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Background: Homologous recombination is an important DNA repair

mechanism, which deficiency is a common feature of many cancers.

Defining homologous recombination deficiency (HRD) status can provide

information for treatment decisions of cancer patients. HRD score is a

widely accepted method to evaluate HRD status. This study aimed to

explored HRD in gastric cancer (GC) patients’ clinical outcomes with genes

related to HRD score and HRD components score [HRD-loss of heterozygosity

(LOH), large-scale state transitions (LST), and telomeric allelic imbalance (NtAI)].

Methods: Based on LOH, NtAI scores, LST, and integrated HRD scores-related

genes, a risk model for stratifying 346 TCGA GC cases were developed by Cox

regression analysis and LASSO Cox regression. The risk scores of 33 cancers in

TCGA were calculated to analyze the relationship between risk scores of each

cancer and HRD scores and 3 HRD component scores. Relationship between

the risk model and patient survival, BRCA1, BRCA2 mutation, response to

Cisplatin and Talazoparib treatment was analyzed by generating Kaplan-

Meier curve, mutations waterfall map and conducting Pearson correlation

analysis.

Results: An gene signature was constructed based on 11 HRD scores-related

gene (BEX2, C1QL2, DKK1, DRC1, GLUD2, HCAR1, IGFBP1, NXPH1, PROC,

SERPINA5, and SLCA1A2). Risk groups were stratified by risk score. Prognosis

of the high-risk score group was worse than the low-risk ones. Risk score was

associated with BRCA2 mutation, and patients grouped according to

BRCA2 mutation status had distinguishable risk score, NtAI score, HRD-LOH,

LST, and HRD scores. The low-score group showed higher sensitivity to

Cisplatin and Talazoparib. The risk score of adrenocortical carcinoma (ACC),

stomach adenocarcinoma (STAD), uterine corpus endometrial carcinoma

(UCEC), kidney renal clear cell carcinoma (KIRC), sarcoma (SARC), prostate

adenocarcinoma (PRAD), breast invasive carcinoma (BRCA) was significantly

positively correlated with HRD score.
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Conclusion: We developed an 11 HRD scores-related genes risk model and

revealed the potential association between HRD status and GC prognosis, gene

mutations, patients’ sensitivity to therapeutic drugs.
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Introduction

Gastric cancer (GC) is one of the most common and deadly

cancers, with the fifth morbidity and the fourth mortality

among all cancers. In 2020, more than 1 million new cases

and nearly 769,000 deaths have been reported (Sung et al.,

2021). Most GC are adenocarcinomas, originating from glands

in the outermost layer of the stomach or mucosa (Cann and

Ciombor, 2022). Helicobacter pylori infection, diets low in

fruits and vegetables, high salt intake, age are Risk factors for

the disease (Smyth et al., 2020). Although surgical resection,

radiotherapy and chemotherapy, pressurized intraperitoneal

aerosol chemotherapy (PIPAC), hyperthermic intraperitoneal

chemotherapy (HIPEC) and other treatments have

significantly improved the average 5-year survival rate of

clinical patients, the average 5-year survival rate has

reached 32%, which is still not ideal. The risk of residual

lesions, micrometastases and disease recurrence is still very

high. Once distant metastasis occurs, the survival rate of

patients is very low, only 6% (Machlowska et al., 2020;

Otaegi-Ugartemendia et al., 2022). GC is still an important

focus of clinical, epidemiological and transformational

research. Previous studies have identified several

environmental and genetic risk factors as well as some

susceptibility conditions (Karimi et al., 2014). However,

there are still many gaps in our understanding of the

drivers and pathological mechanisms of GC at the

molecular level. The comprehensive characterization of GC

molecular spectrum is very important for risk stratification,

screening and personalized decision-making.

