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Technological breakthroughs such as high-throughput methods, genomics,

single-cell studies, and machine learning have fundamentally transformed

research and ushered in the big data era of biology. Nevertheless, current

data collections, analyses, andmodeling frequently overlook relative specificity,

a crucial property of molecular interactions in biochemical systems. Relative

specificity describes how, for example, an enzyme reacts with its many

substrates at different rates, and how this discriminatory action alone is

sufficient to modulate the substrates and downstream events. As a corollary,

it is not only important to comprehensively identify an enzyme’s substrates, but

also critical to quantitatively determine how the enzyme interacts with the

substrates and to evaluate how it shapes subsequent biological outcomes.

Genomics and high-throughput techniques have greatly facilitated the studies

of relative specificity in the 21st century, and its functional significance has been

demonstrated in complex biochemical systems including transcription,

translation, protein kinases, RNA-binding proteins, and animal microRNAs

(miRNAs), although it remains ignored in most work. Here we analyze recent

findings in big data and relative specificity studies and explain how the

incorporation of relative specificity concept might enhance our mechanistic

understanding of gene functions, biological phenomena, and human diseases.
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Introduction

For a gene to fulfill its functions, the gene product, i.e., a protein, RNA, or enzyme,

must interact with proteins, RNAs, DNA elements, or other molecules, so characteristics

of those interactions underline the mechanism. Use the enzyme:substrate relationship for

analogy, the enzyme and substrate entities referring to interacting partners with the

former being the party inducing conformational, catalytic, and/or functional changes in

the latter. It is clear then that an enzyme seldom has only one substrate, and it is also

intuitive that if an enzyme has multiple substrates, it will not interact with them equally.

This phenomenon has been defined as relative specificity and generalized by the relative

specificity hypothesis, which proposes that quantitatively different enzyme:substrate

reactions have functional significance through impacting the substrates selectively

and, hence, regulating the underlying biological processes and phenotypes (Zeng, 2011).
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Relative specificity is apparent in simple systems. For

example, human hemoglobin binds O2, CO2, and CO, and

CO associates much tighter than O2 with hemoglobin, which

has a profound physiological implication. On the other hand,

biology is dominated with complex enzymes and systems, such as

transcriptional factors, RNA-binding proteins, protein kinases,

which have hundreds or more substrates and interacting

partners, and the ribosome and RNA polymerases with

thousands or tens of thousands of substrates. Studying their

relative specificity has been traditionally hampered by

technological limitations and the ensuing avoidance of the

subject (Zeng, 2011). Prior to genome sequencing, it was

impossible to know the target range of a transcription factor.

With genome sequences emerging since the 1990s, painstaking

work must be carried out to screen for and confirm the hundreds

or thousands of substrates for any enzyme, while comparing their

interactions with the enzyme requires development of the

suitable assays, e.g., in vitro translation, which might not be

available or easy to scale up. Lastly, the substrates or products in

vivo must be quantified at a large scale using methods such as

high-throughput proteomics whose sensitivity and accuracy is

still being improved. Despite lingering difficulties, genomics

techniques in the past 10–20 years have nonetheless opened

up new venues of research to reveal instances of relative

specificity having functional consequences in diverse settings.

Evidence in support of the relative
specificity hypothesis

Due to its early application of high-throughput approaches,

the transcription field has accumulated the most data from which

relative specificity can be deduced. S. cerevisiae transcription

factor Ndt80 varies in affinities for target promoter sequences,

which explains differential gene activation at the exact times

during sporulation (Zeng, 2011). Studies in animals including

Drosophila indicate that transcription factors bind and control

their target genes with a mechanism best described as

“quantitative continua” (Biggin, 2011). Chromatin

immunoprecipitation followed by sequencing (ChIP–seq)

experiments have shown that transcription factors bind

thousands of target genes variably, and transcription activator

binding positively associates, while transcription repressor

binding negatively associates, with human target mRNA levels

(Zeng, 2014). Thus, merely by differential binding to targets a

transcription factor can modulate the expression of thousands of

genes directly.

RNA-binding proteins regulate RNA metabolism and

functions. YTHDF proteins bind m6A in mRNAs, and how

much mRNAs are degraded varies with the numbers of m6A

sites (Zaccara and Jaffrey, 2020). Likewise, the amount of

RBFOX1 binding positively correlates with the abundance of

its target mRNAs (Fogel et al., 2012; Ray et al., 2013). Another

example is HuR, whose RNA targets in human 293T cells were

analyzed by HuR antibody pull-down and sequencing (Lebedeva

et al., 2011; Mukherjee et al., 2011; Zeng, 2011). HuR targets are

overall more abundant than the non-targets, supporting the well-

established role of HuR in RNA stabilization (Figure 1A).

