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Background: Pyroptosis, a programmed cell death (PCD) with highly

inflammatory form, has been recently found to be associated with the origin

of hematopoietic malignancies. Long noncoding RNA (lncRNA) had emerged as

an essential mediator to regulate gene expression and been involved in

oncogenesis. However, the roles of pyroptosis-related lncRNA (PRlncRNA) in

acute myeloid leukemia (AML) have not yet been completely clarified.

Methods: We collected AML datasets from public databases to obtain

PRlncRNA associated with survival and constructed a PRlncRNA signature

using Lasso-Cox regression analysis. Subsequently, we employed RT-PCR to

confirm its expression difference and internal training to further verify its

reliability. Next, AML patients were classified into two subgroups by the

median risk score. Finally, the differences between two groups in immune

infiltration, enrichment analysis and drug sensitivity were further explored.

Results: A PRlncRNA signature and an effective nomogram combined with

clinicopathological variables to predict the prognosis of AML were constructed.

The internal validations showed that the PRlncRNA risk score model was an

accurate and productive indicator to predict the outcome of AML. Furthermore,

this study indicated that higher inflammatory cell and immunosuppressive cells,

and less sensitive to conventional chemotherapy drugs were highlighted in the

high-risk group.
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Conclusion: Through comprehensive analysis of PRlncRNA model, our study

may offer a valuable basis for future researches in targeting pyroptosis and

tumor microenvironment (TME) and provide new measures for prevention and

treatment in AML.
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acute myeloid leukemia, pyroptosis, lncRNA, prognosis, lasso-cox regression, tumor
microenvironment

1 Introduction

Acute myeloid leukemia (AML) is one of the severe and life

threatening hematological malignant tumor arising from

hematopoietic stem cells (HSCs) (Thomas and Majeti, 2017) with

a high recurrence and mortality rate. About 10–40% of younger

AML patients are primarily refractory to induction therapy, while a

higher recurrence rate was observed in elderly patients (Döhner

et al., 2015). After receiving allogeneic hematopoietic stem cell

transplantation (allo-HSCT), up 50% of AML patients finally

relapse (de Lima et al., 2014), and the 2-year survival rates are

below 20% (Schmid et al., 2012; Schmid et al., 2018). Currently,

guideline for the risk stratification of AML had included cytogenetic

abnormalities, as well as gene mutations in NPM1, CEBPA, FLT3,

and KIT (Dohner et al., 2017), improving the diagnosis and

prognosis of AML patients. Although most AML patients could

reach initial remission after induction chemotherapy, the long-term

survival was still dismal. Accordingly, it is still urgently needed to

find novel treatment strategies for improving the outcome of AML

patients.

Pyroptosis, a highly inflammatory form of programmed cell

death (PCD) (Miao et al., 2010), has garnered increasing attention

as it relates to innate immunity and various diseases. Unlike

apoptosis, pyroptosis was induced by the activation of

gasderminsis through classical and non-classical pathways

(Kayagaki et al., 2015; Ding et al., 2016; Liu et al., 2016; Rogers

et al., 2017; Broz et al., 2020; Zhou et al., 2020), leading to cell

swelling and plasma membrane rupture, and then triggering a

strong inflammatory response (Chen et al., 2016). This process,

however, could be either beneficial or detrimental to clearance of

malignancies. Pyroptosis can inhibit the occurrence and

development of tumors by mediating cell death and favourable

immune response, while its hyper-inflammatory state could form a

microenvironment conducive to tumor development and

metastasis. During the inflammatory response, inflammasome

activation exerts a critical role in maintaining multiple stages of

hematopoietic homeostasis (Yang et al., 2021). Irreversible

pyroptotic cell death may be caused by the activation of

inflammasome in HSCs and thus leading to the origin of

hematopoietic malignancies (Wei et al., 2022). An immunity

and pyroptosis gene-pair signature performed stronger survival

predictive efficacy than 10 existing signatures (Kong et al., 2022).

