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Background: With a high incidence and dismal survival rate, hepatocellular

carcinoma (HCC) tops the list of the world’s most frequent malignant tumors.

Immunotherapy is a new approach to cancer treatment, and its effect on

prolonging overall survival (OS) varies from patient to patient. For a more

effective prognosis and treatment of HCC, we are committed to identifying

immune infiltration-related long non-coding RNAs (IIRLs) with prognostic value

in hepatocellular carcinoma.

Methods: In our study, we calculated immune scores of 369 hepatocellular

carcinoma samples from the Cancer Genome Atlas (TCGA) database by using

an estimation algorithm, and obtained long non-coding RNAs (lncRNAs)

associated with immune infiltration by using Weighted Gene Co-expression

Network analysis (WGCNA). For training cohort, univariate Cox, least absolute

shrinkage and selection operator (Lasso) and multivariate Cox regression

analysis were used to determine prognostic IIRLs, we established a

prognostic IIRLs signature. By testing cohort and entire cohort, we

confirmed that the signature is practical. The prognosis of people with

different clinicopathological stages and risk scores were predicted by the

nomogram we constructed. In addition, Immune cell infiltration analysis and

prediction of therapeutic drugs were performed.

Results: 93 IIRLs were obtained by WGCNA. Furthermore, the prognostic value

of these IIRLs were evaluated by using univariate Cox, Lasso and multivariate

Cox analysis. Four IIRLs were used to create a signature with a prognosis. Time-

related receiver operating characteristic (ROC) curve revealed that this model

had an acceptable prognostic value for HCC patients. By using univariate and

multivariate Cox regression analysis, this risk score has been shown to be an

independent prognostic factor for HCC. The nomogram we made showed

good predictions. Except for that, the treatment with immune checkpoint

inhibitors (ICI) was likely to be more effective for low-risk patients.

Conclusion: Based on four IIRLs, a prognostic signature was created in this

research showed good accuracy in predicting OS. This study also provided

valuable references for Immunotherapy of hepatocellular carcinoma.
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Introduction

As the seventh most common cancer worldwide, fatality rate

of primary liver cancer is second among cancers (Bray et al.,

2018; Chidambaranathan-Reghupaty et al., 2021). Hepatocellular

carcinoma (HCC) is the most frequent kind of liver cancer,

accounting for around 90% of primary liver cancer, and its

incidence is on the rise worldwide (Kulik and El-Serag, 2019;

Llovet et al., 2021a). However, the 5-years survival rate for HCC

is very low (Jemal et al., 2017). In the treatment of hepatocellular

carcinoma, HCC patients are staged according to the Barcelona

Clinic Liver Cancer (BCLC) staging system (Llovet et al., 1999;

European Association for the Study of the Liver, 2018; Llovet

et al., 2021b). Resection, transplantation and local ablation are

choices for patients with incipient hepatocellular carcinoma,

while transcatheter arterial chemoembolization (TACE) is the

first choice for patients at intermediate stage, and systemic

therapy is preferred for people with advanced hepatocellular

carcinoma (Llovet et al., 2021a). The extracellular matrix, blood

vessels, immune cells, neurons, and other biological activities

surrounding a tumor are known as the tumor microenvironment

(TME), and they have strong ties to tumor development and

response to therapy (Fridman et al., 2012; Kim et al., 2020).

Immunotherapy has evolved over the past decade to become a

new way to treat advanced tumors (Galon and Bruni, 2019;

Cherkassky et al., 2022), and Immune checkpoint inhibitor (ICI)

is a type of immunotherapy. As a second-line agent for systemic

therapies, ICI is applied to HCC patients. If sorafenib failed,

advanced HCC may be treated with either of three authorized

regimens: regorafenib, cabozantinib, or ramucirumab. In

addition, nivolumab (anti-PD1 inhibitors) and pembrolizumab

(anti-PD1 inhibitor) are approved by the Food and Drug

Administration (FDA) as single agents, and the combination

including ipilimumab (CTLA4 monoclonal antibody) and

nivolumab has been given the green light (Yau et al., 2020;