Critically, HuR targets also vary in the amount of HuR

binding, and the more HuR binds, the higher the RNA is

expressed (Figure 1B). That a single protein accounts for 19%

(0.442) of the differential expression of over 4,000 RNAs

underscores the importance of relative specificity.

Protein kinases are another class of enzymes for which

relative specificity has been demonstrated. The mammalian

mTORC1 kinase phosphorylates some peptides/substrates

better than others, a sign of relative specificity or substrate

quality, allowing mTORC1 to control growth and rapamycin

sensitivity (Kang et al., 2013). The most thoroughly dissected

example is Cdk1 of the fission yeast S. pombe (Swaffer et al., 2016;

Basu et al., 2022). Cdk1 also has good and poor substrates. Its

activity steadily increases from the G1 to M phase during the cell

cycle, when it is able to phosphorylate only the good substrates

early on, which promote DNA replication, and the poor ones

later, which promote cytokinesis. If Cdk1 phosphorylates the

poor substrates prematurely, yeast will divide without doubling

its DNA and subsequently die, a serious outcome should relative

specificity fail. Thus, fluctuating Cdk1 activities largely drive the

cell cycle progression because relative specificity mandates

Cdk1 to phosphorylate functionally distinct substrates at

separate, appropriate times during the cell cycle (Basu et al.,

2022).

The textbook version of the ribosome consists of a fixed

stoichiometry of the same ribosomal RNA and protein

components and operates like an assembly-line machine.

This simplistic view has been overturned (Xue and Barna,

2012; Briggs and Dinman, 2017). RNA and protein

composition of the ribosome can change, with physiological

and disease relevance (Kiparisov et al., 2005; Kondrashov

et al., 2011; Farley and Baserga, 2016; Shi et al., 2017). And

the ribosome translates different mRNAs at different rates.

Certain N-terminal codons in bacterial mRNAs form a weak

secondary structure to favor ribosome binding and enhance

translation initiation (Bentele et al., 2013; Goodman et al.,

2013). After initiation, translation elongation is governed by

codon optimality, an index of mRNA codon recognition by

tRNAs (Hanson and Coller, 2018; Bae and Coller, 2022).

Codon optimality even impacts mRNA degradation,

according to global mRNA sequence and expression

correlation analyses (Hanson and Coller, 2018; Carneiro

et al., 2019; Bae and Coller, 2022). The ribosome, therefore,

by its nature of relative specificity regulates both protein and

mRNA expression. It must be noted, however, that codon

optimality remains an indirect marker of translation

elongation, and how it controls global translation

independent of its effect on mRNA stability has not been
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evaluated; previous studies examined only select mRNAs and

their codon mutants (Presnyak et al., 2015).

Relative specificity has also been identified for Hsp90

(Taipale et al., 2012) and animal miRNAs (discussed later).

Together these studies emphasize that to understand an

enzyme’s work, we not only need to seek out its substrates,

but also must recognize that it interacts with substrates with

different propensities, which is fully integrated into this enzyme’s

mechanism and function. Unfortunately, we have not achieved

this level of understanding for most complex systems, as explicit

evidence of relative specificity remains scarce, especially the

direct demonstration of its physiological significance.

Challenges remain in the big data era

Genomics and high-throughput techniques have removed

the technical obstacles in studying complex systems, yet the

number of instances where relative specificity has been tested

pales in comparison to the candidate pool: only a handful of

kinases and RNA-binding proteins have been examined, whereas

thousands exist in humans. ChIP-seq data show uneven

deposition of DNA-binding proteins to genes, but rarely do

they entice an examination of how genome-wide transcription

is controlled as a result. This oversight might stem from the

thinking that eukaryotic transcription requires the binding of an

avalanche of transcription factors such that the contribution of

any single protein is buried. Moreover, while genomics screening

is now routine and typically yields hundreds of hits, most

researchers would then pick a handful of hits for subsequent

investigation based on expression changes or gene functions.

This drastic target narrowing is adopted because

experimentation with individual genes is time and effort

intensive, yet there lies another reason: the under-appreciation

of relative specificity, even in this big data era. Consequently, the

information about relative specificity is not collected, discounted,

or discarded by target triage. The goal of big data is to dissect and

model biological systems comprehensively, but without relative

specificity, any conclusions or models will lack vital information

and are substantially weakened.