The researches for the relationship between pyroptosis and tumor

may provide some inspirations for clinical treatments. Recent

several researches showed pyroptosis-related protein-coding

genes could predict prognosis in AML (He et al., 2022; Liu

et al., 2022; Pan et al., 2022; Shao et al., 2022; Zhou et al., 2022).

With a complex secondary and tertiary structure, long

noncoding RNA (lncRNA) is RNA with over 200 nucleotides

in length. Now, lncRNA has emerged as an essential mediator to

participate in the regulation of gene expression such as

chromatin modification, transcriptional regulation, and post-

transcriptional regulation (Mercer et al., 2009) in almost all

aspects of biology, particularly in tumorigenesis (Yang et al.,

2014; Fang and Fullwood, 2016). Currently, accumulating

researches have reported the effect of lncRNA as prognostic

and diagnostic markers in leukemia (Garzon et al., 2014; Lei et al.,

2018; Mer et al., 2018; Zhu et al., 2021). Moreover, several

lncRNA recently were found to play roles in the pyroptosis

pathway (He et al., 2020; Xu et al., 2020; Zhang et al., 2022).

However, the relationship between pyroptosis-related lncRNA

(PRlncRNA) and clinical prognosis in AML is still ambiguous.

In this study, we identified that PRlncRNA could effectively

predict the outcome of AML and were associated with immunity

and pro-inflammatory signaling. We first constructed a novel

PRlncRNA prognostic model. Next, two risk groups were

identified by the median risk score. The relationship between

risk groups in immune infiltration, functional analysis and

response to chemotherapy were further explored. Our study

may facilitate an understanding of the mechanism underlying

PRlncRNA in AML and provide precision therapies.

2 Materials and methods

2.1 Data collection

We downloaded the expression profiles of RNA-seq (n = 150)

and clinicopathological information of AML tumorous tissue

from the Cancer Genome Atlas (TCGA) website (https://portal.

gdc.cancer.gov/), while the RNA-seq profiles of normal blood

(n = 337) were obtained from UCSC XENA of Genotype-Tissue

Expression (GTEx) (https://xenabrowser.net/datapages/) (Li

et al., 2021). Then we normalized and processed the RNA-seq

profiles of counts value from TCGA and GTEx with “limma”

package (Mounir et al., 2019). From Genecards (https://www.

genecards.org/), 176 pyroptosis-related genes (PRGs)

(Supplementary Table S1) were finally retrieved.
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2.2 Functional pathway enrichment of
pyroptosis-related differentially expressed
genes (DEGs)

According to the screening criteria of a false discovery rate

(FDR) < 0.05 and |log2 fold change (FC)| > 0.25, 57 pyroptosis-

related DEGs were obtained with the “limma” package in R

(Ritchie et al., 2015). For better understanding of the functions of

DEGs, functional enrichment analysis, including the GO terms

and KEGG pathways were carried out with “clusterProfiler” and

“ggplot2″ packages (Yu et al., 2012).

2.3 Construction and validation of the
prognostic model

We evaluated the association between 57 pyroptosis-related

DEGs and lncRNA by the pearson correlation coefficient. In

total, 877 PRlncRNA were screened out following the criteria of

absolute correlation coefficient >0.3 and a p-value < 0.001. To

minimize the possible statistical bias, the samples were sifted

when they lack overall survival (OS) value, of which 125 AML

patients with complete clinical information were obtained. First,

univariate Cox regression was applied to determine the lncRNA

associated with prognosis. Subsequently, to prevent overfitting, least

absolute shrinkage and selection operator (LASSO) regression was

performed using the “glmnet” package. Finally, multivariate Cox

regression was used to establish a four-lncRNA risk model of AML.

We computed a risk score of each patient via the expression level of

lncRNA and its regression coefficient. The formula was as follows:

Risk score � ∑
n

i
Coef i × Ai. AML patients were randomly assigned

into high- and low-risk groups bymedian value of the risk score and

a Kaplan–Meier survival curve was further employed with the

“survival” package. Then we applied “survivalROC” package to

plot the receiver operating characteristic (ROC) curve of the 1-,

3-, and 5-year for OS rates of AML. Patients of entire set were

randomized into two internal test sets with “caret” package

(Mahmoudian et al., 2021). Finally, the same above formula was

used to further validate the reliability of the signature.