Llovet et al., 2021a). With an objective response to ICI regimens,

the average overall survival time for HCC patients is more than

30 months (Yau et al., 2020; Llovet et al., 2022). The result of the

response to ICI monotherapy is used to enhance OS endpoints in

clinical trials. There has been a long-term search for predictable

clinical and tissue biomarkers, but some cannot be applied

clinically due to their low sensitivity (Pinero et al., 2020;

Llovet et al., 2022). It is urgent for us to find immune-related

biomarkers that can forecast prognosis and therapy sensitivity

in HCC.

The term “long non-coding RNA” (lncRNA) refers to non-

coding RNAs that are longer than 200 nucleotides but playing no

major role in protein coding (Wang et al., 2011). More and more

evidences have shown that lncRNAs are essential components of

the immune system and have the ability to control immune cell

differentiation and function in cancer (Denaro et al., 2019; Wu

et al., 2020). A study about HCC shows that the lnc-epidermal

growth factor receptor (lnc-EGFR) encourages the development

of Treg cells and prevents the activity of cytotoxic T lymphocytes

(CTLs) (Jiang et al., 2017). Another hepatocellular carcinoma

study shows that lncRNA nuclear enriched transcript 1 (NEAT1)

inhibits the antitumor activity of CD8+T-cell and promotes their

apoptosis through the Mir-155/TIM-3 pathway (Yan et al.,

2019). Such being the case, Discovering lncRNAs associated to

immune infiltration that is crucial for clinical prognosis and

therapy.

In our study, we used the lncRNA dataset of HCC patients in

the Cancer Genome Atlas (TCGA) to create a model of

prognostic risk associated with immune infiltration. We

elucidated its ability to predict overall survival of HCC

patients. We also analyzed the correlation between the risk

score constructed on the basis of immune infiltration-related

lncRNAs (IIRLs) and immune cells and predicted the potential

treatment drugs with different drug sensitivity between two

groups.

Materials and methods

Data access to hepatocellular carcinoma

The RNA-sequencing (RNA-seq) transcriptomic data and

clinicopathological characteristics of liver hepatocellular

carcinoma (LIHC) were downloaded from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/

). There were 374 tumor samples and 50 nearby tissues in the

original data set. The sample data and clinical information were

combined, excluding the adjacent tissue samples. The analytic

data set for our research, consisting of 369 samples of

hepatocellular carcinoma, was finally identified. According to

the data, it was divided into mRNA data and lncRNA data.

Screening for immune infiltration-related
lncRNAs

To determine the ImmuneScore for each HCC sample, we

utilized the ESTIMATE package (Yoshihara et al., 2013) from the

R suite. Through the lncRNA data, the WGCNA package

(Langfelder and Horvath, 2008) in the R suite was used to

create a scale-free co-expression network. The modules

associated with the ImmuneScore were selected and the

lncRNAs in the modules were extracted for subsequent analysis.
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Construction of an immune infiltration-
related lncRNAs prognostic signature

369 samples were used with 185 for training and 184 for

testing. According to univariate Cox analysis, prognostic

relevance of IIRLs was assessed in the training cohort.

LncRNAs with p < 0.05 were considered to be promising

candidates. Using the candidate lncRNAs and the glmnet

package (Friedman et al., 2010), we constructed a LASSO

regression model. Making use of the survival package, we

obtained the hazard ratios (HR) and regression coefficients by

introducing lncRNAs into a multivariate Cox model. We applied

regression coefficients to construct a risk score. The following

procedure was used to calculate the risk score

Risk score � ∑
n

i�1Coefi*Expi

The expression of IIRLs in the signature was represented

by Expi, with Coefi representing the regression coefficients.

According to the median risk score, the patients were sorted

into high-risk and low-risk groups. We examined the

performance of prognostic indicators in terms of overall

survival (OS) by using Kaplan Meier (KM) survival and

receiver operating characteristic (ROC) curve analysis.