Below we use three fundamental subjects to explain the

importance of pursuing relative specificity. The first pertains

to gene functions in general and in disease. While a gene, e.g.,

BRCA1, may be expressed in multiple tissues and organs and

have critical, house-keeping functions, why do its germline

mutations often affect only a specific organ(s), e.g., the breasts

and ovaries? And how do mutations in genes, e.g., TP53 and

MYC which have a lot of targets, cause cancers? To the first

question, an organ-specific factor may relay signals from

germline mutations to trigger disease in that particular organ.

Consistent with this view, a new study identified Pax8, a kidney-

enriched transcription factor, as a downstream effector of VHL

mutations in renal carcinogenesis (Patel et al., 2022). Tissue-

specific factors are undoubtedly essential, yet they fit only part of

the picture. Pax8 is highly expressed in the thyroids and kidneys,

but it is also present in other organs, so more work is needed to

understand how Pax8 works with the ubiquitous VHL in those

organs. Furthermore, Pax8 is a transcription factor and counts

MYC as a target (Patel et al., 2022). Thus, this paper pushes the

organ-specificity goalpost down the field while circling back to

the second question above: how exactly do proteins including

transcription factors that control so many downstream genes

FIGURE 1
Effects of HuR binding on RNA expression in 293T cells. (A) Comparisons of the RNA expression levels of non-HuR targets and HuR targets
[GSE29943 and Supplementary Table S2 from (Lebedeva et al., 2011)]. RNAswith fragments per kilobase of transcript permillionmapped reads above
0 (the y-axis) were counted, and the numbers of RNAs in each category are listed in parentheses. Mann–Whitney U test (SPSS, IBM, Armonk, New
York) was performed to compare RNA expression, and the graph depicts the averages, standard deviations, and the p value. Corresponding to
the data of Supplementary Table S1. (B) Spearman correlation analysis between HuR binding [the x-axis, Supplementary Table S2 from (Lebedeva
et al., 2011)] and RNA expression (the y-axis, GSE29943). Dots represent individual HuR targets, and the correlation coefficient (ρ) and p value shown
in the graph. Corresponding to the data of Supplementary Table S2.
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cause cancers? A great deal of transcription target genes of TP53

andMYC have been identified and studied for decades, but not a

single one mediates or recapitulates the effects of TP53 or MYC

mutations. From the relative specificity viewpoint, mutations in

TP53,MYC, or other genes might induce unbalanced changes in

the targets, and it might be the targets’ unbalanced changes that

cause the diseases. So a new research angle is to quantify the

relative levels or changes in many targets: the identity of

individual genes still matters, just more must be considered

together.

The second subject is transcription. A recent study cloned

tens of millions of random 80-basepair-long DNA sequences

into the promoter region of a yellow fluorescence protein

reporter gene and measured reporter expression in S.

cerevisiae, from which sequence-to-expression models were

built (Vaishnav et al., 2022). The authors then asked how

gene regulatory DNA evolved by coupling library sequences

to the natural promoters of 5,569 S. cerevisiae genes in 1,011 S.

cerevisiae isolates and comparing gene expression changes

(Vaishnav et al., 2022). This paper illustrates perfectly how

big data have empowered massive sequence space expansion

and gigantic parallel reporter assays to greatly facilitate

measuring relative specificity, and it yields an impressive

amount of data for reporter gene regulation. It does not,

however, answer why, from a genome perspective,

endogenous genes A and B are expressed differentially in

yeast. A wide assortment of genomics, epigenetics,

transcriptomics, and ChIP-seq techniques have been

developed to study gene regulation from yeast to humans.

As genes vary in their amounts of transcription factor

binding and DNA and chromatin modifications, the

challenge is to combine and model DNA sequences,

modifications, chromatin structures, and transcription factor

binding systematically, injecting relative specificity at each step.

