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Background: The natural history of patients with low-grade glioma (LGG) varies

widely, but most patients eventually deteriorate, leading to poor prognostic

outcomes. We aim to develop biological models that can accurately predict the

outcome of LGG prognosis.

Methods: Prognostic genes for glutamine metabolism were searched by

univariate Cox regression, and molecular typing was constructed. Functional

enrichment analysis was done to evaluate potential prognostic-related

pathways by analyzing differential genes in different subtypes. Enrichment

scores of specific gene sets in different subtypes were measured by gene set

enrichment analysis. Different immune infiltration levels among subtypes

were calculated using algorithms such as CIBERSORT and ESTIMATE. Gene

expression levels of prognostic-related gene signatures of glutamine

metabolism phenotypes were used to construct a RiskScore model.

Receiver operating characteristic curve, decision curve and calibration

curve analyses were used to evaluate the reliability and validity of the risk

model. The decision tree model was used to determine the best predictor

variable ultimately.

Results: We found that C1 had the worst prognosis and the highest level of

immune infiltration, among which the highest macrophage infiltration can be

found in the M2 stage. Moreover, most of the pathways associated with tumor

development, such as MYC_TARGETS_V1 and

EPITHELIAL_MESENCHYMAL_TRANSITION, were significantly enriched in C1.

The wild-type IDH and MGMT hypermethylation were themost abundant in C1.

A five-gene risk model related to glutamine metabolism phenotype was

established with good performance in both training and validation datasets.

The final decision tree demonstrated the RiskScore model as the most

significant predictor of prognostic outcomes in individuals with LGG.

Conclusion: The RiskScore model related to glutamine metabolism can be an

exceedingly accurate predictor for LGG patients, providing valuable

suggestions for personalized treatment.
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Introduction

Low-grade glioma (LGG) is a rare group of primary central

nervous system tumors categorized by WHO as grades I and II,

including diffuse astrocytomas and oligodendrogliomas (Louis

et al., 2016). Usually, in an inactive state, while many tumors

eventually evolve into fatal high-grade gliomas (Sanai et al.,

2011). Due to the long asymptomatic natural history of these

tumors, there is no certainty whether to give aggressive or

delayed treatment. In addition, the timing of chemotherapy

and radiotherapy after surgery to those individuals with few

symptoms and limited lesions is not specified (Shaw et al., 2008;

van den Bent et al., 2005). Most individuals with LGG express

mutated isocitrate dehydrogenase (IDH) 1 or 2, which produce 2-

hydroxyglutaric acid (2-HG), inducing glioma development and

immunosuppressive effects in the tumor microenvironment

(Kohanbash et al., 2017; Bunse et al., 2018).

Themost prevalent amino acid in the human body, glutamine, is

a precursor with numerous uses that contributes to several metabolic

and biosynthetic processes (Altman et al., 2016). In 1955, cancer cells

were shown to obtain glutamine from the local microenvironment to

promote tumor growth (Eagle, 1955; Jin et al., 2016). Glutamine is

not considered among the classically essential amino acids since

glutamine synthase can synthesize it from glutamate and ammonia,

certain tumors break downproteins bymeans of autophagy to release

amino acids such as glutamine (Seo et al., 2016). Gamma (γ) (amide)

nitrogen from glutamine is added to the synthesis of ribonucleic acid

and hexosamine in the cytoplasm, producing glutamate. By

generation of glutathione (GSH), cytoplasmic glutamate is

essential for redox homeostasis and preventing oxidative stress in

cells (Conrad and Sato, 2012). In addition to glutamine being an

oncogene-dependent addiction for many cancer cells, it also

promotes proliferative signaling. For instance, the glutamine influx

molecule through SLC1A5 is closely associated with the efflux

molecule through the SLC7A5/LAT1 transport protein

(Dolgodilina et al., 2016). The SLC7A5/LAT1 transfer protein also

allows leucine to enter cells and induces MTORC1-mediated cell

growth. Moreover, the Warburg effect is triggered by the signal

transduction molecules Akt, Ras, and AMPK to activate glycolytic

enzymes, which causes the production of lactate, forcing cancer cells

to switch to glutamine metabolism and satisfy the heightened energy

needs. Through the activation of the glutaminase (GLS) and

SLC1A5 genes during transcription, the proto-oncogene c-Myc

increases glutamine catabolism (Hensley et al., 2013; Kim and

Kim, 2013; Chen and Cui, 2015; Jin et al., 2016). Moreover,

glutamine may be considered a conditionally essential amino acid

for lymphocytes and numerous tumors because these cells require

environmental absorption to survive because they consume more

glutamine than they can produce (Lacey and Wilmore, 1990;

Cluntun et al., 2017). Glutamine is also a key immunomodulator

in the initiation and development of T-cell-mediated immunity

(Pacheco et al., 2007). Tumors show characteristics related to

elevated glutamine metabolism possibly limiting glutamine

utilization by the immune system, resulting in a low overall

survival of patients. Therefore, understanding the potential

relationship between glutamine metabolism and cancer

progression is a fundamental goal of cancer research.

In this study, prognostic genes of the glutamine metabolic

pathway were used to identify stable molecular subtypes by

consistent clustering and further compared clinical features,

pathway and immune characteristics among subtypes. Finally,

we identified glutamine metabolism phenotype-related genes by

expression difference analysis and least absolute shrinkage and

selection operator (LASSO) regression analysis. Furthermore, a

risk model and a clinical prognostic model were constructed, to

assist in the personalized treatment of individuals with LGG.