Validation of the prognostic signature developed by

training cohort was performed on testing cohort and entire

cohort.

Evaluation of prognostic factors and
development of a predictive nomogram

KM survival analysis was carried out in two groups to

clarify differences among subgroups based on gender, age,

grade, and American Joint Committee on Cancer (AJCC)

stages. Clinical features and risk score were applied to

univariate and multivariate Cox regression analyses in

order to determine whether they were independent

prognostic factors. The line chart was applied to predict 1-

year, 3-years, and 5-years survival rates. We used concordance

index (C-index) and calibration curves to assess the stability of

this model.

Functional enrichment analysis

According to the limma package (Ritchie et al., 2015),

different analysis was conducted on mRNA data to clarify the

biological function differences between two groups. We used

the gene set enrichment analysis (GSEA) function in

clusterProfiler (Yu et al., 2012; Wu et al., 2021a) to

perform Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analysis for

difference analysis results.

Immune correlation analysis

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to assess immune-related function of each

sample (Hanzelmann et al., 2013). We obtained the infiltration

results of 22 immune cell subtypes in each sample by using

CIBERSORT algorithm (Newman et al., 2015) from the TIMER

(Li et al., 2016; Li et al., 2017; Li et al., 2020) database. We

examined the variations in immune cells in two groups as well as

the relationships among various immune cells. We obtained the

immune cell infiltration results of different algorithms from the

TIMER (29–31) database, and found out the relationship

between risk scores and different immune cells.

Evaluation of the Model’s importance in
predicting drug susceptibility

The Wilcoxon signed-rank test was used to compare immune

checkpoint gene expression levels between two groups for PD-1,

PDL-1, CTLA-4, LAG-3, and VSIR. From the Cancer Immunome

Atlas (TCIA) database (https://tcia.at/), we retrieved the

Immunophenoscores (IPS) of HCC patients. We compared the

IPS between two groups in various immunotherapy choices in order

to predict the sensitivity of immunotherapy. Using the pRRophetic

package, we tallied the half-maximal inhibitory concentration

(IC50) of standard chemotherapy and molecular targeted

medicines for each sample to assess the signature’s utility in

predicting the success of HCC treatment (Geeleher et al., 2014a;

Geeleher et al., 2014b). Wilcoxon signed-rank test (p < 0.001 as

significant level) was used to compare the IC50 between two groups.

We used the spearman rank correlation to determine whether there

was a connection between risk scores and IC50 (with a cutoff of p <
0.001 and an absolute value of the Spearman rank correlation

coefficient |R|≥0.25).

Results

Identify immune infiltration-related
lncRNAs

The flow chart of study was shown in Figure 1. 369 LICH

sample data were filtered out of low-expression RNA-seq data

and converted into mRNA data and lncRNA data according to

the data. We usedWGCNA to analyze lncRNA data. We selected

a soft threshold of 3 (Figures 2A,B) and chose 30 as the minimum

number of lncRNAs in the module. We set the threshold to

0.25 of cutting height to combine any potentially similar

modules, resulting in 16 modules (Figure 2D). The salmon

module was highly positively correlated with ImmuneScore

(correlation coefficient R = 0.78, p < 0.001) (Figure 2C). Thus,

we obtained 93 IIRLs.
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FIGURE 1
The flow chart of this study.

FIGURE 2
WGCNA of lncRNAs in HCC. (A) The scale-free fit index for different softthresholding powers is analyzed. (B) Analysis of the mean connectivity
for different soft-thresholding powers. (C) ImmuneScore and its inter-module correlations shown as a heatmap. (D) Clustering dendrogram of
369 hepatocellular carcinoma samples.
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Construction of an immune infiltration-
related lncRNAs prognostic signature

Dividing the dataset into training and testing cohorts in a

random fashion, we compared the baseline data of three cohorts

(Table 1). The univariate Cox regression performed on training

cohort revealed that eight IIRLs were relevant with HCC

prognosis (Figure 3A). These genes were then subjected to

LASSO regression, and seven IIRLs were discovered following

LASSO regression (Figures 3B,C). We found out four IIRLs

(LINC01871, AC011407.1, LINC01094, AC006369.1) by using

multivariate Cox regression. LINC01871, AC011407.1, and

AC006369.1 were protective factors for HCC, while

LINC01094 was a risk factor for HCC (Figures 3D–G). The

following risk score formula was used to produce an IIRLs

prognostic signature (Table 2).