The last subject is translation. Differential translation has

been investigated using bioinformatics and reporter libraries, but

direct, large-scale validation in endogenous protein expression

has rarely been performed. A latest study constructed a library of

thousands of natural mRNA sequences from 4,252 S. cerevisiae

genes, and incubated the mRNAs consisting of up to 122-

nucleotide-long 5’ untranslated regions in front of at least 24-

nucleotide-long coding sequences with yeast extract for in vitro

translation initiation reactions (Niederer et al., 2022). The

authors then sequenced ribosome-bound mRNAs and found

that ribosome recruitment (RRS) to mRNAs differed by

1,000-fold. The obvious next question is: is recruitment

reflected in protein levels in vivo? It was not documented in

the paper, so we analyzed the correlation of RRS to protein

expression in yeast (Figure 2). Figure 2A used the yeast protein

expression data that summarized the results of 21 previous

genome-wide studies (Ho et al., 2018), and Figure 2B used the

protein expression data normalized to mRNA data, which

reduced the influences from mRNA abundance (Lahtvee et al.,

2017). Both indicated a correlation close to 0, suggesting that

ribosome recruitment leaves no mark on global protein

expression in yeast. This result underlines two principal

missing pieces in relative specificity investigation: one is the

lack of demonstration of physiological relevance in the literature,

and the other is that an enzyme interacting with its substrates

differently is not necessarily reflected in the end products. Thus,

even if relative specificity is self-evident biochemically, its

physiological importance is never certain.

Altogether, the above examples suggest that more evidence of

relative specificity remains to be unearthed, and that we need a

FIGURE 2
Ribosome recruitment (RRS) and protein expression in yeast. (A) Spearman correlation analysis between RRS [the x-axis, according to dataset
GSE182290 (Niederer et al., 2022)] and protein expression (the y-axis) from Supplementary Table S4 in (Ho et al., 2018). Dots represent individual
genes (mRNAs and the corresponding proteins). For mRNAs with isoforms, we added their RRS prior to correlation analysis. Number of genes (n) and
the correlation coefficient (ρ) are shown on the graph. Corresponding to the data of Supplementary Table S3. (B) Spearman correlation between
RRS (the x-axis) (Niederer et al., 2022) and protein expression (the y-axis) from Supplementary Table S4 in (Lahtvee et al., 2017). Labeling and
descriptions see (A). Corresponding to the data of Supplementary Table S4.
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deeper understanding of its biological relevance. In pathways that

involves multiple enzymes or steps, e.g., translation initiation,

elongation, and termination, is there a step whose relative

specificity is the most critical? As there is often a rate-limiting

reaction in metabolism and cell signaling, is there a rate-limiting

relative specificity? Lastly, if relative specificity is a general

principle, is it evolutionarily conserved? Studies in animal

miRNAs have begun to address these questions.

Lessons from the mirna system

miRNAs are a family of approximately 22-nucleotide-long RNAs

that are widely expressed in metazoans, and they regulate biological

processes by binding to complementary sequences, usually in the 3’

untranslated regions, in target mRNAs to repress their expression

(Bartel, 2018). miRNAbiogenesis starts with transcription to produce

primary miRNA transcripts (pri-miRNAs). During canonical animal

miRNA processing, the ribonuclease Drosha/DGCR8 (Drosha in

short) cleaves pri-miRNAs to generate precursor miRNAs (pre-

miRNAs) in the nucleus. Next Exportin5 exports the pre-miRNAs

to the cytoplasm, where another ribonuclease Dicer cleaves pre-

miRNAs to produce miRNA duplex intermediates. Argonaute

proteins then select the mature miRNA strands, and the miRNA:

Argonaute complexes bind target mRNAs to repress gene expression.

As animal genomes encode hundreds of miRNAs, and each miRNA

has hundreds of targets (Bartel, 2018; Kozomara et al., 2019), both

miRNA biogenesis and miRNA function constitute complex systems

in which relative specificity can be tested.

We found that human Drosha cleaves hundreds of pri-

miRNA substrates at different rates in vitro, which correlates

with mature miRNA expression in vivo, revealing a role of

Drosha’s relative specificity in regulating miRNA biogenesis

(Feng et al., 2011). Human Dicer also cleaves pre-miRNAs

differentially in vitro, as does human Exportin5 bind pre-

miRNAs, yet there is no significant impact on miRNA

expression associated with Dicer or Exportin5 action (Feng

et al., 2012; Zhang et al., 2021). A rationale may be that

because pri-miRNA cleavage by Drosha signifies the first and

irreversible step in processing, it makes sense that Drosha

selectivity dominates; i.e., there may indeed be a rate-limiting

relative specificity (Zeng, 2014). Secondary structural features in

pri-miRNAs and pre-miRNAs important for differential

interactions with Drosha, Dicer, and Exportin5 were

identified, providing mechanistic explanations to how relative

specificity arises (Feng et al., 2011; Feng et al., 2012; Zhang et al.,

2021). Differential transcription of miRNA genes has a lower

correlation coefficient with miRNA expression than Drosha

(Feng et al., 2011; Zhang et al., 2018), suggesting that

processing might play a more prominent, regulatory role

genome-wise.