Gene mutations, chromosomal aberrations and epigenetic

alterations are some of the genetic/epigenetic influences on

GC pathogenesis (Chia and Tan, 2016). The emergence of

genomic instability resulted from genetic mutations due to

endogenously or exogenously caused DNA failures or damage

during DNA damage repair may be a possible mechanism

underlying cancer development. Normal cells protect cells

from genomic instability by initiating a highly accurate

DNA repair mechanism, thus preventing the accumulation

of transformational mutations (Ali et al., 2021). In cancer,

defects in DNA repair system could lead to the accumulation

of genetic changes, causing genomic instability. Among them,

homologous recombination deficiency (HRD), which results

in impaired DNA double strand break repair, is considered to

be the deadliest of all DNA repair defects (Wagener-Ryczek

et al., 2021). HRD status plays an important role in driving the

progression of cancer and leaves scars throughout the genome,

grouped as telomeric allelic imbalance (TAI), large-scale state

transitions (LST), HRD-loss of heterozygosity (LOH) (Ngoi

and Tan, 2021). Defining HRD status can facilitate decision-

making in treatment and help predict the clinical outcomes for

some cancer patients (Stewart et al., 2022). At present, HRD

score detection is a recognized method to evaluate the status of

HRD (Shen et al., 2022), but there is no universally accepted

gold standard. Myriad Genetic’s myChoice HRD has

developed a HRD status assessment system based on the

overall situation of the above three scars. FDA has

approved it as a concomitant diagnosis of poly-adenosine

diphosphate ribose polymerase (PARP) inhibitor nilapalil in

the treatment of ovarian cancer (Jenner et al., 2016; Telli et al.,

2016). Given the fact that the pattern of genomic instability

caused by HRD may seem different in different tissue types, it

is necessary to study the utility of this HRD score in other

cancer types.

In this study, we defined the HRD state of GC based on the

sum scores of LOH score, LST score, number of TAI (NtAI) score

and three HRD components, identified important HRD-related

genes by analyzing the prognosis and clinical correlation of HRD

status-related genes, and developed a risk model to reveal the

potential association between HRD status and GC prognosis,

gene mutations and patients’ sensitivity to therapeutic drugs.

Materials and methods

Collection and preprocessing of clinical
data

The latest stomach adenocarcinoma (STAD) data set was

extracted from TCGA platform (https://tcga-data.nci.nih.gov/

), and the cases with clinicopathological stage, survival time,

status and mutation information were sorted out, and a total of

346 cases were obtained. And clinical sample data for an

additional 32 cancer types were also downloaded from

TCGA, and Table S1 listed the sample sizes included in

each cancer. The RNA-seq of the case was standardized as

Fragments Per Kilobase Million (FPKM) format. The RNA-

seq and clinical data of GC cases from GSE66229 and

GSE84437 datasets were from Gene Expression Omnibus

(http://www.ncbi.nlm.nih.gov/geo/). After sorting out,
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GSE66229 and GSE84437 included 330 and 431 cases

respectively.

Acquisition and screening of HRD score-
related genes

The combined HRD score and HRD component scores,

including LOH, LST, and NtAI scores, were obtained by

referring to the studies by Knijnenburg et al. (2018). The

protein-coding genes (PCGs) were sorted out using

gencode.v32.annotation.gff3.gz gene annotation information

provided on GENCODE website (https://www.gencodegenes.

org/#). The correlation between HRD score or HRD

Component scores and PCG was calculated in the PCG

expression profile of TCGA and the intersection was obtained

to screen HRD-related genes.

Enrichment analysis of HRD scores related
genes by GO and KEGG

The R package WedGestaltR (v0.4.2) were performed to

analyze the Gene Ontology and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways enriched by HRD score-related

genes. The p-value adjusted by The Benjamini-Hochbergch

procedure was regarded as the cutoff threshold. The results of

the top 10 GO terms and top 5 KEGG pathways showed a bubble

diagram.

Screening of key HRD score related genes
and construction of prognostic signature

To screen the genes significantly associated with overall

survival (OS) from HRD-related genes, univariate Cox

regression analysis was performed. Least absolute shrinkage

and selection operator (LASSO) regression was performed to

reduce dimensionality utilizing the “glmnet” package, and

random forest regression was analyzed utilizing the

“randomForestSRC” package. The HRD score-related genes

screened by these analyses were used to construct the survival

risk score model. The specificity and accuracy of survival

prediction were evaluated by Kaplan-Meier (KM) curve and

receiver operating characteristic (ROC) curve.

Clinical correlation and mutation of
prognostic signature

We investigated the relationship between risk score, HRD

score, HRD component scores and clinical pathological features.

First, the cases were stratified based on different clinical

parameters (N stage, grade, T stage, AJCC stage, and M

stage), and then the differences of risk score, HRD score and

HRD component scores between groups under each clinical

parameter were compared by Kruskal–Wallis test and Wilcox

test. Additionally, a gene mutation waterfall map varying with

risks score was generated according to the mutation data

processed by mutect2 in TCGA.

