance between survival

curves was calculated by log-rank test. Univariate Cox regression

analysis was performed to evaluate the prognostic value of the 17-

gene signature and their relationships with overall survival of

CRC patients. Moreover, multivariate Cox regression analysis

was performed to examine the predictive ability of the 17-gene

signature independent of other clinical factors, including gender,

age, pathologic stage, and lymphatic invasion. A p-value<
0.05 was considered statistically significant.

Gene ontology enrichment, canonical
pathway, and network analyses

Functional, pathway, gene ontology (GO) enrichment, and

gene interaction network analyses of the identified gene signature

were performed using QIAGEN’s Ingenuity Pathway Analysis

(IPA) (QIAGEN Inc., https://www.qiagenbioinformatics.com/

products/ingenuity-pathway-analysis), DAVID bioinformatics

tools (Sherman et al., 2007), and PANTHER™ classification

systems (Thomas et al., 2003). We performed gene interaction

network and causal network analyses after mapping the

identified gene signature to its corresponding gene object in

the Ingenuity pathway knowledge base. A right-tailed Fisher’s

exact test was used to calculate a p-value determining the

probability that the biological function (or pathway) assigned

to the data set is explained by chance alone (Colak et al., 2020).

Results

Identification of a gene signature
associated with colorectal cancer

We first analyzed global mRNA expression profile of patients

with CRC (n = 35) and normal controls (n = 24) using data from

GSE23878 (Uddin et al., 2011). The analysis revealed 1,366 DEGs

with adjusted p-value < 5% and absolute fold-change >2 in tumor

compared to normal (Supplementary Table S1). Following that,

we identified significantly dysregulated genes that have also copy

number alterations (gains/losses) by mapping these dysregulated

genes on the CNA regions in the genomic data from CRC

patients and controls (Eldai et al., 2013). There were

144 genes in CNA regions of CRC patients. Of note, the

patients in the transcriptomic and genomic data all belong to

the same ethnicity (Arabs) (Eldai et al., 2013). Having ethnically

matched cohorts in both types of omics measurements would

limit the bias due to ethnicity and may reveal more biologically

relevant results. Integrating with the genes in the CNA regions

revealed that 30 of the significantly dysregulated genes have

concomitant copy number alterations, 17 of which are also

expressed in blood (Figure 2A; Table 1).

Validation of the 17-gene signature for
diagnostic and prognostic potential

We validated diagnostic value of the 17-gene signature on

GSE23878 (Figure 2) as well as on two independent datasets;

TCGA microarray (n = 244 samples) and TCGA RNA-

sequencing datasets (n = 675 samples) (Figures 3A–C,

respectively). The unsupervised PCA and two-dimensional

hierarchical clustering clearly distinguished patients as either

CRC or normal controls in all datasets (Figures 2B, C, 3A–C).We

also used early stage CRC data from TCGA (n = 47, Stage I

tumor) to test the 17-gene signature’s diagnostic potential to

discriminate the early stage CRC patients from normal controls.

The analysis provided 100% accurate clustering of the two groups

(Figures 3D, E). Moreover, we investigated our 17-gene

signature’s expression level within blood samples obtained

from CRC patients (n = 100) and healthy controls (n = 100)
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(E-MTAB-1532), which revealed that those with CRC have

significantly higher expression levels than the controls

(p-value <0.0001) (Supplementary Figure S1).

To validate the prognostic significance of the 17-gene

signature, we used the TCGA dataset with detailed clinical

information and overall survival. We first calculated a

prognostic risk score based on 17-gene signature, as described

in the methods section and patients are classified as high or low

risk using the median score as a cutoff. Our results demonstrated

that a high 17-gene prognostic score is significantly associated

with poor disease outcome (p-value = 0.006). Indeed,

Kaplan–Meier survival analysis displayed that the high-risk

group had significantly worse prognosis than the low-risk

group (Figure 4A). Furthermore, the multivariate Cox

regression analysis revealed that 17-gene signature

prognosticated the CRC outcome independent of other

clinical variables, including age, gender, pathologic stage and

lymphatic invasion (HR = 2.61, 95% CI = 1.3–5.23; p = 0.0069)

(Table 2).

Classification model and performance
assessment

We designed a 17-gene CRC classifier using different

classification algorithms, including Support Vector Machine

(SVM), K-Nearest Neighbor (KNN), Linear Discriminant

Analysis (LDA), and Nearest Centroid and estimated the

classification performance. The GSE23878 dataset is used for

building the classification model and the classification

FIGURE 2
(A) Venn diagram representing the overlapping 17 genes among differentially expressed genes (mRNA) and CNA that are also expressed in blood
(B–C)Unsupervised principal component analysis (PCA) and two-dimensional hierarchical clustering using 17-gene signature on the GSE23878. The
red spheres refer to tumors and blue ones for normal controls. The hierarchical clustering resulted in two main clusters of tumors and controls.
Samples are denoted in columns and genes are denoted in rows.
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performance is tested on an indepedent dataset (TCGA dataset).