2.4 Construction of the nomogram and
analysis of potential clinical relevance

We constructed a nomogram combining risk score and

clinical factors (age and molecular risk) with the ‘rms’

package to predict the 1-, 2-, and 4-year survival of AML

patients (Iasonos et al., 2008). Then calibration curves were

plotted to assess the clinical utility of the nomogram. At first,

we took 1-,3- and 5-year as the criteria for nomogram, however

the calibration curve showed no score in 5-year. Thus, a 1-,3-,

and 4-year setting was drawn back. For further exploration of the

predictive signature, we compared the survival difference of risk

groups and expression differences of predictive genes in

clinicopathological subgroups.

2.5 Evaluation of immune status

First, Immune checkpoints activation was compared between

risk groups using “ggpubr” package. In order to explore the

association between risk scores and immune cells and functions,

we employed the single-sample gene-set enrichment analysis

(ssGSEA) score to quantify the enrichment levels of immune

cells, related functions or pathways in different subgroups, using

the “gene set variation analysis (GSVA)" package (Dalangood

et al., 2020). Moreover, the proportions of 22 immune cells

between the risk groups were explored by the CIBERSORT

algorithm (Newman et al., 2015).

2.6 Gene set enrichment analysis (GSEA)

GSEA was carried out to determine the predominant genes

enriched pathways with GSEA 4.1.0 (http://www.broad.mit.edu/

gsea/). We applied “c2. cp.kegg.v7.5. symbols”, “c5. go.v7.5.

symbols” and “h.all.v7.5. Symbols” to complete functional

enrichment analysis. The threshold for statistical significance

was considered as nominal p < 0.05 and FDR <0.25.

2.7 Drug sensitivity prediction

To evaluate the therapeutic value of signature in AML, the

“pRRophetic” package (Geeleher et al., 2014) was applied to

analyse the half inhibitory concentration (IC50) of typical

chemotherapy drugs. Thereafter, we compare the IC50 values

between two risk groups to search for potential drugs.

2.8 Human clinical specimens preparation

Samples of newly diagnosed AML and iron-deficiency anemia

(IDA) were acquired from patients who were treated in the Qilu

Hospital of Shandong University in Jinan, China. Ten pairs of bone

marrow samples were included and IDA samples served as control.

2.9 RNA extraction and real-time
quantitative PCR (RT-qPCR)

Total RNA was extracted using the Trizol method as

previously reported (Invitrogen, Carlsbad, CA, United States).

Complementary DNA (cDNA) was synthesized using Evo

M-MLV RT Mix Kit with gDNA Clean for qPCR (Accurate

Biology, Human, China). Four lncRNA gene expressions were
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verified by PCR using SYBR® Green Premix Pro Taq HS qPCR

Kit (Accurate Biology, Human, China) with GAPDH as a

control. The primer sequences of four lncRNA were shown in

Supplementary Table S2.

2.10 Statistical analysis

Results of the following analysis were performed with the R

software (Version 4.1.0). Comparison of OS between risk groups

was conducted by Kaplan-Meier analysis as well as log-rank tests.

The time-dependent ROC curve and the area under curve (AUC)

were carried out with the “timeROC” package. For continuous

variables, Student’s t-test and Wilcox test were performed to test

the differences between two groups while One-way ANOVA or

Kruskal–Wallis test was used in three or more groups. Chi-

square tests were employed in categorical variables. The optimal

cut-off value was 0.876 between two risk groups determined by

“survminer” package. P-values are two-sided in all statistical, and

p < 0.05 was considered as statistically significant results.