Risk score = (1.2429*Exp LINC01094) -(0.3043*Exp

LINC01871) -(2.199*Exp AC011407.1) -(1.8701*Exp

AC006369.1).

Assessment of an immune infiltration-
related lncRNAs prognostic signature

Each sample in the training cohort had its risk score

determined by the risk score methodology. According to

TABLE 1 The baseline data of three cohorts.

Total (n = 369) Test (n = 184) Train (n = 185) p-value

Age

≤65 232 (62.87%) 124 (67.39%) 108 (58.38%) 0.0791

>65 136 (36.86%) 59 (32.07%) 77 (41.62%)

Unknow 1 (0.27%) 1 (0.54%) 0 (0%)

Gender

Female 120 (32.52%) 68 (36.96%) 52 (28.11%) 0.0886

Male 249 (67.48%) 116 (63.04%) 133 (71.89%)

Grade

G1 55 (14.91%) 28 (15.22%) 27 (14.59%) 0.3318

G2 177 (47.97%) 86 (46.74%) 91 (49.19%)

G3 120 (32.52%) 63 (34.24%) 57 (30.81%)

G4 12 (3.25%) 3 (1.63%) 9 (4.86%)

Unknow 5 (1.36%) 4 (2.17%) 1 (0.54%)

Stage

Stage I 171 (46.34%) 86 (46.74%) 85 (45.95%) 0.9712

Stage II 86 (23.31%) 44 (23.91%) 42 (22.7%)

Stage III 83 (22.49%) 42 (22.83%) 41 (22.16%)

Stage IV 5 (1.36%) 2 (1.09%) 3 (1.62%)

Unknow 24 (6.5%) 10 (5.43%) 14 (7.57%)

T

T1 181 (49.05%) 93 (50.54%) 88 (47.57%) 0.8125

T2 94 (25.47%) 45 (24.46%) 49 (26.49%)

T3 77 (20.87%) 35 (19.02%) 42 (22.7%)

T4 13 (3.52%) 7 (3.8%) 6 (3.24%)

Unknow 4 (1.08%) 4 (2.17%) 0 (0%)

M

M0 265 (71.82%) 132 (71.74%) 133 (71.89%) 0.6303

M1 4 (1.08%) 1 (0.54%) 3 (1.62%)

Unknow 100 (27.1%) 51 (27.72%) 49 (26.49%)

N

N0 250 (67.75%) 121 (65.76%) 129 (69.73%) 0.1226

N1 4 (1.08%) 4 (2.17%) 0 (0%)

Unknow 115 (31.17%) 59 (32.07%) 56 (30.27%)
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the median risk score (1.025), we classfied all patients into

low-risk and high-risk (Figure 4A). A progressive decline in

survival time and an increase in mortality were seen in

conjunction with an increase in risk score (Figure 4B).

Heatmaps were used to display the expression levels of four

IIRLs (LINC01871, AC011407.1, LINC01094, and

AC006369.1) in the training cohort (Figure 4C). The

finding shows two groups had significantly different OS,

according to the KM survival curve (p = 0.003)

(Figure 4D). By time-dependent ROC curve, we predicted

lncRNA biomarkers with an AUC of 0.7457 (Figure 4E). The

signature was then tested on testing cohort and entire cohort

to ensure its accuracy (Figures 4F–O). Throughout testing

cohort and entire cohort, we found the high-risk group had a

substantially shorter OS compared to the low-risk

group. Moreover, the AUCs for testing cohort and entire

cohort were 0.691 and 0.7194, which indicated that this

prognostic signature has good stability.