We assessed the classifier’s performance in terms of accuracy,

specificity, sensitivity, and area under the curve (AUC), as

described previously (Al-Harazi et al., 2021a; Al-Harazi et al.,

2021b). The SVM with linear kernel has outperformed

other algorithms and the 17-gene classifier achieved a

high accuracy of 99 percent, and sensitivity, specificity and

AUC of 99%, 100% and 99%, respectively (Figure 4B),

confirming the 17-gene signature’s ability to discriminate

patients from normal controls.

Functional, pathway and gene interaction
network analyses

Gene ontology enrichment and functional analyses revealed

that the 17-gene signature is significantly associated with diseases

and functions related to cancer, cellular movement, cellular

growth and proliferation, cell death and survival (Figure 5A

and Supplementary Table S2). Moreover, pathway analysis using

several bioinformatics tools revealed alterations in STAT3, ERK/

MAPK, oxidative stress, interleukin and cytokine signaling al

pathways (Figures 5B,C). Gene interaction network analysis

indicated hub genes that may have potentially important role

in CRC transformation and progression, including BCL2,

MS4A1, AURKA, IL6R, TP53, NUPR1, DUSP5, and CCND1

(Figure 5D). Furthermore, IPA causal network analyses

revealed predicted activation of DICER1 and SMAD3 in CRC

(Supplementary Figure S2).

Discussion

In this study, we aimed to identify a robust gene signature

that would detect the disease accurately and have prognostic

significance that would differentiate the high-risk patients

from the low-risk ones. Since appropriate management of

choice and curative surgical resection success rate depend

largely on staging of the cancer, convenient and non-invasive

early detection biomarkers are still needed to ensure early

diagnosis and good prognosis (Al Bandar and Kim, 2017; Feo

et al., 2017).

We performed an integrated analysis of significantly

dysregulated genes within the transcriptome of CRC

patients with the genes that have copy number changes

(gains/losses) in a patient cohort from an ethnically

matched population, and identified a blood-based 17-gene

signature. We then validated its diagnostic and prognostic

potential on an independent large cohort of CRC patients.

Previous studies have demonstrated that multi-omics

TABLE 1 The 17-gene signature that is identified in this study for CRC.

Gene Gene title p-value FC

AURKA aurora kinase A 3.62E-09 2.84

BCAS1 breast carcinoma amplified sequence 1 2.99E-07 −2.24

BCL2 B Cell CLL/lymphoma 2 3.95E-11 −2.92

DUSP5 dual specificity phosphatase 5 2.77E-06 −2.28

ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 2.98E-07 −2.61

FAM214A family with sequence similarity 214, member A 1.13E-09 −2.09

FAM46C family with sequence similarity 46, member C 1.45E-06 −2.29

FEN1 flap structure-specific endonuclease 1 3.50E-07 2.02

IGF2BP3 insulin-like growth factor 2 mRNA binding protein 3 0.010319 2.01

IL6R interleukin 6 receptor 5.97E-10 −2.91

MACC1 metastasis associated in colon cancer 1 8.75E-09 3.87

MS4A1 membrane-spanning 4-domains, subfamily A, member 1 2.52E-07 −2.63

NEDD9 neural precursor cell expressed, developmentally down-regulated 9 2.21E-07 −2.18

PLEKHA8 pleckstrin homology domain containing, family A 3.40E-09 2.14

PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase) 7.25E-06 −2.07

PTP4A3 protein tyrosine phosphatase type IVA, member 3 2.38E-08 2.37

SLC7A11 solute carrier family 7 member 11 2.34E-07 2.89

*Abbreviation: FC, fold change; FC, is calculated between the mean expression value observed in tumor compared to normal. Negative (−) value indicates down-regulation.
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FIGURE 3
PCA and hierarchical clustering analyses using 17-gene signature on the TCGA microarray dataset (n = 244) (A–B) and TCGA RNA-sequencing
dataset (n = 675) (C). The hierarchical clustering and PCA analyses using the 17-gene signature on early stage CRC data from TCGA (n = 69) (D–E).
The analyses clearly distinguished patients as either CRC or normal controls on all datasets. Red and blue indicate tumor and normal samples,
respectively.

FIGURE 4
(A) Kaplan–Meier survival analysis of the TCGA dataset indicated that the high-risk group had significantly worse prognosis than the low-risk
group (p = 0.006). Red and green curves indicate high and low-risk groups, respectively. (B) Classification performance of the 17-gene classifier
modeled using SVM with linear kernel algorithm. The classification performance is evaluated on the TCGA dataset (n = 244).
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analysis (using whole-genome gene expression profiling,

copy number variations (CNVs), proteomics,

metabolomics, and others) may lead to reliable biomarkers

that are robust in disease classification and may also help

identify cancer driver genes that are involved in tumor

initiation and progression (Colak et al., 2010; Colak et al.,

2013; Ohshima et al., 2017; Liu et al., 2021; Kaya et al., 2022;

Ruan et al., 2022). Moreover, integrating omics data with the

gene interaction networks has been shown to be a robust

methodology that may lead to more reliable and accurate

predictive biomarkers for human diseases (Al-Harazi et al.,

2016; Ma et al., 2019; Khan et al., 2020; Seifert et al., 2020;

Sinkala et al., 2020).