Methods

Data collection and processing

The analysis of this research was supported by the

Sangerbox platform (Shen et al., 2022). We obtained RNA-

Seq data of TCGA-LGG using The Cancer Genome Atlas

(TCGA) and performed the preprocessing, including

removing samples without clinical data and converting

Ensembl to Gene symbol. The average of the expression

values was achieved when multiple identical Gene Symbols

existed. After preprocessing, 506 samples were remained. In

addition, we downloaded "mRNAseq_693 (batch 1)" and "

mRNAseq_325 (batch 2)" datasets from Chinese Glioma

Genome Atlas (CGGA) database (http://www.cgga.org.cn/).

The samples with histological type of Glioblastoma (GBM)

were excluded. ComBat” function in the Sva R package was

conducted to remove the batch effects of "mRNAseq_693

(batch 1)" and " mRNAseq_325 (batch 2)" (named as

CGGA dataset), and 408 samples were finally included.

Source of glutamine metabolism-related
genes

Genes related to glutamine metabolism were obtained from the

“GOBP_GLUTAMINE_FAMILY_AMINO_ACID_

METABOLIC_PROCESS” in Molecular Signatures Database

(MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb/human/

geneset/GOBP_GLUTAMINE_FAMILY_AMINO_ACID_

METABOLIC_PROCESS, Supplementary Table S1) (Liberzon et al.,

2015).
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Identification of molecular subtypes of
glutamine metabolism-related genes

The consensus matrix was constructed by

ConsensusClusterPlus, and cluster typing of the processed

TCGA samples was done (Wilkerson and Hayes, 2010). The

expression data of glutamine metabolism-related genes were

used to obtain the molecular subtypes of the samples. We did

500 bootstraps using the "km" algorithm and "1—Pearson

correlation" as the metric distance, with each bootstrap

having 80% of the individuals in the training set. The

number of clusters was set from 2 to 10, and the molecular

subtypes of the samples were obtained by measuring the

consistency matrix and consistency cumulative distribution

function. In the TCGA dataset, we also explored the genomic

alterations in these three molecular subtypes. In this study,

we obtained data on the molecular properties of the TCGA

dataset from the previous pan-cancer studies (Thorsson et al.,

2018).

Construction of risk model

The identified molecular subtypes recognized

differentially expressed genes (DEGs) among subtypes, and

then DEGs (|log2FC|>1 & p < 0.01) were selected. Finally, the

following equation was used to determine the risk scores for

individual patients: RiskScore = Σ βi × Expi, Expi refers to the

gene expression level of the prognostic-related gene signature

of the glutamine metabolism phenotype, and β is the Cox

regression coefficient of the relevant gene. The z-score was

then performed, and individuals were sorted into high- and

low-risk groups keeping the threshold at "0", and for

prognostic analysis, we plotted survival curves following the

Kaplan-Meier method. The significance of variations was

determined by the log-rank test.

Gene set enrichment analysis (GSEA)

Gene set enrichment analysis (GSEA) was done and all

candidate gene sets from the Hallmark database were utilized

to assess the pathways of various biological activities in various

molecular subtypes (Liberzon et al., 2015). Both inflammatory

signature-related gene sets and angiogenesis-related gene sets

were obtained from literature reports (Masiero et al., 2013; Liu

et al., 2020). Considering that interferon (IFN)-γ is a cytokine

essential in immunomodulation and anti-cancer immunity, we

downloaded the

GOBP_RESPONSE_TO_INTERFERON_GAMMA gene set

from the Gene Ontology (GO) database. Single sample Gene

set enrichment analysis (ssGSEA) was used to calculate the

enrichment fraction of a specific gene set.

Calculation of tumor microenvironment
cell invasion abundance

We determined the relative abundance of 22 types of

immune cells in LGG using the CIBERSORT method (https://

cibersort.stanford.edu/). We also used ESTIMATE software

to measure the proportion of immune cells (Yoshihara et al.,

2013). T-cell inflammatory gene expression profile (GEP),

programmed death ligand 1 (PD-L1) expression, and tumor

mutational burden (TMB) are three biomarkers whose

responses to anti-programmed cell death 1 (PD-1)

treatment may be predicted by the T-Cell-Inflamed Gene-

Expression Profile score (Ott et al., 2019). Cytolytic activity

score (CYT) was used to report the level of cytotoxic T cell

activation (Takahashi et al., 2020).

Correlation analysis of risk score and drug
sensitivity

We used the R package "pRRophetic" for drug

IC50 prediction (Geeleher et al., 2014). Drug response

prediction was performed against the expression matrix.

Differential gene acquisition between
subtypes and GO/KEGG functional
enrichment analysis

Genes with differential expression between C1, C2, and

C3 vs. others in the TCGA-LGG cohort were computed using

the R package "limma" (Ritchie et al., 2015). The R package

"clusterProfiler" conducted a functional enrichment analysis (Yu

et al., 2012). Species were set to Homo sapiens, and the entries

analyzed contained all GO and Kyoto Encyclopedia of Genes and

Genomes (KEGG) entries with the p-value adjustment method

False Discovery Rate (FDR).

Protein interaction network and key
protein module

We created a protein-protein interaction (PPI) network with

the help of STRING online tool (https://string-db.org/) and

Cytoscape 3.9.1 to study essential proteins of differential genes

in the subtypes. We used the MCODE plug-in in Cytoscape in

this network to discover network modules.