3 Results

3.1 Identification and enrichment analysis
of pyroptosis-related DEGs

The general workflow (Figure 1) describes the whole

screening and analysis processes. From TCGA and GTEx

matrix, we obtained 150 tumor samples and 337 normal

samples. According to the expressions of PRGs and DEGs

(|Log2FC| > 0.25 and p < 0.05), 57 pyroptosis-related DEGs

FIGURE 1
Detailed flow chart of our research.
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including 35 downregulated genes and 22 upregulated genes

were obtained (Supplementary Figure S1A). The expression

level of the top 10 upregulated and downregulated pyroptosis-

related DEGs were characterized (Figure 2A). Then KEGG and

GO analysis were performed. Pyroptosis-related DEGs were

mainly enriched in the NOD−like receptor signalling pathway,

Legionellosis, Pathogenic Escherichia coli infection,

Salmonella infection, p53 signalling pathway, Measles, Lipid

and atherosclerosis, Hepatitis B, Endometrial cancer and Viral

myocarditis according to KEGG pathway analysis (Figure 2B;

FIGURE 2
Significantly enriched GO terms and KEGG pathways of pyroptosis-related DEGs between AML and the healthy control. (A) Heatmap of top
10 pyroptosis-related DEGs of upregulated and downregulated genes. Enrichment analysis of pyroptosis-related DEGs of KEGG pathway (B) and GO
terms (C).
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FIGURE 3
Construction the pyroptosis-related prognostic model by DEGs. (A,B) Least absolute shrinkage and selection operator (LASSO) regression
analysis with ten-fold cross validation to determine the lambda number. (C) The expression levels of four pyroptosis-related lncRNA in AML and
healthy control (Wilcoxon tests). (D) RT-PCR-detected RNA expression of four genes in our own samples, 10 AML de novo, and 10 IDA as normal
control samples. (E) The expression levels of four pyroptosis-related lncRNA in different risk groups. (F) Sankey diagram of prognostic
pyroptosis-based lncRNA.
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FIGURE 4
Risk score of the pyroptosis-related prognostic signature for overall survival (OS). Kaplan-Meier survival curve of high- and low-risk patients and
ROC curve and AUCs at 1-year, 3-year and 5-year survival in the entire cohort (A,B), the first internal cohort (C,D) and the second internal cohort (E,F).
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Supplementary Table S3). Furthermore, pyroptosis, regulation

of cysteine−type endopeptidase activity, regulation of

inflammatory response and positive regulation of

proteolysis were highlighted in GO enrichment (Figure 2C;

Supplementary Table S4).

3.2 Establishment and validation the
pyroptosis-related prognostic model

A total of 98 PRlncRNA correlated with OS were identified by

univariate Cox regression (Supplementary Figure 1B). Then, we

used the LASSO-Cox regression to reduce overfitting (Figures 3A,B).

Finally, a pyroptosis-related prognostic riskmodel composed of four

lncRNA (AC244502.3, AC000120.1, AC139887.2, AC008074.2) was

established by multivariate Cox regression. Higher expression level

of four PRlncRNAwere observed in tumor tissues (Figure 3C). Their

higher expressions in AML patients were validated according to RT-

qPCR (Figure 3D). AC244502.3, AC000120.1 and AC139887.2 were

up-regulated in low-risk group as protective factors in this

prognostic model, while AC008074.2 was a risk factor (Figures

3E,F). The risk score was as follows: risk score = AC008074.2

expression * 0.751252629082265 + AC139887.2 expression *

(-1.43187457646711) + AC000120.1 expression *

(-1.49861878505506) + AC244502.3 expression *

(-0.278256123715056). We further visualized the correlation

between lncRNA and mRNA. The co-expression network

including 19 pairs mRNA-lncRNA was characterized in

Supplementary Figure 2A (|R2 | > 0.3 and p < 0.001). Two risk

groups were randomised by the median value of the risk score. The

patients of high-risk group were observed significantly shorter OS

than those in low-risk group (Figure 4A). ROC curve was applied to

assess the reliability of our prognostic signature. The AUC value was

0.795 at 1 year, 0.779 at 3 years, and 0.802 at 5 years which indicated

excellent stability (Figure 4B). To determine the prediction ability of

the model, we stratified entire dataset into two groups. Similar

results were observed in two internal cohorts. The high-risk group

showed lowerOS rate and good evaluated prognostic power was also

observed in validation cohorts according to the ROC curves (Figures

4C–F). The 1-,3-, and 4-year ROC curves for entire cohort and two

internal cohorts were shown in Supplementary Figure S2B–D.

