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Computable models as a fundamental candidate for traditional biological

experiments have been applied in inferring lncRNA–disease association

(LDA) for many years, without time-consuming and laborious limitations.

However, sparsity inherently existing in known heterogeneous bio-data is an

obstacle to computable models to improve prediction accuracy further.

Therefore, a new computational model composed of multiple mechanisms

for lncRNA–disease association (MM-LDA) prediction was proposed, based on

the fusion of the graph attention network (GAT) and inductive matrix

completion (IMC). MM-LDA has two key steps to improve prediction

accuracy: first, a multiple-operator aggregation was designed in the n-heads

attention mechanism of the GAT. With this step, features of lncRNA nodes and

disease nodes were enhanced. Second, IMC was introduced into the enhanced

node features obtained in the first step, and then the LDA network was

reconstructed to solve the cold start problem when data deficiency of the

entire row or column happened in a known association matrix. Our MM-LDA

achieved the following progress: first, using the Adam optimizer that adaptively

adjusted the model learning rate could increase the convergent speed and not

fall into local optima as well. Second, more excellent predictive ability was

achieved against other similar models (with an AUC value of 0.9395 and an

AUPR value of 0.8057 obtained from 5-fold cross-validation). Third, a 6.45%

lower time cost was consumed against the advanced model GAMCLDA. In

short, our MM-LDA achieved amore comprehensive prediction performance in

terms of prediction accuracy and time cost.
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Introduction

Long non-coding RNA, named for its transcription length of

over 200 nucleotides, has received extensive attention from

biological researchers (Sun et al., 2018). With the in-depth

development of biomedicine, many literatures have confirmed

that lncRNA plays an important role in the activities of living

organisms through dose compensation effect, genetic expression,

cell differentiation, and other ways and gradually becomes the

focus of bioinformatics. Studies have shown that abnormal

lncRNA expression can lead to a variety of complex diseases,

especially as both oncogenes and tumor suppressors in the

tumorigenesis of diverse cancers (Chen et al., 2020). The

exploration of lncRNA leading to disease is helpful in

understanding the mechanism of disease generation and

provides reference for disease treatment and prognosis (Xia

et al., 2013). Therefore, the work on predicting

lncRNA–disease associations is significant for human disease

diagnostics and prognostics and will improve the development of

drug discovery (Chen et al., 2020).

As biological experiments are time-consuming and

laborious, numerous computational models are mostly used to

replace biological experiments in real life to identify disease-

related associations and provide efficient and more accurate

candidates for biological experiments in recent years (Chen

et al., 2019; Wang et al., 2021; Huang et al., 2022a; Huang

et al., 2022b; Huang et al., 2022c). Currently, computational

models for predicting lncRNA–disease associations (LDAs)

commonly fall into three categories.

The first category of methods is based on constructing

biological similarity networks. Label propagation algorithms are

used commonly in association-related prediction (Yin et al., 2020),

especially as restart random walk and KATZ, whose main

difference is applied in different underlying networks. Sun et al,

(2014) and Chen et al, (2016) established the global restart random

walk algorithm by using the lncRNA functional similarity network

so as to predict potential association information. However, these

models could not work on isolated diseases (diseases without

known association information) or new lncRNAs (lncRNAs

without known association information). Based on the

gene–disease association and lncRNA–disease similarity

network, Ma et al, (2019) introduced the HeteSim algorithm to

construct a gene–disease heterogeneous information network,

with which the network structure was strengthened by

increasing the number of edges in the network. Potential

associations can be propagated with more information and with

better prediction effects. Chen, 2015; Chen et al, (2019) combined

known LDA, lncRNA expression profile information, lncRNA

functional similarity, disease semantic similarity, and Gaussian

interaction spectrum kernel similarity to establish association

prediction models. Although these models could work on

isolated diseases or new lncRNAs, the prediction accuracy is

still not high enough.