Prognostic gene correlation analysis

With the help of univariate COX regression,

prognostically significant genes were identified. Further,

Frontiers in Genetics frontiersin.org03

Zhang et al. 10.3389/fgene.2022.1030837

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
https://string-db.org/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1030837


using the R package "glmnet" (Friedman et al., 2010), LASSO

regression was conducted to lower the number of genes in

order to obtain prognostically significant genes linked to the

glutamine metabolism phenotype. Additionally, DEGs were

further compressed to lower the genes’ number for the risk

model (Friedman et al., 2010). Stepwise multi-factor

regression analysis was then performed utilizing the

Akaike Information Criterion (AIC) Information Criterion,

which considers the model’s statistical fit and the number of

parameters that were appropriate for it. The stepAIC strategy

in R package "MASS" starts with the most complicated model

and sequentially removes each variable to lower the AIC

(Zhang, 2016). A smaller value indicated better

performance of the model, which indicates that the model

obtained an eligible fitting degree with less number of

parameters. The R package "timeROC" was employed to

plot the receiver operating characteristic (ROC) to

determine the model’s strength (Heagerty et al., 2000).

Decision trees were constructed for different variables to

determine the best indicator. Calibration curve and

decision curve analysis (DCA) were utilized to assess the

model’s predictive reliability and accuracy.

Statistical analysis

The R platform was employed to conduct all statistical analyses.

Log-rank test was done in both Cox regression and Kaplan-Meier

survival analyses. Kruskal–Wallis test was employed to determine the

variation among the three groups, and for determining the difference

between the two groups, the Wilcoxon test was done. ANOVA was

conducted to evaluate the distribution of the clinicopathological

feature in different subtypes (ns, p ≥ 0.05; *p < 0.05; **p < 0.01;

***p < 0.001).

Results

Molecular typing based on genes linked
with glutamine metabolism

In order to assess the expression patterns of genes linked

with glutamine metabolism, a univariate Cox regression

analysis was done using LGG samples from the TCGA-LGG

and CGGA datasets containing clinical information. The results

showed that 36 glutamine metabolism genes were

prognostically associated with LGG in the TCGA-LGG

dataset (p < 0.05) and 32 glutamine metabolism genes with

significant prognoses in the CGGA dataset. Further, we selected

glutamine metabolism genes with significant prognosis in both

TCGA and CGGA, and 17 glutamine metabolism genes were

selected (Figures 1A, B). Subsequently, consistent clustering

was utilized to sort the TCGA data set in accordance with the

17 prognostically significant glutamine metabolism gene

expression data, determined the optimal number of clusters

based on the cumulative distribution function (CDF), and

observed the CDF Delta area curve from which we could see

that the Cluster selection of three had more stable clustering

results (Figures 1C, D). At the end, k = 3 was chosen to get three

molecular subtypes (Figure 1E).

Moreover, to assess the prognostic properties of these

three molecular subtypes, considerable prognostic variations

among them were noted (Figure 1F). Overall, C3 had an

improved prognosis, while a worse prognosis was observed

in the C1 subtype. Additionally, we classified patients in the

CGGA dataset and finally identified three subtypes, and the

prognostic outcomes differed significantly among the subtypes

(Figure 1G). In addition, we also calculated the ssGSEA scores

of glutamate metabolism for every individual with LGG in the

TCGA dataset. A high glutamate metabolism score was found

in the C1 subtype and C3 had the lowest glutamate metabolism

score (Figure 1H). Similar phenomenon was observed in the

CGGA cohort (Figure 1I, Supplementary Table S2). We also

compared the differential expression of 17 glutamine

metabolism genes in the distinct molecular subtypes that

we defined and found that in two independent datasets,

enhanced expression of the overall Risk genes was seen in

the C1 subtype. In contrast, protective genes were expressed

increasingly in the C3 subtype (Figures 1J,K).

Clinicopathological features among
molecular subtypes

In the TCGA and CGGA datasets, a comparison was made

regarding the distribution of various clinical properties in the three

molecular subtypes to find the difference in clinical properties among

them (Figure 2). No major variation was observed in the gender

among the three subtypes, while in terms of grade, patients with the

C1 subtype weremore likely to be Grade 3 (G3) andmore likely to be

G2 in C2 and C3 subtypes. We discovered that the frequency of IDH

mutations was much higher in the C1 subtype, which had a poor

prognosis in comparison with the other two subtypes. Additionally,

different IDH mutation types more reduced in the C1 subtype. In

terms of 1p19q association deletion, the C3 subtype had significantly

higher 1p19q association deletion than the C1 and C2 molecular

subtypes.

Regarding MGMT promoter methylation, C2 and C3 subtypes

had significantly higher MGMT promoter methylation than

C1 subtypes (Figure 2A). We also compared the differences in

age, sex, Grade, IDH mutation, 1p19q association deletion, and

MGMT promoter methylation in CGGA. We found that age and

gender were also not significantly different in CGGA. IDHmutation

and 1p19q association deletion was significantly higher in C2 and

C3 than in C1, these outcomes are similar to the phenomenon

observed in TCGA (Figure 2B).
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Genomic landscape among molecular
subtypes