miRNA function similarly exhibits relative specificity. In cell

culture models miRNAs such as miR-124 inhibit reporter genes

containing the 3’ untranslated regions of approximately

200 target mRNAs to different degrees, and such differential

inhibition correlates with the expression levels of the

corresponding, endogenous target mRNAs in relevant human

tissues (Li et al., 2019). This result suggests that miRNA action

contributes to differential target expression. Targeting efficacy by

miRNAs has also been examined using artificial libraries without

further analyses of the functional relevance in vivo (Vainberg

Slutskin et al., 2018; Becker et al., 2019; McGeary et al., 2019).

Lastly, is relative specificity conserved through evolution? To

answer this question cleavage of zebrafish and fruitfly pre-miRNAs

and pri-miRNAs by Dicer and Drosha, respectively, were examined

(Zhang et al., 2022). Both Dicer and Drosha discriminate their

substrates in vitro, but in both animals only the preference of Drosha

correlates with global, differential miRNA expression in vivo, just as

in humans. Hence, relative specificity of the enzymes is

evolutionarily conserved, so is, crucially, their relative

contribution to the regulation of global miRNA production.

Studies of miRNAs and other, completely different systems

have converged on similar findings. Both Drosha and fission yeast

Cdk1 have essential targets and perform essential functions, and

neither acts like production-line robots. By intrinsic biochemical

properties, Drosha ensures that miRNAs are generated at varying

amounts, thereby regulating miRNAs, miRNA targets, and

processes downstream (Feng et al., 2011; Zhang et al., 2022),

and Cdk1 ensures that proper substrates are phosphorylated at

proper times, maintaining an orderly cell cycle (Swaffer et al., 2016;

Basu et al., 2022). Most publications onmiRNA targets are content

with analyzing a single target and its contribution to a phenotype,

yet a miRNAhasmany targets (Bartel, 2018; Kozomara et al., 2019;

Li et al., 2019). Focusing on a single target will not provide an

adequate answer to miRNA functions because as a miRNA has

many targets, it is quite probable that some have opposing roles in

a particular pathway. Without knowing how the miRNA represses

those targets comparatively, how can one ascertain the “net”

outcome and the mechanism? Obviously the same reasoning

applies broadly to transcription factors and other proteins and

enzymes with many substrates.

Concluding remarks

Relative specificity and its physiological importance have

been documented in a tiny number but wide range of

complex biochemical systems that have been sampled, and we

have gained novel and unexpected insights into how biological

processes are regulated. What is the origin of relative specificity?

As it describes the interactions between molecules, the same

physics and chemistry principles apply. In the earliest days when

there were only one enzyme and one substrate, no relative

specificity existed. But as the biological world increased in

diversity, more substrates with different sequences and

structures emerged, which naturally diverged in their
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interactions with the enzyme. Relative specificity might highlight

a new layer of controlling mechanisms and complexity, as natural

selection could act on relative specificity in addition to the more

visible, sequence space to maintain stability while fostering

evolution at the same time.

As important as relative specificity is, it works alongside with

other regulatory mechanisms. In vitro studies cannot capture the

intricacy that the levels of enzymes and substrates may fluctuate

temporally and spatially, between and within cells (Raj and van

Oudenaarden, 2008). For example, miRNA function depends on

miRNA:target affinities as well as the abundance of miRNAs and

individual mRNAs (Bosson et al., 2014; Denzler et al., 2014; Nam

et al., 2014; Li et al., 2019). Many biological systems are under

weak constraints, with components evolving under largely

neutral selection. Consequently, networks can be stochastic yet

robust and tolerate variations due to relative specificity and/or

other mechanisms (Lynch, 2007; Raj and van Oudenaarden,

2008; Paris et al., 2013). These complexities might obscure the

effects of relative specificity (Csardi et al., 2015), but together they

call for a more quantitative research approach.

In summary, new technologies and studies in the 21st century

have generated massive data, now further aided by artificial

intelligence to study complex systems and diseases. But these

efforts have pitfalls because in most cases the information about

relative specificity is missing or insufficiently utilized. Fortunately,

relative specificity can be studied with current technologies and the

right mindset, and its incorporation in the big data era will help us

better understand and model complex systems.
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