The second category of methods utilizes machine learning

with a classifier to identify pathogenic lncRNAs. Chen and Yan,

(2013) used lncRNA expression profile information to develop a

classic and significant calculation model LRLSLDA for inferring

potential lncRNA–disease pair information. This model is the

first to use Laplacian regularized least squares in a semi-

supervised learning framework, and it could work on new

lncRNAs and isolated diseases without needing negative

samples. However, its selection of optimal parameters is

complicated because of its disease space and lncRNA space

belonging to two classifiers. Later, Chen et al, (2015)

developed an improved correlation prediction model LNCSIM

to further improve the prediction accuracy. However, with its

prediction results biased toward those lncRNAs with more

known associations, the prediction effect is not good enough

for isolated diseases and new lncRNAs with less known

information. In addition, selecting attenuation factors of

semantic contribution has not been well-solved. Zhao et al,

(2015) predicted potentially pathogenic lncRNA by integrating

known disease-related lncRNA and a variety of biological data

(genomic data, regulatory, and transcriptional biological data)

based on the Bayesian algorithm. Although the prediction

performance of this model is good, sufficient negative samples

of the Bayesian classifier are required to improve the prediction

performance.

The third category of methods is based on disease-related

genes, for example, mRNA, miRNA, and protein information.

Models belonging to the aforementioned two categories all rely

on the known LDA, whose number with experimental

verification is relatively small. Therefore, researchers have to

explore new ideas to infer the potential associations with using

third-party data, also known as genetic information. Zhou et al,

(2015) selected appropriate thresholds and coefficients to predict

lncRNA–disease pairs, using the expression data of three kinds of

non-coding RNAs (mRNA, miRNA, and lncRNA). Cheng et al,

(2016) introduced mRNA- and miRNA-related data into the

prediction of LDA. Compared with other methods, methods

within this category are more reliable and stable, but the model

performance is highly dependent on coactions found among the

three kinds of non-coding RNAs.

Utilizing deep learning technology has gradually become a

research hotspot to make up for the deficiencies in the

abovementioned three categories. The graph that can abstract

the relationship between entities is widely used as a data structure

(Wu et al., 2020). Wu et al, (2021) proposed a computational

method MLGCNET that applied the graph convolutional

network (GCN) to extract the node information with which

to feed into an extra tree (ET) classifier for accurately predicting

the potential lncRNA–disease associations. The graph attention

network (GAT), as a promising graph neural network, has been

applied to a number of bioinformatics tasks. Long et al, (2021)

proposed a newmethod GATMDA based on the GAT to identify

a microbial–disease association. Bian et al, (2021) proposed a
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model GATCDA to predict circRNA–disease associations based

on the GAT. Gu et al, (2021) predicted drug ADMET

classification based on the GAT. However, this model did not

discuss the time complexity consumed for achieving high

accuracy. Inductive matrix completion (IMC) that could fill

data sparsity existing in the bio-database inherently caused the

problem of low prediction accuracy when it was applied in

inferring LDA directly and separately (Natarajan and Dhillon,

2014; Huang et al., 2017; Chen et al., 2018; Lu et al., 2018;

Fraidouni and Zaruba, 2019; Chen et al., 2021). Therefore, to

break through the aforementioned limitations, multiple

mechanisms were fused into a new computational model,

such as MM-LDA, as shown in Figure 1. On one hand, a

multiple-operator aggregation used in the n-heads attention

mechanism of the GAT was designed, where it could enhance

the features of lncRNA nodes (or disease nodes) to avoid the low

prediction accuracy caused by known-data sparsity. On the other

hand, with enhanced node features, the LDA network was rebuilt

FIGURE 1
MM-LDA workflow.
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by IMC that could renew the missing elements in the bio-

database. In the end, the Adam optimizer was used to further

improve the prediction accuracy.

Materials and methods

Data source

Known lncRNA–disease association: After removing

repeated and redundant lncRNAs (diseases) in the original

dataset lncRNA disease V2.0 (Bao et al., 2019), a processed

dataset composed of associations between human diseases and

lncRNAs was used in our model. This dataset contains 352 LDAs

verified experimentally, involving 156 lncRNAs and 190 diseases.

It is an unbalanced dataset with existing inherent data sparsity

because of less known associations against unknown or non-

existent associations.

For formal description later, the number of lncRNAs and

diseases involved in this dataset (also called association matrix)

was denoted by nl and nd, respectively. In the association matrix

(Ald ∈ Rnl×nd), any known lncRNA–disease association that

relates to disease di and lncRNA lj with experimental

verification works as the positive sample, with denotation of

Ald(li, dj) � 1. Otherwise, any unknown or non-existent

lncRNA–disease association works as the negative sample,

with denotation of Ald(li, dj) � 0.