It can be seen that C1 subtypes show higher TMB, aneuploidy

score, homologous recombination defects, intratumor heterogeneity,

and loss of heterozygosity (LOH) (Figure 3A). Moreover, extra

molecular subtypes were also given in this study, and we also

compared these six molecular subtypes with our three molecular

subtypes and found more "Codel" molecular subtypes in the C3 and

more "G-CIMP-high" molecular subtypes in the C2 (Figure 3B). In

addition, a comparison of the variations in the mutations among

different molecular subtypes was made, and the outcomes revealed

FIGURE 1
Molecular typing in accordance with the glutamine metabolism genes (A) Forest plot of glutamine metabolism crossover genes in TCGA
dataset; (B) Forest plot of glutaminemetabolism crossover genes in CGGA cohort. (C) CDF curve of TCGA dataset samples. (D)CDF Delta area curve
of TCGA dataset samples. Delta area curve of consensus clustering, indicating the relative change in area under the CDF curve for each category
number k in comparison with k – 1. The horizontal axis is for the category number k, and the vertical axis is for the relative change in area under
the CDF curve. (E)Heatmap of sample clustering at consensus k = 3. (F) KM curves of the relationship between the prognosis of the three subtypes in
the TCGA dataset. (G) KM curves of the relationship between the prognosis of the three subtypes in the CGGA dataset. (H) Differences in glutamine
metabolism scores between different molecular subtypes in the TCGA-LGG cohort. (I) Differences in glutamine metabolism scores in different
molecular subtypes in the CGGA dataset. (J) Heat map of expression of prognostically significant glutamine metabolism-related genes in different
subtypes in the TCGA dataset. (K) Heat map of expression of prognostically significant glutamine metabolism-related genes in different subtypes in
the CGGA dataset.
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that the top 20 genes with significant differences, from which we

could see that the mutation frequencies of IDH1, TP53, and other

genes were significantly different between the three molecular

subtypes (Figure 3C).

Pathway characteristics among various
molecular subtypes

It is observed that the TCGA dataset is significantly

enriched to 29 pathways in the C1 subtype, and overall,

the activated pathways mainly contain some pathways

linked with the cell cycle such as E2F_TARGETS,

G2M_CHECKPOINT, MYC_TARGETS_V1, which can

also be observed in the CGGA cohort (Figure 4A).

Additionally, a comparison of the TCGA dataset was made

to identify the pathways that differed among the C1 and C2,

C1 and C3, and C2 and C3 subtypes (Figure 4B). The

outcomes highlighted that the cell cycle pathway and

immune-related pathways were activated in C1 patients.

Therefore, we inferred that the glutamine metabolism

genes used for molecular typing might exert critical effects

on the cell cycle pathway and tumor microenvironment. We

then used radar plots to show the pathways that were

consistently and significantly activated in C1vsC2 and

C2vsC3. The results showed that pathways such as

G2M_CHECKPOINT and IL6_JAK_STAT3_SIGNALING

were significantly activated in both the TCGA dataset and

CGGA dataset (Figures 4C, D).

Immune characteristics among molecular
subtypes and their different reactions to
immunotherapy/chemotherapy

To search deeper for the variations in the immune

microenvironment of affected individuals between

molecular subtypes, we assessed the immune cell

infiltration level in LGG patients by targeting expression

profile data using different immune cell infiltration

algorithms. CIBERSORT revealed considerable variations

between subtypes for almost all immune cell types, and

most of the immune cell infiltration was enhanced in the

C1 subtype, with Macrophages_M2 being most significantly

enriched in the C1 subtype (Figure 5A). At the same time, the

ESTIMATE assessment of immune cell infiltration showed

that the ImmuneScore was considerably increased in the

C1 subtype in comparison with the other two subtypes,

indicating that C1 has a higher immune cell infiltration

(Figure 5B). The same result was found in the CGGA

dataset (Figures 5C, D). In addition, the inflammatory

activity of the three molecular subtypes was analyzed, and

the enrichment scores of seven gene sets regarding

inflammation were demonstrated in the three molecular

FIGURE 2
Distribution characteristics of differentmolecular subtypes in each clinical variable (A)Clinicopathological characteristics ofmolecular subtypes
in the TCGA dataset. (B)Clinicopathological characteristics of molecular subtypes in the CGGA cohort; therein, the lower half shows the proportion,
and the upper half shows the statistical significance of the difference in distribution between the two -log10 (p-value).
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FIGURE 3
Mutation load in different molecular subtypes: genomic alterations in molecular subtypes of TCGA cohort. (A) Comparison of Tumor mutation
burden, Aneuploidy Score, Homologous Recombination Defects, Intratumor Heterogeneity,LOH,purity, ploidy. (B) Comparison of the three
molecular subtypes with immunemolecular subtypes. (C) Somatic mutations in the threemolecular subtypes (chi-square test). *p < 0.05; **p < 0.01;
***p < 0.001; and ****p < 0.0001.
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subtypes, with major variations in all six inflammatory gene

sets except IgG, indicating a higher inflammatory activity in

the overall C1 subtype, a phenomenon also observed in the

CGGA cohort (Figures 5E, F). Low tumor purity and high

enrichment of immune cells and stromal cells have been

revealed to be associated with reduced overall survival in

gliomas (Haddad et al., 2022). The above findings suggest that

the immune infiltration level in C1 is substantially increased,

and it promotes inflammation, predicting that the

development of immune inflammation is likely to be

responsible for the deterioration of LGG patients.