Drug correlation analysis of risk score

The sensitivity of Cisplatin and PARP inhibitor

Talazoparib was predicted by “pRRophetic” R package, and

the correlation between the sensitivity of the two drugs and

risk score, HRD score, HRD component scores was

determined by Pearson correlation analysis. In addition,

Cisplatin and Talazoparib responses of cases based on risk

score, HRD score and HRD component scores stratification

were analyzed.

Statistical analysis

All the statistical analyses of this study were performed by R

software (version 4.0.2, https://www.rproject.org/). Evaluation of

survival outcome by Log-rank test and Kaplan-Meier methods.

The area under the curve (AUC) was calculated by receiver

operating characteristic (ROC) curve. The relationship of

continuous variables between the two groups was examined

by non-parameter Wilcoxon rank-sum test, and the

relationship among three or more groups was examined by

Kruskal−Wallis test. Statistical significance was reached when

the value of p was less than 0.05.

Results

Identification and functional analysis of
HRD and HRD components related genes
in GC

The genes whose correlation with HRD score and HRD

component scores were more than 0.2 and p < 0.05 were

identified by correlation analysis. 2231 HRD score-related

genes, 1651 HRD-LOH score-related genes, 1660 LST score-

related genes and 2,377 NtAI score-related genes were screened

in TCGA. There were 1,264 common genes among all four types

of HRD related genes (Supplementary Figure S1A). GO analysis

showed that the 1,264 genes were associated with homologous

recombination, reciprocal meiotic recombination, chromatin

assembly and other GO biological processes (BP), but there

was no statistically significant correlation (Supplementary

Figure S1B). KEGG enrichment analysis showed that
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1,264 HRD related genes were enriched in

glycosylphosphatidylinositol (GPI)−anchor biosynthesis,

complement and coagulation cascades, systemic lupus

erythematosus, alcoholism, viral carcinogenesis, however, the

enrichment of these HRD related genes in these KEGG

pathways did not show statistical significance (Supplementary

Figure S1C).

Prognostic value of HRD score and HRD
component scores in GC

Four indicators, overall survival (GC), disease-specific

survival (DSS), disease-free interval (DFI), and progression-

free interval (PFI), were employed to investigate the

relationship between HRD score/HRD component scores and

GC prognosis. Kaplan-Meier curve showed that patients with

different scores could be distinguished according to HRD score

and HRD component scores, but there was no significant

difference in overall survival between high score group and

low score group (Supplementary Figure S2). Kaplan-Meier

analysis of the association between HRD score and HRD

component scores and DSS showed that HRD score, HRD-

LOH score, LST score and NtAI score were significantly

correlated with bad DSS and PFI, respectively (Supplementary

Figure S3, S5). Moreover, individuals with high LST had

significantly shorter DFI than individuals with low LST

(Supplementary Figure S4).

Development of prognostic signature
composed of key HRD score-related
genes

Univariate Cox regression analysis showed that 176 of

1264 HRD score related genes were significantly associated

with the survival of GC. Eleven genes were identified by Lasso

regression analysis (Figure 1A). The regression coefficients of

11 genes were determined by multivariate Cox regression

analysis (Figure 1B). The risk score of each GC case in TCGA

was calculated by summing the product of regression coefficient

and gene expression, the formula was:

Risk score � 0.0303*BEX2 + 0.2731*C1QL2 + 0.0784*DKK1

+ 0.1297*DRC1 + 0.1060*GLUD2

+ 0.0773*HCAR1 + 0.0851*IGFBP1

+ 0.9108*NXPH1 + 0.0674*PROC

+ 0.1061*SERPINA5 + 0.0436*SLCO1A2

(1)
We standardized the risk score by Z-score, and classified the

samples into high-risk group and low-risk group with 0 as the

FIGURE 1
Development of prognostic signature composed of key HRD score-related genes. (A) The key genes were screened from 176 HRD score
related genes by Lasso regression analysis. (B) Forest map ofmultivariate Cox regression analysis of 11 genes. (C) Kaplan-Meier survival analysis of for
the high- and low-risk group in TCGA with 346 GC cases. (D) The ROC curve of the risk score of GC in TCGA.
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boundary. And Survival analysis showed that the high-risk group

had a worse prognosis than the low-risk individuals (Figure 1C).

The ROC curve showed that the risk formula composed of

11 genes had a certain accuracy in predicting the survival of

GC, with AUC of 0.71 and 0.68 in 1 year and 3 years, respectively

(Figure 1D).