Multi-source heterogeneous networks

Disease–disease semantic similarity network: Directed

acyclic graph (DAG) was utilized to calculate the semantic

similarity between diseases (Wang et al., 2010). The semantic

contribution value of any disease dt to disease di was denoted

by Ddi(dt).

Ddi(dt) � { 1, dt � di,
max{γDdi(dt′)|dt′ ∈ children of dt}, dt ≠ di,

, (1)

where γ is the coefficient regulating semantic contribution

(Wang et al., 2010), and it was set to the optimal value of 0.5.

If two diseases have more overlaps in DAG, it implies greater

similarity between them (Wang et al., 2010).

MatrixDS ∈ Rnd×ndrepresents the semantic similarity network

of diseases, and its elementDS(di, dj) represents the semantic

similarity between diseases di and dj.

DS(di, dj) � ∑dm∈(Tdi
∩Tdj)(Ddi(dm) +Ddj(dm))
S(di) + S(dj) , (2)

where Tdi represents the DAG of disease di and S(di) represents
the semantic value of disease di.

S(di) � ∑
dt∈Tdi

Ddi(dt). (3)

LncRNA–lncRNA functional similarity network:

Functionally similar lncRNAs are often associated with

diseases in similar phenotypes (Wang et al., 2010). To

calculate the functional similarity between two lncRNAs, the

semantic similarity of diseases and its correlation to lncRNAs

were utilized. Set D � {d1, d2,/, dt,/, dnd} represents the

disease set, and max(dt, D) represents the maximum semantic

similarity of any disease dt in set D:

max(dt, D) � max
1≤ i≤ nd

(DS(dt, di)). (4)

Matrix FS ∈ Rnl×nl represents the functional similarity

network of lncRNAs, and matrix element FS(li, lj) represents

the functional similarity between lncRNA li and lj.

FS(li, lj) � ∑1≤ i≤mmax(di, D1) +∑1≤ j≤ nmax(dj, D2)
m + n

, (5)

where set D1 represents the set of diseases associated with

lncRNA li, set D2 represents the set of diseases associated

with lncRNA lj, and m and n represent the number of

diseases in set D1 and D2, respectively.

Gaussian interaction spectrum kernel similarity network: As

an efficient and useful method in biological information

classification, the Gaussian kernel function (Van Laarhoven

et al., 2011) has been applied to the association network when

some diseases do not have semantic similarity. Gaussian

interaction spectrum kernel similarity of diseases (Gaussian

similarity) calculated by the Gaussian kernel function could

replace the semantic similarity of disease. If disease di has a

known experimentally verified association with any lncRNA,

IP(di) � 1; if disease di does not have any known association

experimentally verified, IP(di) � 0. Matrix GD ∈ Rnd×nd

represents the Gaussian similarity network of diseases, whose

element GD(di, dj) represents the Gaussian similarity between

disease di and dj:

GD(di, dj) � exp( − λd
					IP(di) − IP(dj)					2), (6)

where λd is the standardized core bandwidth, with detailed

calculation as

λd � 1
1
nd∑nd

i�1‖IP(di)‖2
. (7)

Similarly, matrix GL ∈ Rnl×nl represents the Gaussian

similarity network of lncRNAs, and matrix element GL(li, lj)
represents the Gaussian similarity between lncRNA li and lj.

GL(li, lj) � exp( − λl
					IP(li) − IP(lj)					2). (8)

λl � 1
1
nl∑nl

i�1‖IP(li)‖2
(9)

.
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Integrated similarity network: Since not all diseases involved

could calculate the semantic similarity due to the inherent

sparsity in the dataset, an integrated similarity network D(I)
S

was constructed to improve the accuracy of disease semantic

similarity. The matrix element D(I)
S (di, dj) was formed as

D(I)
S (di, dj) � ⎧⎨⎩DS(di, dj) + GD(di, dj), DS(di, dj) ≠ 0,

GD(di, dj), DS(di, dj) � 0.