Patients’ baseline characteristics of the entire and two validation

cohorts are outlined in Table 1.

3.3 Construction of nomogram and
analysis of the potential clinical relevance
of the prognostic signature

The clinical relevance of our signature was further explored. We

performed univariate Cox regression analysis incorporating eleven

variables that were easily accessible (Supplementary Figure 2E).

Besides risk score, molecular risk and age were shown to be

independent risk factors for OS and then were enrolled to

multivariate Cox regression (Figure 5A). The risk score

demonstrated a higher predictive ability than that of

clinicopathological variables in AML (Figure 5B) and other

previously reported prognostic signatures [Leu 2022 (Kong et al.,

2022), AJH 2021 (Chen et al., 2021), Int Imp 2022 (Shao et al., 2022)]

(iAUC-Our signature: 0.806, iAUC-Leu2022: 0.691, iAUC-

AJH2021: 0.570, and iAUC-IntImp2022: 0.658; all the p-values in

comparisons between Our signature and the above three models

were <0.001). Based on multivariate Cox regression, we developed a

novel nomogram, aiming to optimize the predictive accuracy of the

risk model (Figure 5D). The ROC curve exhibited a reliable

predictive efficacy (Figure 5E). The 1-,2-, and 4-year calibration

curves of our constructed nomogram yielded good agreement

between prediction and observation (Figures Figure5F–H). The

clinical characteristics of two risk groups were further compared.

The heatmap showed that the distribution of FAB type varied

significantly in risk groups while age, gender, molecular risk,

cytogenetic risk and blood cell counts were no statistically

differences (Supplementary Figure S3). To assess the predictive

ability of the predictive signature in different clinicopathological

subgroups, we separated AML patients into groups by age, sex, FAB,

molecular risk and cytogenetic risk. For each clinical subgroups, the

patients of high-risk group had worse OS than those of low-risk

group (Supplementary Figure S4). We further explored association

between the four predictive genes and clinical variables

(Supplementary Figure S5).

3.4 Enrichment analysis of the prognostic
model

Principal component analysis (PCA) indicated that AML

patients could not be well separated into high- and low-risk

groups by all genes (Figure 6A) but the shortfalls could be

compensated by our signature (Figure 6B). The genes of immune

checkpoint such as CD70, LAIR1, CD276, HAVCR2, CD200R1,

CD86 and LGALS9, were higher expressed in high-risk group,

demonstrated that high-risk group may profit from immune

checkpoint inhibitors (Figure 6C). Subsequent analysis of the

tumor microenvironment was carried out. Inflammatory and

immunosuppressive cells were abundant in high-risk group,

including the presence of Monocytes, Neutrophils along with

M2 macrophages, thus conferring a significant survival

disadvantage (Figure 6D). Then, we investigated the differences

in immune signatures between low- and high-risk groups.

Neutrophils, tregs, chemokine receptor (CCR), check−point, type-

I and type-II IFN response and parainflammation were observed

with higher expression level in high-risk group, indicating that high-

risk group was correlated with the inflammatory response and

tumor immune escape (Figures 6E,F). To assess the potential

biological processes between two groups, enrichment analysis of

GO, KEGG and hallmarker were performed (Figures 7G,H;
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Supplementary Figure S6A; Supplementary Tables S5–7). High-risk

patients were closely related to myeloid leukocyte activation,

inflammatory response such as Chemokine, Cytokine-cytokine

receptor interaction, Interleukin-6 production, Leukocyte

transendothelial migration, Toll like receptor, Apoptosis and

Interferon gamma, and tumor-related signaling pathways such as

IL6-JAK-STAT3, MAPK, VEGF, Wnt, PI3K-AKT-mTOR, KRAS,

NF-κB and P53. The inflammasome-related genes (Liu et al., 2016)

exhibited a high expression level in the high-risk group

(Supplementary Figure S6B).