Correlation between risk score and HRD
score, HRD component scores and clinical
features

Through the Pearson correlation analysis to explore the

relationship between risk score and HRD score, HRD

FIGURE 2
Association between risk score and different clinical stages and grade. (A) The risk score of the cases stratified by T stage, N stage, M stage, AJCC
stage and grade. (B) The NtAI score of individuals stratified by T stage, N stage, M stage, AJCC stage and grade, respectively. (C) The correlation
between LOH score and T stage, N stage, M stage, AJCC stage and grade. (D) LST score distribution in different T stage, N stage, M stage, AJCC stage
and grade groups. (E) The association of HRD score with different T stage, N stage, M stage, AJCC stage and grade.
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component scores. The results showed that risk score was

positively correlated with HRD score and three kinds of HRD

component scores (Supplementary Figure S6). Then the

relationship between risk score/HRD score/HRD

component scores and several clinical stages and grade was

analyzed. There was no significant difference in risk score

between each clinical stage and grade group (Figure 2A). There

was no significant correlation between NtAI score and T stage,

N stage, M stage, and AJCC stage, but there were significant

differences among the three grades (Figure 2B). The same

situation was also found in the association analysis between

LST score/HRD score and T, N, M stage, AJCC stage, and

grade (Figures 2D,E). For LOH score, no correlation was

found between it and the clinical parameters tested

(Figure 2C). These results showed that NtAI score, LST

score, and HRD score were significantly correlated with

tumor grade.

Gene mutation in prognostic signature

By plotting mutation waterfall maps of BRCA1, BRCA2, and

11HRD-related genes in signature under different risk scores, the

relationship between risk score and mutations of these genes was

intuitively observed. Among all the genes displayed, the

frequency of BRCA2 mutation was the highest, and mainly

occurred in cases with lower risk score. With the increased of

risk score, the frequency of mutation decreased gradually. In

addition, HRD score and three HRD component scores also

showed an increasing trend with the increase of risk score

(Figure 3). The patients were divided into wild combination

mutation group according to whether BRCA1 or BRCA2 was

mutated. After analysis, it was found that risk score, NtAI score,

HRD-LOH score, LST score, and HRD score did not show

significant differences between BRCA1 wild type and mutant

samples (Supplementary Figure S7A). Significant differences in

risk score, NtAI score, HRD-LOH score, LST score, and HRD

score were observed between BRCA2 wild type andmutant cases,

specifically described as risk score, NtAI score, HRD-LOH, LST,

and HRD score in BRCA2 mutant cases were significantly higher

than those in BRCA2 wild type cases (Supplementary

Figure S7B).

Association between risk score/HRD score
and drug sensitivity of GC therapy

To understand the relationship between risk score or HRD

score and chemotherapy and targeted therapy, chemotherapeutic

drug Cisplatin and targeted drug Talazoparib were selected to

analyze their correlation with risk score/HRD score/HRD

component scores. The results showed that Cisplatin and

Talazoparib were positively correlated with risk score, NtAI

score, HRD-LOH score, LST score, and HRD score,

respectively (Figures 4A,B). No matter the cases were divided

into risk groups according to risk score or cases grouped

according to NtAI score, HRD-LOH score, LST score, and

HRD score respectively, Cisplatin and Talazoparib always

showed higher sensitivity than high score group in low score

group (Figures 4C,D).

FIGURE 3
Mutation trend of BRCA1, BRCA2 and 11 HRD related genes under different risk score.
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The performance of prognostic signature
was evaluated in the validation set

For the signature constructed in TCGA based on 11 HRD-

related genes, we evaluated its performance in two verification sets,

GSE66229 and GSE84437. First of all, in two independent

verification sets, the risk score of each case were generated and

standardized by Z-score. Case with a risk score >0 was considered as
a high-risk case, and with a risk score < 0 was defined as a high-risk

case. The survival analysis showed that the survival time of high-risk

cases in two independent verification sets was significantly shorter

than that of low-risk patients (Figures 5A,D). The results of Pearson

correlation analysis also showed that there was a significant positive

correlation between risk score and Cisplatin and Talazoparib in each

verification set (Figures 5B,E). The analysis of Cisplatin and

Talazoparib sensitivity of patients in different risk groups in

GSE66229 showed that the low-risk group was more sensitive to

these two drugs (Figure 5C). In another verification set, both drugs

had lower IC50 in the low-risk group, but there was no significant

difference in the sensitivity of Talazoparib between the high-risk and

low-risk groups (Figure 5F).