Clinical value of the prognostic signature

Figure 5A showed the heatmap of clinical information of

patients in two groups and we compared the two groups to see

whether there were differences in clinical information. The

distributions of AJCC stage and T-stage were different for the

high-risk and low-risk groups (Figures 5B,C). Except for three

subgroups (subgroup of female, subgroup of G3 and G4,

subgroup of stage III and stage IV), OS was shorter for

patients in the high-risk group (Figures 5D–K). For HCC

FIGURE 3
Selection of IIRLs and KM survival curves for the four prognostic IIRLs. (A) Univariate Cox regression showing eight IIRLs were associated with
HCC prognosis. (B–C) Lasso regression confirmed seven IIRLs. (D–G) LINC01871, AC011407.1, and AC006369.1 were independent protective
factors for HCC, while LINC01094 was an independent risk factor for HCC.

TABLE 2 Multivariate Cox results for IIRLs.

Id Coef HR HR.95 L HR.95 H p-value Risk

LINC01871 −0.3043 0.7377 0.543 1.0021 0.0516 Low

AC011407.1 −2.199 0.1109 0.0088 1.3988 0.089 Low

LINC01094 1.2429 3.4658 1.551 7.7444 0.0024 High

AC006369.1 −1.8701 0.1541 0.029 0.8186 0.0282 Low
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patients, we can see that the risk score was a significant risk

factor connected to their prognosis by univariate Cox

regression analysis (95% confidence interval (CI):

1.330–1.855, p < 0.001). In addition, AJCC stage (95%CI:

1.360–2.061, p < 0.001) was also closely related to prognosis

(Figure 6A). Risk score remained a significant factor in

FIGURE 4
Modeling and verifying risk scores. (A)Distribution of risk scores among patients in training cohort. (B) A scatterplot of the relationship between
OS and risk score of each person in training cohort. (C) Expression of four IIRLs in training cohort using heatmap. (D) The KM survival curve of training
cohort. (E) The training cohort’s 1-year ROC curve’s area under the curve. (F) Distribution of risk scores among patients in testing cohort. (G) A
scatterplot of the relationship between OS and risk score of each person in testing cohort. (H) Expression of four IIRLs in testing cohort using
heatmap. (I) The KM survival curve of testing cohort. (J) The testing cohort’s 1-year ROC curve’s area under the curve. (K) Distribution of risk scores
among patients in entire cohort. (L) A scatterplot of the relationship betweenOS and risk score of each person in entire cohort. (M) Expression of four
IIRLs in entire cohort using heatmap. (N) The KM survival curve of entire cohort. (O) The entire cohort’s 1-year ROC curve’s area under the curve.
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multivariate Cox regression (HR = 1.384, 95% CI:

1.150–1.666, p < 0.001, Figure 6B). By ROC analysis, we

confirmed that the risk score had higher accuracy in

predicting patients compared with other clinicopathological

features (Figure 6C). Comparative ROC curves for risk scores

at one, three, and 5 years were created (Figure 6D). The 1-year

risk score had the best predictive accuracy.

Building a nomogram and evaluating its
performance

Based on risk score and AJCC stage, wemade a nomogram by

using multivariate Cox regression. When the index values for

each AJCC stage and risk factor were added together, a prediction

of survival at 1, 3, and 5 years could be made (Figure 6F). The

concordance index shows strong stability in the nomogram

(Figure 6E). The calibration curve also demonstrated that the

anticipated survival lengths at 1, 3, and 5 years were consistent

with the reference line (Figure 6G).

Functional enrichment analysis

We used the GSEA function to perform GO and KEGG

enrichment analysis. GO analysis showed that they were

significantly enriched in B cell mediated immunity, complement

activation, humoral immune response mediated by circulating

immunoglobulin, lymphocyte mediated immunity, immunoglobulin

complex, T-cell receptor complex, and antigen binding (Figure 7A).

According to KEGG analysis, they were significantly enriched in the

following pathways: chemokine signaling pathway; complement and

coagulation cascades; graft versus host disease; intestinal immune

network for IgA production; natural killer cell mediated

cytotoxicity; primary immunodeficiency; viral myocarditis (Figure 7B).