Immune/chemotherapy treatment
differences between molecular subtypes

Given the acknowledgment that immune checkpoint

blockade (ICB) cancer immunotherapy in accordance with

the inhibition of key immune checkpoints, we assessed some

representative molecules and discovered that PD-1, PD-L1,

and CTLA4 were significantly increasingly expressed in the

C1 group (Figure 6A). On the other hand, the T-cell-inflamed

gene expression profile (GEP) score was considerably

enhanced in the C1 subtype (Figure 5B). In addition, we

FIGURE 4
Significantly activated pathways in various molecular subtypes (A) Bubble chart of GSEA results for C1 vs. C3 subtypes in two LGG cohorts. (B)
Bubble chart of GSEA results for various molecular subtypes compared in the TCGA-LGG cohort. (C) Radar chart of C1 vs. C2, C2 vs. C3 consistently
activated pathways in the TCGA-LGG dataset. (D) Radar chart of C1vsC2, and C2vsC3 consistent activation pathways in the CGGA dataset.
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performed ssGSEA analysis for the

GOBP_RESPONSE_TO_INTERFERON_GAMMA gene set

and discovered that the IFN-γ response was remarkably

increased in the C1 subtype (Figure 6C). In addition, we

found that CYT scores, used to reflect cytotoxic effects,

were remarkably higher in C1 subtypes than in other

subtypes (Figure 6D). In addition, the response level of

various molecular subtypes was assessed in the TCGA

dataset to the conventional chemotherapeutic drugs

Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A-

443654, AZD6482, GDC0941, and Bleomycin, and found

that the C1 response to Temozolomide, Cisplatin, A-

443654, and Bleomycin was more sensitive in general

(Figure 6E).

FIGURE 5
Level of immune cell infiltration in various molecular subtypes. (A)Differences in 22 immune cell scores between various molecular subtypes in
the TCGA-LGG cohort. (B) Differences in 22 immune cell scores between different molecular subtypes in the CGGA cohort. (C) Variations in
ESTIMATE immune infiltration among different molecular subtypes in the TCGA-LGG cohort. (D) Differences in ESTIMATE immune infiltration
between different molecular subtypes in the CGGA cohort differences in ESTIMATE immune infiltration between different molecular subtypes.
(E) TCGA-LGG cohort differences in seven inflammation-associated gene cluster scores between different molecular subtypes. (F) CGGA cohort
variations in seven inflammation-associated gene cluster scores in various molecular subtypes.
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Differential expression analysis between
molecular subtypes

In the previous analysis, we classified LGG samples of two

independent datasets into three molecular subtypes (C1, C2,

and C3). Then we identified for differentially expressed genes

(DEGs) in the three different molecular subtypes by

comparing C1 vs. other, C2 vs. other, and C3 vs. other.

Finally, a total of 517 DEGs were discovered in C1,

including 272 up-regulated genes and 245 down-regulated

genes. A total of 24 DEGs were identified in C2, including

eight up-regulated genes and 15 down-regulated genes. Four

hundred twenty-four DEGs in total were discovered in C3,

among which 260 genes were up-regulated, and 164 were

down-regulated. We used the same approach to measure

DEGs in different molecular subtypes in the CGGA cohort.

The differential genes obtained from the two independent

data sets were intersected. Further, we selected genes that

differed in both data sets for functional enrichment analysis,

where there were 332 co-expressed genes in C1, 317 co-

expressed genes in C3 subtypes, and only ten co-expressed

genes in C2 subtypes. Moreover, functional enrichment

analysis of DEGs was done separately, and the enrichment

outcomes of GO and KEGG pathways of genes co-expressed

in C1 showed that Cell adhesion molecules, Phagosome, and

Focal adhesion pathways were considerably enriched in C1.

The enrichment of GO and KEGG pathways of DEGs in

C3 showed that most of the pathways were not as significantly

FIGURE 6
Immune characteristic scores reflecting the effect of immunotherapy for different subtypes. (A) Differences in T cell inflamed GEP score in
molecular subtypes. (B) Variations in response to IFN-γ in different molecular subtypes. (C) Differences in expression of immune checkpoint genes
between molecular subtypes. (D) Variations in cytolytic activity between molecular subtypes. Cytolytic activity variations. (E) The box plots of the
estimated IC50 for Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A-443654, AZD6482, GDC0941, and Bleomycin in TCGA-LGG.
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FIGURE 7
Construction of protein interaction network and key module mining (A) Results of GO and KEGG functional enrichment analysis of DEGs in
C1 subtype; (B) Results of GO and KEGG functional enrichment analysis of DEGs in C3 subtype; (C) PPI network of differentially up-regulated genes in
C1 subtype; (D) MCODE in PPI network of differentially up-regulated genes in C3 subtype key clusters identified by the plug-in; (E) PPI network of
differentially down-regulated genes in C1 subtype; (F) Key clusters identified by the MCODE plug-in in PPI network of differentially down-
regulated genes in C3 subtype.
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activated as in C1, which may be a key factor for the different

prognostic outcomes of the two subtypes in C1 and C3

(Figures 7A, B). A PPI network was created to assess the

interactions between these DEGs clearly. In this network, we

used the MCODE plug-in for network module discovery and

identified a total of two essential modules, and these proteins

may be the key gene clusters affecting glutamine metabolism

(Figures 7C–F).