(10)
Similarly, matrix F(I)S represents the integrated similarity

network of lncRNAs, and the matrix element F(I)S (li, lj) has

the specific form as

F(I)
S (li, lj) � ⎧⎨⎩ FS(li, lj), FS(li, lj) ≠ 0,

GL(li, lj), FS(li, lj) � 0.
(11)

Finally, a multi-source heterogeneous network as a diagonal

matrix was constructed, preparing for the following calculation

in the model:

X � [ 0 D(I)
S

F(I)
S 0

]. (12)

Node feature enhancement

N-heads attention with multiple-operator aggregation: The

original GAT utilizes attention scores to adaptively aggregate

information from neighbor nodes during node updating and

learns the representation of nodes on the graph by assigning

different weights to its neighbor nodes. N-heads attention could

stabilize the process of self-attention, with n time iterations

(Fraidouni and Zaruba, 2019). However, n-heads attention

only uses the “concatenation” operator to aggregate the

features coming from each head. The aggregation effect needs

to be improved further by adding more operators in each head,

and a multiple-operator for n-heads attention was constructed to

enhance node features.

Attention-based feature training: Any element in the feature

vector matrix X was considered the node feature. In the kth

iteration, attention score ekij of node i to neighbor node j in

matrix X was calculated as

ekij � f(hk
iW, hk

jW), (13)

where f(·) denotes a single-layer neural network; hki denotes the
feature vector of node i in the kth iteration; and W ∈ R(nl+nd)×1

denotes the weighted matrix.

In order to make the attention score within the interval of

[0,1], the softmax function was used for normalization

αkij �
exp(ekij)∑t∈Ni

exp(ekit), (14)

where Ni represents the set of all neighbor nodes of node i in

matrix X. In the kth iteration, features of all nodes in setNi were

calculated as

hk
Ni

� ∑
t∈Ni

αkith
k
t . (15)

GNN-based feature aggregation: In order to enhance node

features further, based on a nonlinear graph neural network

(GNN), a multiple-operator that aggregated the features coming

from the attention-based feature training layer was designed:

Mk � LeakyReLU((hk
i + hk

Ni
)W1) + LeakyReLU((hk

i

				hk
Ni
)W1)

+(LeakyReLU((hk
i + hk

Ni
)W1) × LeakyReLU((hk

i

				hk
Ni
)W1))),

(16)
where Mk represents the feature vector after aggregating,

LeakyReLU(·) is the activating function, “+” denotes the

adding operation, “‖” denotes the concatenating operation,

and W1 ∈ R(nl+nd)×k is a weighted matrix. Finally, the feature

vectorMk via the n-heads attention mechanism formed the final

feature matrix M:

M � 				nk�1Mk � [Md

Ml ], (17)

where Md ∈ Rnd×(nl+nd) represents the feature matrix of diseases

and Ml ∈ Rnl×(nl+nd) represents the feature matrix of lncRNAs.

LncRNA–disease association
reconstruction

Inductive matrix completion: Known LDA was represented

as a low-rank matrix in original matrix completion which

recovers missing elements only with less sampling data (Chen

and Chen, 2017). However, a cold start phenomenon will occur,

when the entire row or column of data is missing. IMC

technology introduced could fix the cold start problem and

improve prediction accuracy because the number of

parameters that was learned in IMC only related to the

number of features of lncRNAs (or diseases), not the number

of lncRNAs (or diseases).

Âld � Mdγ(Mlγ)T, (18)

where Âld represents the reconstruction of association matrixAld

and γ is the weight decay parameter.

Model optimization: Optimization of MM-LDA mainly

focused on parameter training by minimizing the loss

function. During parameter training, improper selection of

learning rates will cause abnormal loss function. A large

learning rate will lead to the non-convergence of the loss

function. Otherwise, a small learning rate will make the model

trap into local optimization. Therefore, the Adam optimizer

(Kingma and Ba, 2014) that combined the advantages of an
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AdaGrad (adaptive gradient) optimizer (Lydia and Francis, 2019)

and RMSprop (root mean square propagation) optimizer (Xu

et al., 2021) was adopted in our model. Only requiring small

memory space, the Adam optimizer with a simple and efficient

implementation process could adjust the learning rate adaptively

without being affected by gradient scaling, thus speeding up the

model optimization speed. The optimization process by

minimizing the loss function was formalized as

minLoss � ‖Ald − Âld‖2F + λ‖W2‖
2

F, (19)

where λ is the equilibrium factor with the value of 1 and

W2 ∈ Rnl×nd denotes a weighted matrix.