Immune correlation analysis

The ssGSEA immune function scores were performed based on

each sample.With the exception ofMHC class I, low-risk group had

better immune function ratings than high-risk group (p < 0.05)

FIGURE 5
Comparison of overall survival (OS) between subgroups of individuals with different clinicopathological features. (A) The risk-clinical
characteristic heatmap was used to visualize this relationship (pp < 0:05, ppp < 0:01, and pppp < 0:001). (B) Distribution of AJCC stage in two groups.
(C) Distribution of T-stage in two groups. (D–E) Subgroup of gender (male and female). (F–G) Subgroup of age (≤65 years and >65 years). (H–I)
Subgroup of grade (G1, G2, G3, and G4). (J–K) Subgroup of AJCC stage (I, II III, and IV).
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(Figure 7C). The number of individuals in low-risk group had a high

ImmuneScore than in high-risk group. (Figure 8A). Using the

CIBERSORT algorithm, we were able to determine the percentage

of 22 different types of immune cells present in HCC patients. The

boxplot clearly displayed the dissimilar distributions of immune cells

between two groups. There were less CD8+ T-cell, resting memory

CD4+ T-cell, Gamma delta T-cell, activated NK cells, and classically

activatedmacrophages in high-risk group compared to low-risk group

(Figure 8B). Figure 8C showed the correlation between various

immune cells. Figures 8D,E demonstrated the distribution of

22 immune cells in two groups. When we examined the

correlation between immune cells and risk score using various

algorithms, the findings revealed that the majority of immune cells

had a poor relationship with risk score (Figure 8F).

Drug prediction

The low-risk group had significantly greater expression levels of

immune checkpoint genes (Figure 9A). The association of IPS with

high-risk and low-risk groups was investigated. We used IPS, IPS-

PD1, IPS-CTLA4, and IPS- PD1 + CTLA4 to evaluate the potential

of risk scores application. The IPS, IPS-PD1, IPS-CTLA4, and IPS-

PD1 + CTLA4 were different in two groups (p < 0.05) (Figures

9B–E). Based on the CGP database, drug IC50 information was

obtained to predict treatment response, and epothilone. B may be a

potential therapeutic drug for patients in high-risk groups (Figures

9F, M). Six drugs (temsirolimus, KU.55933, elesclomol, EHT. 1864,

AICAR, NU.7441) were screened as potential therapeutic drugs for

patients in low-risk group (Figures 9G–L, N–S).

Discussion

With the deepening of research on hepatocellular carcinoma and

the improvement of therapeutic methods, the 5-years survival rate of

patients is still low. TME is linked to tumor development and response

to treatment, and immunotherapy is evolving into a novel approach to

treating high-grade cancers. At present, a variety of ICIs have been

applied to the second-line treatment of HCC systemic therapy, but

they are only effective in hepatocellular carcinoma patients with

immune response. For that reason, how to predict outcomes for

people with HCC and guide the signature of immunotherapy has

become increasingly crucial. LncRNAs are key players in the tumor

immune system and can be used as potential prognostic biomarkers.

In our study, we applied a combination of univariate Cox, LASSO, and

multivariate Cox regression to establish an immune infiltration-related

lncRNAs prognostic signature. The prediction performance of this

signature was high. Patients classified as low risk have a longer

expected survival time than those of high risk. Our final tally of

four IIRLs suggests they may serve as both prognostic indicators and

therapeutic targets for hepatocellular carcinoma.