3.5 Mutation profile and
chemotherapeutics of the prognostic
model

Gene mutations in AML could modify the disease process and

subsequently influence the outcomes (Daver et al., 2019).

Therefore, gene mutation status was analysed, among which

FLT3 had the highest mutation rate (Supplementary Figure

S7A). There were no statistically differences in tumor mutation

burden (TMB) between risk groups and survival rates between the

TMB groups (Supplementary Figure S7B, C). The high-TMB

group was observed poor prognosis in subgroup analysis

stratified by risk groups (Supplementary Figure S7D). Then the

20 highest pointmutations were further compared (Supplementary

Figure S7E). Higher frequencies of TP53 mutations (low vs. high:

0–11%) was found in the high-risk group (Supplementary Figure

S7F). Chemotherapy is still the mainstream treatment for AML.

We analysed the association between risk groups and the sensitivity

to typical chemotherapeutic agents in AML (Figure 7). The low-

risk group showed more sensitivity to the conventional

chemotherapeutics including Doxorubicin, Cytarabine,

Methotrexate, Etoposide, Midostaurin, Lenalidomide, ATRA

and HDAC inhibitor Vorinostat, while the high-risk group was

less resistant to protease inhibitor such as bortezomib andMG.132.

Our risk signature may become a potential indicator of drug

sensitivity.

4 Discussion

AML is an aggressive hematologic malignancy with complex

and dysregulated microenvironment that, in part, promotes

TABLE 1 The clinical characteristics of patients in different cohorts.

Entire TCGA dataset (n =
125)

Validation cohorts

First
cohort (n = 61)

second cohort (n = 64) p-value

Age (Mean ± SD) 54.1 ± 1.4 53.4 ± 2.0 54.7 ± 2.1 0.514

Gender, n (%) 0.063

Female 55 (44.0%) 29 (47.5%) 41 (64.1%)

Male 70 (56.0%) 32 (52.5%) 23 (35.9%)

FAB, n (%) 0.930

Non-M3 113 (90.4%) 55 (90.2%) 55 (90.2%)

M3 12 (9.6%) 6 (9.8%) 6 (9.4%)

WBC, ×10̂9/L (Mean ± SD) 30.5 ± 3.2 33.6 ± 5.1 27.7 ± 4.0 0.516

HB, g/L (Mean ± SD) 9.6 ± 0.1 9.7 ± 0.2 9.5 ± 0.2 0.700

PLT, ×10̂9/L (Mean ± SD) 66.6 ± 5.0 68.8 ± 6.5 64.5 ± 7.7 0.261

PB_blast_cell (Mean ± SD) 66.2 ± 2.0 65.9 ± 3.1 66.5 ± 2.5 0.906

BM_blast_cell (Mean ± SD) 36.9 ± 2.7 36.4 ± 4.0 37.4 ± 3.8 0.943

aRISKCyto, n (%) 0.805

Favorable 28 (22.4%) 14 (23.0%) 14 (21.9%)

Intermediate 71 (56.8%) 33 (54.1%) 38 (59.4%)

Poor 26 (20.8%) 14 (23.0%) 12 (18.8%)

bRISKMole, n (%) 0.906

Favorable 29 (23.2%) 15 (24.6%) 14 (21.9%)

Intermediate 68 (54.4%) 32 (52.5%) 36 (56.3%)

Poor 28 (22.4%) 14 (23%) 14 (21.9%)

Riskscore (Mean ± SD) 1.9 ± 0.2 2.1 ± 3.5 1.6 ± 0.2 0.374

aCytogenetic risk.
bMolecular risk.
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FIGURE 5
Construction and verification of the nomogram. (A) Forestmap ofmultivariate Cox regression analysis of the risk scores and clinical parameters.
(B) The ROC curve ofmultivariate Cox regression variables. (C) Prognostic ROCAUC comparison of Our signature and other three signatures. (D) The
nomogram of 1-year, 3-year or 4-year OS of AML patients based on risk score, age and molecular risk. (E) ROC curves and AUCs for the nomogram.
(F–H) The calibration curves test consistency between the actual OS rates and the predicted survival rates at 1, 3 and 4 years.