Pan-cancer analysis of risk score

To explore the performance of risk score in different tumors, the

risk score of solid tumors in TCGA was calculated according to the

risk model. Figure 6A showed the distribution of risk score in each

type of cancer tissue. In addition, the correlation between risk score

and HRD score and three kinds of HRD component scores in each

FIGURE 4
Association between risk score/HRD score and drug sensitivity of GC therapy. (A) The correlation between Cisplatin and risk score, HRD score,
and HRD component scores was analyzed. (B) Pearson correlation analysis between Talazoparib and risk score, NtAI score, HRD-LOH score, LST
score, and HRD score respectively. (C) Sensitivity to Cisplatin in GC cases grouped according to risk score, NtAI score, HRD-LOH score, LST score,
and HRD score. (D) The IC50 values of Talazoparib in GC disease cases were divided into risk score, NtAI score, HRD-LOH score, LST score, and
HRD score groups respectively.
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FIGURE 5
The performance of prognostic signature was evaluated in the validation set. (A) The survival curve of high-risk and low-risk groups in
GSE66229 dataset. (B) Correlation between risk score and Cisplatin and Talazoparib in GSE66229 dataset. (C) Sensitivity of Cisplatin and Talazoparib
in two risk groups of GSE66229 dataset. (D) Survival results of high-risk and low-risk groups in GSE84437 dataset. (E) Pearson correlation between
risk score and Cisplatin and Talazoparib in GSE84437 datasets. (F) Response analysis of high-risk and low-risk groups to Cisplatin and
Talazoparib in GSE84437 dataset.

FIGURE 6
Pan-cancer analysis of risk score. (A) Risk score was distributed in each type of cancer tissue. (B) The correlation between risk score and HRD
score and three kinds of HRD component scores in each kind of cancer. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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kind of cancer was studied. According to the results of Pearson

correlation analysis, the risk score of ACC, STAD, UCEC, KIRC,

SARC, PRAD, and BRC were significantly positively correlated with

HRD score and three kinds of HRD component scores, indicating

that the risk model may have a potential effect on the HRD of these

cancers (Figure 6B).

Discussion

HRD has been regarded as a marker of many cancers (Hoppe

et al., 2018). Improved responses to platinum-based chemotherapy

and PARP inhibitors have been observed in patients with HRD (da

Cunha Colombo Bonadio et al., 2018). The analysis, verification and

clinical identification of stratified biomarkers are essential for the use

of these drugs to provide accurate patient care (Mateo et al., 2019).

FDA-approved companion HRD assays could be applied for PARP

inhibitor use, however, current HRD assays could not consistently

filter a patient subgroup who could not gain benefit from PARP

inhibitors, which might as well lead to potential resistance to PARP

inhibitor therapy (Chiang et al., 2021). Here, we described a classifier

based onHRDscore-related genes, which can classify GC patients by

risk stratification, detect GC prognosis, HRD-related gene

mutations, and help identify GC patients who benefit from

PARP inhibitor Talazoparib therapy. Through the pan-cancer

analysis of this tool, we reveal its potential for HRD prediction of

different cancers.

The combination of multiple biomarkers challenges some

traditional concepts of biomarker verification in the development

of anticancer drugs (Mateo et al., 2019). The risk model developed in

this study was based on the combination of 11 HRD score and HRD

components score related genes. Brain -expressed X-linked gene

2(BEX2) has been found to repair dormant cancer stem cells in

liver cancer (Tamai et al., 2020; Fukushi et al., 2021), and has shown

cancer-promoting activity in several cancers (Naderi et al., 2007; Tan

et al., 2020). As an inhibitor of Wnt signal pathway, dickkopf-1

(DKK1) has been proved to be an independent risk factor in ESCA,

LUAD, MESO and STAD (Gao et al., 2021). The expression of

glutamate dehydrogenase 2 (GLUD2) is associated with the

histopathological classification, prognosis and survival of patients

with glioblastoma. Up-regulation of its expression resulted in the

inhibition of glioblastoma cell growth (Franceschi et al., 2018).