Among the four IIRLs risk model, the biological mechanisms of

LINC01871, AC011407.1, andAC006369.1 have not been reported to

date. Based on bioinformatics analysis, some prognostic models

constructed suggested that LINC01871 was related to immune

FIGURE 6
Building a Nomogram and Evaluating Its Performance. (A) The AJCC stage and risk score were shown to be associated with overall survival in a
univariate Cox regression analysis (p < 0.05). (B)Multivariate Cox regression analysis confirmed the significance of AJCC stage and risk score as independent
predictivemarkers ofOS inHCCpatients (p<0.05). (C)According to theROCcurve, risk scorewas themost predictivemetric. (D)The ROCcurves of 1-year,
3-years, and5-years risk score. (E)C-indexof clinical factors. (F)Using risk score andAJCCstage, this nomogramestimate apatient’s survival rate at one,
three, and 5 years after diagnosis with HCC. (G) Nomogram accuracy was shown by a calibration curve at one, three, and 5 years.
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FIGURE 7
The results of enrichment analysis. (A) Enrichment analysis of GO. (B) Enrichment analysis of KEGG. (C) ssGSEA immune function enrichment
analysis.

FIGURE 8
Immunological correlation and immune differential studies were performed on two groups of HCC patients. (A) Boxplots showed the
ImmuneScore is significantly higher in low-risk group. (B) The differential analyses of immune cells for two groups. (C) The correlation plot of
immune cells. (D) Distribution of 22 infiltrating immune cell subtypes in the low-risk group. (E) Distribution of 22 infiltrating immune cell subtypes in
high-risk group. (F) Relationship between different immune cells and risk score.
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response (Chen et al., 2020;Ma et al., 2020;Mathias et al., 2021;Wang

et al., 2021). To exert their functions, lncRNAs are used as signals,

decoys, scaffolds, guides, or enhencers (Wang and Chang, 2011; El

Khodiry et al., 2018). Therefore, the roles of these three lncRNAs in

hepatocellular carcinoma should be further studied in the near future.

Several studies have indicated that LINC01094 can act as an effective

miR-577 sponge to promote the proliferation, invasion andmetastasis

of various tumors (Xu et al., 2020a; Dong et al., 2020; Luo et al., 2021).

Targeting the miR-577/CHEK2/FOXM1 axis, LINC01094 promotes

radioresistance in clear cell renal cell carcinoma (ccRCC) (Jiang et al.,

2020). Apart from acting as an effective miR-577 sponge,

LINC01094 can competitively bind to a variety of microRNAs to

promote tumor progression (Xu et al., 2020b; Li and Yu, 2020; Zhu

et al., 2020; Wu et al., 2021b; Chen et al., 2021; Liu et al., 2022). From

our study, the expression of LINC01094 is clearly elevated in high-risk

group compared to low-risk group, which may promote the progress

of HCC. Although LINC01094 is related to the progression of ccRCC,

glioblastoma, and ovarian cancer (Xu et al., 2020b; Li and Yu, 2020;

Chen et al., 2021), still no studies have shown a relationship between

LINC01094 and the progression of HCC. Additional trials are needed

to confirm whether or not LINC01094 may accelerate HCC

development. The biological roles of lncRNAs in HCC including

cell proliferation, cell death, metabolic reprogramming, angiogenesis,

metastasis, inflammation and tumour immunity (Yu et al., 2018; Xie

et al., 2021). The roles of lncRNAs in tumor immunity can be

classified into the following five points (Yu et al., 2018): (Bray

et al., 2018) bidirectional regulation of antigen release

(Chidambaranathan-Reghupaty et al., 2021); participating in

antigen presentation (Kulik and El-Serag, 2019); regulating

immune cell differentiation during immune priming and activation

FIGURE 9
Drug prediction and risk stratification correlated with the efficacy of immunotherapy. (A) Five immune checkpoints and their expression in two
groups (pp < 0:05, ppp < 0:01, and pppp < 0:001). (B) IPS of high-risk and low-risk groups. (C) IPS- PD1 of high-risk and low-risk groups. (D) IPS-
CTLA4 of high-risk and low-risk groups. (E) IPS- PD1 + CTLA4 of high-risk and low-risk groups. (F–L) IC50 of seven drugs (epothilone.B,
temsirolimus, KU.55933, elesclomol, EHT. 1864, AICAR, NU.7441) in two groups. (M–S)Relationship between risk score and IC50 of seven drugs
(epothilone.B, temsirolimus, KU.55933, elesclomol, EHT. 1864, AICAR, NU.7441).
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(Llovet et al., 2021a); influencing immune cells migration and T-cell

infiltration (Jemal et al., 2017); affecting the recognition and killing of

cancer cells. At present, there are no relevant studies on tumor

immunity of these four IIRLs in HCC. For this reason, we think

that these IIRLs can be deeply studied from five aspects of tumor

immunity above.