Identification of key genes for glutamine
metabolism phenotype

In the previous analysis, we obtained 494 DEGs after removing

the duplicate genes, and next, a univariate Cox regression analysis

was done to assess the DEGs; as a result, a total of 343 DEGs with

high prognostic impact were identified (p < 0.001), including

176 Risk and 167 Protective genes (Figure 8A). Furthermore,

FIGURE 8
Lasso screening of key genes to construct prognostic models. (A) A total of 343 promising candidates were identified among the DEGs. (B)
Trajectory of each independent variable changing alongwith lambda. (C)Confidence interval under lambda. (D). Distribution of LASSO coefficients of
the glutamine metabolism-related prognostic gene signature: Distribution of LASSO coefficients of the glutamine metabolism-related prognostic
gene signature.
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FIGURE 9
Calculation of RiskScore and determination of its robustness in two independent datasets. (A) RiskScore in TCGA dataset, survival time vs.
survival status, and expression of the glutaminemetabolism-related prognostic genes. (B) ROC curve of RiskScore classification in TCGA dataset. (C)
KM survival curves of two risk groups in TCGA dataset. (D) RiskScore in CCGA dataset, survival time vs. survival status, and expression of the glutamine
metabolism-related prognostic genes. (E) ROC curve of RiskScore classification in CCGA dataset. (F) KM survival curves of two risk groups in
CGGA dataset.
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lasso regression was utilized for further compressing these 343 DEGs

to lower the genes present in the risk model. In this study, we first

analyzed the independent trajectory variables individually, which

highlighted that with the gradual increase in lambda, the number of

independent variable coefficients tending to zero also increases

gradually (Figure 8B). 10-fold cross-validation was utilized for

making the model, and we analyzed the confidence intervals for

each lambda, which revealed that themodel was optimal at lambda =

0.058, for which we chose nine genes at lambda = 0.058 as the target

genes for the subsequent step (Figure 8C). Further, based on the nine

genes in the lasso analysis results, we finally identified five genes as

glutamate metabolism-related genes affecting prognosis: WEE1,

SFRP2, FXYD6, EMP3, and CRTAC1 (Figure 8D). The glutamate

metabolism-related risk model was defined as: Risk Score =

FIGURE 10
Distribution characteristics of RiskScore subgroups across clinical variables (A) Differences between RiskScore between different
clinicopathology subgroups in the TCGA-LGG cohort. (B) Variations in RiskScore among different molecular subtypes and variations between
molecular and RiskScore subgroups in the TCGA-LUAD cohort. (C)Differences between RiskScore between different clinicopathological subgroups
in the CGGA cohort. (D) Differences between RiskScore between different molecular subtypes and differences between molecular subtypes
and RiskScore subgroups in the CGGA cohort.
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FIGURE 11
Different immune cells with different infiltration levels in the RiskScore grouping. (A) Proportion of immune cell components in the TCGA
cohort. (B)Correlation analysis between 22 immune cell components and RiskScore in the TCGA cohort. (C) Proportion of immune cell components
calculated by ESTIMATE software in the TCGA cohort. (D) Top10 pathways with the most major variations between RiskScore-High and RiskScore-
Low. (E) Results of correlation analysis between KEGG pathways with RiskScore correlations greater than 0.5 and RiskScore.
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0.626*WEE1 + 0.133*EMP3 - 0.322*CRTAC1 - 0.121*SFRP2

-0.225*FXYD6.

Clinical prognostic modeling and
validation

We measured the individual risk scores (RiskScore) for

samples, and the z-score transformation was performed

according to the formula defined in our risk model. The

RiskScore distribution of individuals in the TCGA training

set suggested that samples having enhanced RiskScore

demonstrated a worse prognosis (Figure 9A). Furthermore,

we performed a ROC analysis for sorting the samples based on

their RiskScore corresponding to their prognosis by means of

the R software package time OC. The division of prognostic

prediction efficiency was assessed at one, three, and 5 years,

from which we can see that the AUC of the model is greater

than 0.9, highlighting the model’s favorable reliability

(Figure 9B). Finally, we classified those with RiskScore

more than 0 as high-risk and those less than or equal to

0 as low-risk, in which 165 samples were sorted into a high-

risk group and 341 samples into a low-risk

group. Subsequently, we plotted Kaplan-Meier (KM) curves

that highlighted a highly substantial variation between the

prognosis of high and low RiskScore groups (Figure 9C). To

confirm the robustness of the prediction of the clinical

prognostic model for glutamine metabolism-related gene

signatures, we performed validation in the CGGA LGG

cohort, where we calculated the RiskScore of patients using

the risk model of the CGGA dataset and also plotted ROC

curves and survival curves, the results highlighted that the

validation cohort gave us similar results as in the training set

(Figures 9D–F).

FIGURE 12
Immune characteristic scores reflect the effect of immunotherapy in different RiskScore subgroups. (A) Differences in T cell inflamed GEP
scores between different molecular subtypes. (B) Variations in response to IFN-γ between different molecular subtypes. (C) Variations in cytolytic
activity between different molecular subtypes. (D)Differences in expression of immune checkpoint genes in variousmolecular subtypes. (E) The box
plots of the estimated IC50 for Temozolomide, Bleomycin, Cisplatin, Cyclopamine, A- 443654, AZD6482, and GDC0941 in TCGA-LGG.
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Performance of RiskScore on different
clinicopathological features as well as
different molecular subtypes

To assess the correlation of RiskScore with the clinical properties

of LGGs, we analyzed the variations in the RiskScore scores in

different TNM grades and stage clinical grades in the TCGA dataset.

The outcomes highlighted that the RiskScore score enhancedwith the

increase in clinical grade. Therefore, samples with increased clinical

grades had increased RiskScore scores. Patients aged above

40 possessed worse prognostic outcomes. IDH wild-type and

MGMT hypermethylation also demonstrated their riskiness

(Figure 10A). Moreover, we compared the differences in

RiskScore across molecular subtypes and found that C1 had the

worst prognostic outcome while also having the highest RiskScore,

and the Sankey diagram also demonstrated a higher proportion of

patients with RiskScore-High in C1 (Figure 10B). We also replicated

the results in the CGGA dataset (Figures 10C, D).