Results

Experimental evaluation

Evaluation metrics: All known LDAs were randomly divided

into five groups with which 5-fold cross-validation was carried

out to evaluate the predictive performance of our model.

Successively selecting one group in five (as negative samples)

with a group of unknown lncRNA–disease pairs in the same size

(as negative samples) made up the test samples. The remaining

four groups in five and the remaining unknown lncRNA–disease

pairs were used to train the model. A total of five model

evaluation metrics were defined by setting different thresholds,

including true positive rate (TPR), false positive rate (FPR), and

recall rate. Model performance was measured by an area under

the ROC curve (AUC) and an area under the PR curve (AUPR).

In order to avoid the influence of grouping randomly, each

experiment was repeated 10 times. Finally, an AUC value and

AUPR value were calculated according to the average value of the

results from the 10 repeated experiments.

Parameter selection: Parameters used in our model could

impact the predictive performance in the process of model

training. Therefore, this section discussed the selection process

of these three parameters in detail.

Number of attention heads: According to the literature

(Fraidouni and Zaruba, 2019), the number of heads used in

n-heads attention was discussed by setting the weight decay

parameter γ as 5E-4 and the number of neurons as 8. After

implementing 5-fold cross-validation, the results shown in

Figure 2 proved that the number of heads impacted the

predictive performance significantly. When the number of

heads in n-heads attention was set to 6, the maximum AUC

value and AUPR value could be obtained.

Weight decay parameter: According to the previous training,

with the number of heads in a fixed value of 6 and the number of

neurons in fixed value of 8, the influence of the weight decay

parameter γ was discussed. The parameter value of γ was

increased from 5E-6 to 5E-1, with a step size of E-1. After

implementing 5-fold cross-validation, the results shown in

Figure 3 proved that the model achieved the best predictive

performance when γ was set to be 5E-2.

Number of neurons:With the number of heads in a fixed value of

6 and theweight decay parameter in fixed value of 5E-2, the influence

of the number of neurons on predictive performance was discussed

by choosing the value within the set of [4, 8, 16, 32, 64, and 128]. After

implementing 5-fold cross-validation, the results shown in Figure 4

proved that AUC and AUPR obtained the best values when the

number of neurons was set to 16.

Based on the previously mentioned discussion, by setting the

number of heads in a fixed value of 6, the weight decay parameter

γ in a fixed value of 5E-2, and the number of neurons in a fixed

value of 16, our MM-LDA achieved the best AUC value of

0.9395 and AUPR value of 0.8057.

Ablation experiments: In order to evaluate the role of each

kernel part in MM-LDA, such as multiple-operator aggregation

FIGURE 2
(A) AUC with different number of heads. (B) AUPR with different number of heads.
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in n-heads attention, IMC in lncRNA–disease association

reconstruction, three ablation experiments that were used to

compare with our MM-LDA were set up:

• GAT-NG: A prediction model was constructed without

kernel similarity of the Gaussian interaction spectrum as

the kernel part.

• GAT-GIMC: A prediction model was constructed only

based on a standard multiple-heads graph attention

network.

• GAT-GMC: A prediction model was constructed only

based on standard matrix completion.

For each ablation experiment, 5-fold cross-validation was

repeated 10 times, and the average values of the results are shown

in Figure 5.

From the results shown, MM-LDA obtained 5.65%, 3.3%,

and 3.1% higher AUC values than GAT-NG, GAT-GMC, and

GAT-GIMC, respectively. Furthermore, MM-LDA obtained

14.62%, 9.6%, and 13% higher AUPR values than GAT-NG,

GAT-GMC, and GAT-GIMC, respectively. Therefore, it proved

that the three kernel parts (integrated Gaussian interaction

spectrum kernel similarity, multiple-operator aggregation in

n-heads attention, and IMC) of MM-LDA could significantly

improve the predictive performance.