GSEA enrichment results were mainly in immune related

pathways. Compared to low-risk group, the expression of these

pathways was considerably lower in high-risk group, according to

the negative enrichment score. The results of immune function

enrichment also demonstrated that the immune function of high-

risk group decreased accordingly. Myeloid-derived suppressor cells

(MDSCs), tumor-associated macrophages (TAMs), tumor

associated neutrophils (TANs), regulatory T-cell (Treg) can

achieve immune escape through immune suppression, thus

promoting tumor development (Fu et al., 2019; Lawal et al.,

2021). MDSCs can achieve immunosuppression by producing

immunosuppressive factors (such as arginase, inducible nitric

oxide synthase, IL-10, TGF-β) to inhibit cytotoxic T-cell and NK

cell function (Gabrilovich and Nagaraj, 2009; Masucci et al., 2019;

Lawal et al., 2021). There are two distinct phenotypes among TAMs,

M1, and M2. The M2 phenotype promotes tumor initiation,

progression, and metastasis via many pathways (Qian and

Pollard, 2010; Yao et al., 2018). By activating the TLR4/TRIF/

NF-B signaling pathway, HCC cells encourage the

immunological evasion of HCC by boosting IL-1 secretion of

TAMs (Zhang et al., 2018). According to their polarizing effects,

Tans can be classified as either anti-tumor (N1) or pro-tumor (N2)

phenotypes, and the degree of invasion of Tans is strongly correlated

with tumor growth (Nicolas-Avila et al., 2017; Fu et al., 2019).

Inducing apoptosis in CD8+ T lymphocytes through nitric oxide

generation mediated by tumor necrosis factor alpha (TNF-α) is how
TANs accomplish their immunosuppressive effects (Michaeli et al.,

2017). By increasing AP-1/NF-AT1 axis activity, Tregs aid HCC in

suppressing the immune system (Jiang et al., 2017). Through

downregulating the synthesis and secretion of components like

granzyme, perforin, TNF-α and IFN-γ, Tregs influence CD8+

T-cell production and cytotoxicity (Fu et al., 2007; Hoechst et al.,

2008; Huang et al., 2012). Compared with the low-risk group, our

study showed that the expression of Tregs, macrophages and

neutrophils in high-risk group was increased. This indicated that

the immune function of the high-risk group may be suppressed,

which was consistent with the results of immune function analysis.

And there were relatively few CD8+ T-cell in the high-risk

group. According to a research, immunotherapy is ineffective

against tumors lacking CD8+ T-cell infiltration and they have a

poorer prognosis (Gajewski, 2015). Those in low-risk group showed

greater levels of immune infiltration, higher expression of immune

checkpoint genes, and higher IPS scores when compared to patients

in high-risk group. Immunotherapy was more likely to be beneficial

for patients in low-risk group.

We combined patient prognosis analysis with IIRLs to design a

signature which can predict survival rate and therapeutic drugs for

the high-risk and the low-risk groups. Though having made some

progress, we acknowledged that our research has certain limitations.

First, the main data set we collected from TCGA database, lacks an

external validation set; Other data sets should be acquired and

analyzed to further validate the signature. Second, we did not

elucidate the mechanism and function of IIRLs, which deserve

further study in the future. Third, no clinical data were found to

support the clinical feasibility of treatment drugs in two groups.

Conclusion

We created a signature of immune infiltrationrelated

lncRNAs that may be utilized as a novel biomarker to predict

HCC development. This signature contributes to a deeper

understanding of the correlation between immune infiltration

and tumor progression. It is expected to be further utilized in

future clinical practice.
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