Hydroxycarboxylic acid receptor 1 (HCAR1) was previously

reported to be involved in the enhancement of DNA repair in

cervical cancer cells related to lactic acid. The expression of lactic

acid receptor/HCAR1 helps to regulate themechanism ofDNA repair

in cervical cancer cells (Wagner et al., 2017). Study reported that

Insulin-like growth factor binding protein-1 (IGFBP-1) encodes a

secretory protein associated with the risk of a variety of tumors,

including in breast cancer, liver cancer, gastrointestinal cancer and

endometrial cancer (Lin et al., 2021). An immunohistochemical study

based on pancreatic ductal adenocarcinoma showed a negative

correlation between neurexophillin-1 (NXPH1) and T stage of the

tumor. The detection of NXPH1 may be help delineate appropriate

surgical margins, and identify lymph node metastasis in imaging

studies (Jin and Tsai, 2016). The expression level of SERPINA5 was

negatively correlated with themalignant progression ofHCC, and this

gene can regulatemetastasis potential of hepatoma cells in vitro and in

vivo (Jing et al., 2014). In triple negative breast cancer,

SLCO1A2 encodes organic anion-transporting polypeptide 1A2

(OA TP1A2), and the expression of OATP1A2 and organic cation

transporter 6 was predicted to be an indicator of response to

neoadjuvant chemotherapy (Hashimoto et al., 2014). Although the

role of these genes in different types of cancer has been studied, the

association between their riskmodels andHRDhas not been reported.

We confirmed the positive correlation between risk model

and HRD score and three kinds of HRD component scores, and

analyzed the relationship between risk score, HRD score, three

kinds of HRD components and clinical stage and stage

respectively. In DNA repair-defective tumors, genetic

alterations have been shown to be able to reflect the scars

resulted from using backup DNA repair mechanisms, but this

needs to maintain cellular viability (Setton et al., 2021).

Mutations of BRCA2 or BRCA1 genes are considered to be

themost common signs of HRD (Gulhan et al., 2019). In addition

to the harmful mutations of HRD -related genes such as BRCA1/

2, we also explored the mutations of HRD score-related genes in

risk models. In GC, the frequency of BRCA2 mutation was very

high, and significant differences in risk score, NtAI score, HRD-

LOH score, LST score, and HRD score were observed between

wild type and mutant cases of BRCA2. More importantly, risk

score could help identify patients who benefit from Cisplatin and

Talazoparib treatment. And risk score also had a significant

positive correlation with ACC, STAD, UCEC, KIRC, SARC,

PRAD, and BRC, indicating its potential effect on the HRD of

these cancers.

In summary, we developed a risk model based onHRD score-

related genes, which can predict the prognosis of GC patients

through risk stratification and help identify GC patients who

benefit from PARP inhibitor Talazoparib therapy. Through the

pan-cancer analysis of this tool, we provided new insights into

the potential HRD status in different types of cancer.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

All authors contributed to this present work: XW revised the

manuscript for important intellectual content, QW and PL

designed the study, LS acquired the data and drafted the

Frontiers in Genetics frontiersin.org09

Wu et al. 10.3389/fgene.2022.1026871

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1026871


manuscript, YW revised the manuscript. All authors read and

approved the manuscript.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fgene.

2022.1026871/full#supplementary-material

SUPPLEMENTARY FIGURE S1

Identification and functional analysis of HRD and HRD components
related genes in GC : Overlap analysis of HRD score and HRD
component scores related genes. (B): GO analysis of 1264 HRD-related
genes showed that top 10 GO biological processes (BP) and GO cellular
components (CC) and GOmolecular function enriched by HRD-related
genes were shown in the bubble diagram. (C): Top 5 KEGG pathways
enriched by 1264 HRD related genes.

SUPPLEMENTARY FIGURE S2

The correlation between HRD score, HRD-LOH score, LST score, NtAI
score and overall survival.

SUPPLEMENTARY FIGURE S3

Disease-specific survival (DSS) analysis of cases grouped according to
HRD score, HRD-LOH score, LST score, and NtAI score.

SUPPLEMENTARY FIGURE S4

The relationship between HRD score and HRD component scoresand
disease-free interval (DFI).

SUPPLEMENTARY FIGURE S5

Individual progression-free interval (PFI) survival curves were stratified
according to HRD score and different HRD component scores.

SUPPLEMENTARY FIGURE S6

Pearson correlation analysis between risk score and HRD score, LOH
score, NtAI score and LST score.

SUPPLEMENTARY FIGURE S7

Risk score, NtAI, HRD-LOH, LST, and HRD score between BRCA1 and
BRCA2 (B) wild type and mutant cases.
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