Comparison with other models: SDLDA (Zeng et al., 2020b),

DMFLDA (Zeng et al., 2020a), and GAMCLDA (Lu et al., 2019), the

three computational models based on machine learning and matrix

factorization in recent 3 years, were comparedwith ourMM-LDAon

the same dataset (Ald ∈ Rnl×nd). After 5-fold cross-validation was

carried out, the detailed results are shown in Figure 6 and Table 1 to

further prove the remarkable performance of MM-LDA.

FIGURE 3
(A) AUC with different weight decay parameters. (B) AUPR with different weight decay parameters.

FIGURE 4
(A) AUC with different number of neurons. (B) AUPR with different number of neurons.
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From the results shown, we could easily find that MM-LDA

obtained the best AUC value that is 5.9%, 6.05%, and 11.05%

higher than that of GAMCLDA, SDLDA, and DMFLDA,

respectively. In addition, MM-LDA also obtained the best

AUPR value that is 2.9%, 32.4%, and 49.5% higher than that

of GAMCLDA, SDLDA, and DMFLDA, respectively. Though

the running time of MM-LDA is 7.82% and 5.08% longer than

that of SDLDA and DMFLDA, MM-LDA achieved the

highest cost-effective prediction performance comprehensively.

FIGURE 5
(A) ROC curves of ablation experiments. (B) PR curves of ablation experiments.

FIGURE 6
(A) ROC curves of models compared. (B) PR curves of models compared.

TABLE 1 AUC value (AUPR value) and running time of models
compared.

Model AUC AUPR Time (hour)

MM-LDA 0.9395 0.8057 1.24

GAMCLDA 0.8871 0.7831 1.32

SDLDA 0.8660 0.6085 1.15

DMFLDA 0.8460 0.5391 1.18
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Case study

In order to further verify the independent prediction

performance of MM-LDA, gastric cancer was selected as the

target for the case study. All known associations relating to gastric

cancer composed the training set, and unknown associations

composed the testing set. Then, gastric cancer-related lncRNAs

identified by MM-LDA were sorted by scores. The top

10 lncRNAs with the highest scores were selected to validate the

predictive performance ofMM-LDA, with the evidence coming from

relevant literature and database, as shown in Table 2.

In Table 2, all but two out of 10 lncRNAs predicted by MM-

LDA have found evidence from relevant literature and database.

Even though, there is no direct evidence showing that HOTAIR

and HTTAS relate to gastric cancer so far, some studies found

that HOTAIR has stable expression in peripheral blood and can

be used as a non-invasive diagnostic marker for gastric cancer

(Dong et al., 2019). There is also no published literature which

finds the association between HTTAS and gastric cancer. We

firmly believe that there will be some researchers to find the

experimental evidence for this association inferred by MM-LDA.

Discussion

In this study, a new lncRNA–disease association prediction

model, namely, MM-LDA, combining the graph attention

network and inductive matrix completion technology was

established. MM-LDA designed a multiple-operator aggregation in

n-heads attention to enhance the features of nodes. The enhanced

features were input into the whole process of induction matrix

completion, and the original association matrix was reconstructed

by completing themissing elements of thematrix. The results from5-

fold cross-validation showed that MM-LDA obtained the best AUC

value andAUPR value comparedwith the other three state-of-the-art

computational models. Comparing with GAMCLDA, 6.45% of

training time was saved. In general, MM-LDA deserves to be

recommended as the highest cost-effective prediction model.

However, there are still some aspects that need to be further

improved and studied. First, more biological information relating

to lncRNAs and diseases should be effectively integrated. Second,

MM-LDA did not predict the associations relating to new lncRNAs

and isolated diseases becausewe could not capture the features of new

lncRNAs and isolated diseaseswithout known associations. Third, we

should continue to optimize the aggregators by considering the

research progress of association prediction in other fields.
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TABLE 2 Top 10 gastric cancer-related lncRNAs.

Rank LncRNA Evidence

1 UCA1 LncRNA disease

2 TCL6 Literature [6]

3 PCA3 Literature [6]

4 HOTAIR LncRNA disease

5 H19 LncRNA disease

6 MALAT1 Unconfirmed

7 BCAR4 LncRNA disease

8 HCP5 LncRNA disease

9 CDKN2B-AS1 LncRNA disease

10 HTTAS Unconfirmed
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