FIGURE 13
Determining optimal prognostic factors and determining their reliability by decision tree (A) Individuals with full-scale annotations including
RiskScore, age, gender, and TNM stage were employed to develop a survival decision tree for optimizing risk stratification. (B) Major variations of
overall survival were observed among the four risk subgroups. (C,D) Comparative analysis among different subgroups. (E,F) Univariate and
multivariate Cox analysis of RiskScore and clinicopathological properties. (G) Columnar line plot model. (H) Calibration curves for 1, 3, and
5 years for columnar line plots. (I) Decision curves for columnar line plots. (J) C-index of our risk model and other previously reported risk models.
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Immune infiltration/pathway
characteristics between RiskScore
subgroups

To highlight the variations in the immune

microenvironment of individuals in the RiskScore subgroups,

the relative abundance of 22 immune cell types was compared in

the high and low RiskScore subgroups by expression profiling in

the TCGA dataset, and it could be observed that some of the

immune cells were substantially varied in the high and low

RiskScore subgroups (Figure 11A). Additionally, we assessed

the link of RiskScore with 22 immune cell components and

could see that RiskScore showed a positive correlation with most

immune cells, such as M2 phase macrophages (Figure 11B). In

addition, ESTIMATE was employed to analyze immune cell

infiltration, and it was observed that ImmuneScore was

remarkably increased in the RiskScore-High group in

comparison with the RiskScore-Low group, with higher

immune cell infiltration (Figure 11C). These results are

identical to those of C1, which has higher immune infiltration

and a worse prognostic outcome than other subtypes.

Furthermore, the pathways for the variations between

RiskScore-high and RiskScore-low groups were compared, and

it was observed that RiskScore-high was significantly enriched in

some cancer-related pathways such as HALLMARK_

GLYCOLYSIS, HALLMARK_PI3K_AKT_MTOR_SIGNALING,

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION,

etc. (Figure 11D).

Therefore, the correlation between the enrichment scores of

these pathways and the RiskScore was measured, and the

pathways with a correlation greater than 0.5 were chosen, as

illustrated in Figure 11E, from which it can be seen that the

RiskScore showed a positive correlation with cancer-related

pathways such as HALLMARK_HYPOXIA,

HALLMARK_GLYCOLYSIS, HALLMARK_

EPITHELIAL_MESENCHYMAL_TRANSITION, etc.

(Figure 11E).

Differences in reaction to
immunotherapy/chemotherapy among
RiskScore subgroups

A series of immune signature scores were employed to assess the

immunotherapy response in the RiskScore subgroups. The T-cell-

inflamed GEP score was considerably enhanced in the RiskScore-

High group (Figure 12A). The IFN-γ response was elevated

considerably in the RiskScore-High subgroup (Figure 12B). In

addition, we found that CYT scores, which are used to reflect

cytotoxic effects, were substantially increased in the RiskScore-

High group than in other subtypes (Figure 12C). Considering that

ICB cancer immunotherapy works by inhibiting key immune

checkpoints, we assessed certain representative molecules and

discovered that PD-1, PD-L1, and CTLA4 were significantly more

increasingly expressed in the high RiskScore group (Figure 12D). The

response of various molecular subtypes was assessed in the TCGA

dataset to the traditional chemotherapeutic agents, Temozolomide,

Bleomycin, Cisplatin, Cyclopamine, A-443654, AZD6482,

GDC0941, and Bleomycin and found that overall RiskScore-High

was more sensitive to A-443654 and Bleomycin (Figure 12E).

RiskScore combined with
clinicopathological properties for further
improvement of prognostic models and
survival prediction

In this research, a decision tree was built according to the

patient’s age, gender, TNM Stage pathology information, and

RiskScore in the TCGA dataset, which showed that only

RiskType, Age, and IDH Mutation were a part of the

decision tree identifying four distinct risk subgroups; and

RiskType was the most powerful parameter among them

(Figure 13A). There was a significant difference in overall

survival among the four risk subgroups (Figure 13B). Among

the risk subgroups, including Mediate, High, and Highest, all

patients were shown to be RiskScore-High. Moreover,

variations in the distribution of our defined molecular

subtypes were found in the various risk subgroups, with the

Highest risk subgroup being more occupied by our defined

molecular subtype C1 subtype (Figures 13C, D). Univariate

and multivariate Cox regression analysis of RiskScore and

clinicopathological properties revealed RiskScore as the most

significant prognostic factor. The HRs of 3.56 and 3.72 in the

two datasets were significantly greater than 1, respectively,

predicting that RiskScore is a risk factor for individuals with

LGG (Figures 13E, F). For risk assessment quantification and

survival probability of individuals with LGG, RiskScores and

other clinicopathological features were taken collectively to

create a column line plot, and the model outcomes highlighted

that RiskScore had the most significant impact on survival

prediction (Figure 13G). We further analyzed the model’s

prediction accuracy using the calibration curve and

observed that the prediction calibration curves at the three

calibration points of 1, 3, and 5 years nearly overlapped with

the standard curve, which suggested that the column line plot

had favorable predictive performance (Figure 13H). The

model’s reliability was also assessed using DCA, and the

outcomes highlighted that both RiskScore and Nomogram

benefits were significantly higher than the extreme curves,

and both nomogram and RiskScore showed the strongest

survival prediction ability compared to other

clinicopathological features (Figure 13I). In addition, our

risk model also showed higher C-index compared with

other models in the previous studies (He et al., 2020; Tang

et al., 2020; Wu et al., 2021) (Figure 13J).
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Discussion

In this research, we explored the prognostic significance of

glutamine metabolism genes in LGG using univariate COX

regression in two independent datasets and furthermore selected

genes that were significant in both datasets, with glutamate--cysteine

ligase regulatory subunit (GCLM) having the highest risk ratio and

glutamate dehydrogenase 1 (GLUD1) having the lowest risk ratio.