Frontiers in Genetics frontiersin.org10

Zhong et al. 10.3389/fgene.2022.1029717

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1029717


FIGURE 6
Analysis of differences in immunological characteristics and functional enrichment of AML in different risk groups. (A,B) PCA analysis of the
expression patterns of grouped samples using all genes and prognostic signature. (C) Differential expression of immune checkpoint genes in low-
and high-risk group (Wilcox test). (D) The proportion of every type of TME infiltrating cells between the two risk groups analyzed, respectively, by
CIBERSORT. (E,F) Differences between immune cell infiltration and immune-related functions in two subtypes, with ssGSEA algorithm
(Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001; ns, non-significant). (G,H) The high-risk group enriched gene sets of GSEA-based KEGG and
Hallmark analysis.
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leukemogenesis (Teague and Kline, 2013). During the leukemic

transition, AML blasts modified the immune microenvironment

to evade immune surveillance. Accumulating evidences indicated

that chronic inflammation in tumor microenvironment (TME)

played a major role in immune invasion, thus contributing to

tumorigenesis (Grivennikov et al., 2010; Shin and Brusselle, 2014;

FIGURE 7
Chemosensitivity prediction. Higher drug sensitivity in high-risk group (A–C) and low-risk group (D–L) (Wilcoxon tests). Lower half inhibitory
centration (IC50) means better drug sensitivity.
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Lu et al., 2021). In some studies of pyroptosis in AML, TME was

found remarkably different between risk groups (He et al., 2022;

Shao et al., 2022; Zhou et al., 2022). Pyroptosis, an inflammation-

dependent form of PCD, was proved to participate in tumor

growth and chemosensitivity (Xia et al., 2019), while its

mechanisms are complicated. For instance, pyroptosis serves

as a tumor inhibitor in hepatocellular and nasopharyngeal

carcinoma (Zaki et al., 2010; Chen et al., 2012) and a two-

edged sword of promotor and inhibitor in cervical cancer (Xia

et al., 2019). A growing body of evidences indicated that lncRNA

participated in multiple biological processes of various tumors

via pyroptosis-related pathways. ADAMTS9-AS2 inhibited

gastric cancer progression and promoted cisplatin

chemosensitivity by regulating the pyroptosis process (Ren

et al., 2020). Moreover, the activation of MEG3 enhanced

Cisplatin-induced pyroptosis in triple-negative breast cancer

(Yan et al., 2021). In liver cancer, SNHG7 suppressed the

NLRP3-related pyroptosis pathway (Chen et al., 2020). The

effect of PRlncRNA in AML has not been yet clarified.

Therefore, a PRlncRNA signature was established to explore

its possible clinical relevance with AML.

In this study, 57 pyroptosis-related DEGs were obtained

which were highly related to pyroptosis, inflammatory,

p53 signaling pathway and positive regulation of

endopeptidase activity based on KEGG and GO analysis. The

genes of positive regulation of endopeptidase activity were related

in numerous cellular processes, including apoptosis, DNA

damage repair, or cell cycle progression (Jorgensen et al.,

2006) and mediated PCD(Yamada et al., 2020). Next, we used

Lasso-Cox regression analysis to identify a risk model of four-

PRlncRNA (AC244502.3, AC000120.1, AC139887.2 and

AC008074.2). Then, the signature was validated in two

internal cohorts. The ROC curves of whole dataset and two

internal training sets demonstrated high accuracy of the clinical

prognostic model. Our signature exhibited greater predictive

ability than clinicopathological variables such as molecular

risk and cytogenetic risk. In our study, AC244502.3,

AC000120.1 and AC139887.2 were observed as potentially

protective lncRNA with higher expression in low-risk group,

while AC008074.2 was potentially dangerous. AC000120.1 had

been found to associated with the prognosis of Bladder Cancer

(Cui et al., 2021). The functions of the three remaining lncRNA

have not been studied and reported specifically yet. Thus, more

researches of lncRNA are needed to be conducted.