Our gene network analysis revealed several key hub genes

that may have potentially important roles in CRC

transformation and progression, including BCL2 (Lindner

et al., 2017; Perini et al., 2018; Diaz-Flores et al., 2019),

MS4A1 (Mudd et al., 2021; Li and Fang, 2022), AURKA

(Wang et al., 2020; Mou et al., 2021; Kahl et al., 2022),

IL6R (Mendez-Clemente et al., 2022), TP53 (Oner et al.,

2018), NUPR1 (Martin et al., 2021; Xiao et al., 2022),

DICER1 (Iliou et al., 2014; Luan et al., 2021), DUSP5,

SMAD3 (De Mattia et al., 2021; Tang et al., 2022), and

CCND1 (Shan et al., 2017; Chen et al., 2020). Some of the

identified genes were reported to be associated with cancers,

including colorectal cancer. For example, BCL2 family are

central regulators of apoptosis, and up-regulation of BCL2 has

been shown to lead to tumor development and progression as

well as resistance to cancer therapy (Lindner et al., 2017; Perini

et al., 2018; Diaz-Flores et al., 2019). MS4A1 encodes a

B-lymphocyte surface molecule CD20 that has been

reported to be associated with lipid metabolism and

immune cell activation, and its expression is an

independent predictor of cancer prognosis (Mudd et al.,

2021; Li and Fang, 2022). Aurora kinases are involved

in cell cycle regulation, G2/M transition, mitosis, and

DNA replication functions. Recent reports have shown

that aurora kinase A (AURKA), IL6R, NUPR1, and

DICER1 play important role in the development,

progression, and metastasis of a variety of cancers

including colon cancer (Iliou et al., 2014; Wang et al., 2020;

Luan et al., 2021; Martin et al., 2021; Mou et al., 2021; Kahl

et al., 2022).

The causal network analysis indicated predicted activation

of DICER1 and SMAD3 in CRC. Recent studies have shown

that DICER1 is involved in the cancer initiation and

development (Ma et al., 2020; Luan et al., 2021). Although

the underlying mechanism is still unclear, transfer RNA-

derived fragment biogenesis by DICER1 is directly

associated with cancer development. A high expression of

the enzyme is related to poor survival, independent of the

patient’s other predisposing factors (Luan et al., 2021).

SMAD3 has also been shown to be associated with tumor

initiation and progression in earlier studies in several cancers

(Colak et al., 2010; De Mattia et al., 2021; Tang et al., 2022). It

has been also reported to have tumor promotor roles and

directly involved in epithelium to mesenchyme transition

(EMT), hence enhancing invasion, migration and metastasis

(Millet and Zhang, 2007).

The pathway analyses indicated significant alterations

in several cancer-related signaling pathways, such as

oxidative stress, STAT3, ERK/MAPK, interleukin and

cytokine signaling pathways. The ERK enzyme belongs to

the MAPK family, which is involved in a various signaling

cascades that regulate fundamental cellular processes such as

cell growth, proliferation, differentiation, as well as stress

responses. Our study as well as prior research findings have

shown that there is a strong correlation with MAPK inhibition,

especially ERK inhibition, and the development and

advancement of most cancer types. ERK pathway

dysfunction plays a major role in tumor invasion and

metastasis, with varying level of different components of

the cascade depending on the type of cancer. This makes it

an abundant oncogenic factor that can also be used to

identify CRC and differentiate it from other tumors (Guo

et al., 2020).

In conclusion, the 17-gene signature that is identified in

this study revealed genes and pathways that may be critical for

CRC transformation and progression, and has the potential to

detect the disease non-invasively as well as predict its

outcome.

TABLE 2 Univariate and multivariate analysis associated with CRC overall
survival.

Variables Univariate analysis Multivariate
analysis

p-value HR
(95% CI)

p-value HR
(95% CI)

Age (years)

≥50 vs. < 50 0.73 0.81
(0.25–2.66)

0.76 1.21
(0.36–4.13)

Gender

Female vs.Male 0.22 1.49
(0.79–2.81)

0.73 1.12
(0.58–2.19)

Pathologic Stage

III-IV vs. I-II 0.0003 3.45
(1.78–6.70)

0.005 2.97
(1.39–6.4)

Lymphatic
Invasion

Yes vs. No 0.004 2.78
(1.38–5.62)

0.37 1.44
(0.65–3.18)

Risk Score

High vs. Low 0.007 2.56
(1.29–5.1)

0.0069 2.61
(1.3–5.23)

Bold indicates significance. Abbreviations: CI, confidence interval; HR, hazard ratio.
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FIGURE 5
Functional (A) and canonical pathway (B) and PANTHER pathway (C) analyses of 17-gene signature. X-axis (in A and B) represents–log (p-value);
the significance of the functional/pathway term. The threshold line indicates p-value of 0.05. (D) Gene interaction network analyses of 17-gene
signature. Red/green indicates higher/lower expression in CRC in comparison to controls.
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