Although in LGG, these two genes have not been reported frequently,

other studies have reported them coding for enzyme classes

associated with glutamine metabolism. GCLM is the first rate-

limiting enzyme of glutathione synthesis with an amino-cysteine

ligase activity (Diaz-Hernandez et al., 2005). GLUD1 acts as

glutamate dehydrogenase, catalyzing the oxidative deamination of

glutamate toα-ketoglutarate and ammonia (Fang et al., 2002). For the

17 prognostically significant glutaminemetabolism genes, the data set

was divided into three subtypes, of which the C1 subtype had the

worst prognosis and the lowest glutamine metabolism enrichment

score. Among the different clinical variables, the predominance of

C1 patients was older than 40, indicating that increasing age is also a

risk factor for patient prognosis. In contrast, among the gender

variables, there was no difference between the three subtypes,

suggesting that gender does not affect the prognosis of LGG

patients. Patients with MGMT hypermethylation were more

predominant in the C1 subtype, and in combination with

previous work, we know that MGMT methylation levels are

significantly associated with patient prognosis. The IDH mutation

patient group had a prolonged overall survival (OS) of 9.4 years and

theOS being 5.7 years for patients receiving radiotherapy alone, while

in the wild-type IDH patient group, the median survival of patients

on the radiotherapy alone regimen was 1.8 years (Cairncross et al.,

2014); this is in line with our best prognosis for the C3 subtype.

Moreover, in C1, LGG patients had a higher frequency of mutations,

with significantly higher scores for TMB, Aneuploidy Score, and

Homologous Recombination Defects than for other subtypes. In C1,

quite a few pathways are linked with cell cycle and metastatic

invasions, such as E2F_TARGETS, G2M_CHECKPOINT,

MYC_TARGETS_V1, and

EPITHELIAL_MESENCHYMAL_TRANSITION. This indicates

that in C1, the patients are more malignant and more prone to

invasion. These indicate a possible association of glutamine with

these differentially activated pathways. It is known from previous

reports in the literature that inhibition of ASCT2 in prostate cancer is

accompanied by decreased glutamine uptake, which significantly

inhibits tumor growth and metastasis in vivo through the cell cycle

progression of E2F transcription factors (Wang et al., 2015). The

literature reports that cell-intrinsic programs can drive preferential

access to glucose and glutamine for immune and cancer cells,

respectively, providing substantial energy for the tumor

microenvironment and cancer cell proliferation development

(Reinfeld et al., 2021).

To explore the tumor microenvironment of C1, we

assessed the infiltration level of different immune cells in

different subtypes; both ImmuneScores and matrix scores

were found to be significantly elevated in C1, most notably in

M2 stage macrophages, indicating that these particular

immune cells are prominently involved in promoting the

progression of LGG progression. Immune checkpoints such

as PD-1 and PD-L1 were significantly highly expressed in

C1 subtypes, while T-cell-inflamed GEP score and response

to IFN-γ response were significantly elevated in C1 subtype,

suggesting that ICB-based cancer immunotherapy regimens

may be effective in LGG patients. In addition, we found that

C1 was more sensitive to Temozolomide, Cisplatin, A-

443654, and Bleomycin, but not to several other

conventional drugs, suggesting that physicians could

improve their regimens when using conventional drugs

for LGG.

Following differential analysis of different subtypes and

functional enrichment analysis of common differential genes,

we found that most of the pathway activation, such as Cell

adhesion molecules and Focal adhesion, were not as

significant as C1, which may be one of the key factors for

the different prognostic outcomes of the two subtypes C1 and

C3. Based on the protein interaction data, two gene

expression patterns with different prognostic outcomes

could be seen. We constructed the prognostic model and

then determined its robustness and reliability by ROC and

calculated the RiskScore for each patient. By examining the

distribution of RiskScore among different clinical variables, it

can be found that RiskScore is strongly associated with age,

Grade, IDH mutation status, and MGMT methylation level.

Most of the immune cell infiltration degrees and cancer-

related pathways also have a significant correlation with

RiskScore. Moreover, patients in the RiskScore-High group

were more responsive to two traditional drugs, A-443654 and

Bleomycin.

Finally, we determined the most significant prognostic factors by

constructing a decision tree, which showed that patients with

RiskType of HIGH, age over 40, and no mutation in IDH had

the worst prognosis. Afterward, we found that RiskScore had the

greatest effect on survival prediction by column line plot and plotted

the calibration curve and DCA to ensure the reliability and accuracy

of the model.

Conclusion

Initially, we used glutamine metabolism-related genes to

identify stable molecular subtes by consistent clustering, and

these three molecular subtypes have different prognostic,

pathological, pathway, and immunological characteristics.

Afterward, we screened a total of five key genes related to

glutamine metabolism phenotype by DEGs between molecular

subtypes and lasso, then we constructed a clinical prognostic

model based on the key genes associated with glutamine
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metabolism phenotypes which was robust and independent of

clinicopathological features and showed stable predictive

efficacy in independent datasets.

Finally, we combined RiskScore with clinicopathological

features using a decision tree model to improve the prognostic

model and survival prediction ability.
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