The recruitment of inflammatory cells, cytokines and

chemokines results in the inflammatory TME which

contributes to metastasis and invasion of tumor cells,

modulates the anti-tumor immune response and influences

the sensitivity to chemotherapeutic drugs. Previous studies

suggested the high-risk group of pyroptosis-related signature

was enriched in immunosuppressive cells and had lower drug

sensitivity to classical chemotherapy (Pan et al., 2022; Shao et al.,

2022; Zhou et al., 2022). In pediatric patients with AML, PRGs

were found to predict recurrence (He et al., 2022). To probe the

underlying mechanisms further of our signature, the TME and

enrichment analysis between risk subgroups were investigated. In

this study, the high-risk group demonstrated higher

inflammatory response mediated by IL-6-related signaling

pathways and lower immune response regulated by

immunosuppressive cells such as M2 macrophages, Treg cells

and so on. Recent study indicated that M2 macrophages could

induce immune suppression (Ruffell and Coussens, 2015) and

were associated with the worse survival status (Italiani and

Boraschi, 2014). Monocytes preferentially differentiated into

immunosuppressive tumor-associated macrophages (TAMs) in

solid tumor (Richards et al., 2013), which would suppress

immune response. Higher level of IL-6 was considered to be

related to bone marrow failure (Zhang et al., 2020) and the high

risk of relapse for AML (Stevens et al., 2017). In TME, IL-6 could

drive tumor cells proliferation, invasiveness, and metastasis

through activating JAK/STAT3 signaling pathway which could

in return promote IL-6 transcription (Chang et al., 2014).

Meanwhile, NF-κB was identified as a key transcription factor

that drove the IL-6 signaling (Yoon et al., 2012; McFarland et al.,

2013). Receptor activator of nuclear NF-κB was associated with

dismal disease course and chemoresistance in AML (Clar et al.,

2021). The signaling pathway of JAK/STAT3 and NF-κB have

been universally recognized as the bridge linking tumor and

inflammation. As is well known, the inflammation induced by

bacterial and viral infections could increase the cancer risk.

Intrinsic inflammatory response could be triggered by tumors

which may build up a protumor microenvironment (Tye et al.,

2012). Additionally, upregulated procancer pathways (Wnt, p53,

PI3K-AKT-mTOR, VEGF, and KRAS) were seen more

frequently in high-risk group. This complicated cancer-

immune crosstalk in the TME finally facilitate tumor cell

growth and survival, with decreased antitumor immunity. Our

research also showed that the low-risk group was less resistant to

the conventional chemotherapy drugs, while high-risk patients

may profit from proteasome inhibitor. Bortezomib may exert

anti-inflammatory effects by inhibiting the expression of NF-κB,
IL-6 and TNF-α. (Teague and Kline, 2013). Summarizing all

findings, we constructed two groups, of which high-risk group

had lower immune response, more inflammatory cell infiltration,

and lower sensitivity to classical chemotherapy; together these

characters resulted in a significant reduction in the overall

survival.

In this study, based on four PRlncRNA, we constructed a

prognostic risk score model for AML patients which

demonstrated a reliable predictive validity. Moreover, the risk

score model increased the knowledge of the mechanisms of

PRlncRNA in AML and had the potential to provide more

precisely targeted interventions. There are still some

shortcomings that must be noted. First, external validation

was not conducted due to the lack of expression profiles of

lncRNA in other databases. Second, although with the validation
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of differential expression between normal and tumor samples,

our study mainly based on public databases. Further experiments

in vivo and in vitro should be needed to explore the underlying

mechanisms of PRlncRNA in AML.
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