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The transcriptional activity of Transposable Elements (TEs) has been involved in

numerous pathological processes, including neurodegenerative diseases such

as amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The TE

expression analysis from short-read sequencing technologies is, however,

challenging due to the multitude of similar sequences derived from singular

TEs subfamilies and the exaptation of TEs within longer coding or non-coding

RNAs. Specialised tools have been developed to quantify the expression of TEs

that either relies on probabilistic re-distribution of multimapper count fractions

or allow for discarding multimappers altogether. Until now, the benchmarking

across those tools was largely limited to aggregated expression estimates over

whole TEs subfamilies. Here, we compared the performance of recently

published tools (SQuIRE, TElocal, SalmonTE) with simplistic quantification

strategies (featureCounts in unique, fraction and random modes) at the

individual loci level. Using simulated datasets, we examined the false

discovery rate and the primary driver of those false positive hits in the

optimal quantification strategy. Our findings suggest a high false discovery

number that exceeds the total number of correctly recovered active loci for all

the quantification strategies, including the best performing tool TElocal. As a

remedy, filtering based on the minimum number of read counts or baseMean

expression improves the F1 score and decreases the number of false positives.

Finally, we demonstrate that additional profiling of Transcription Start Site

mapping statistics (using a k-means clustering approach) significantly

improves the performance of TElocal while reporting a reliable set of

detected and differentially expressed TEs in human simulated RNA-seq data.

KEYWORDS

transposable elements (TEs), TSS, k-means clustering, RNA-seq, simulation,
transposons

OPEN ACCESS

EDITED BY

Jared C. Roach,
Institute for Systems Biology (ISB),
United States

REVIEWED BY

Justin Blumenstiel,
University of Kansas, United States
Marika Drouin,
Université de Sherbrooke, Canada

*CORRESPONDENCE

Vikas Bansal,
vikas.bansal@dzne.de

SPECIALTY SECTION

This article was submitted to Human
and Medical Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 24 August 2022
ACCEPTED 11 October 2022
PUBLISHED 21 October 2022

CITATION

Savytska N, Heutink P and Bansal V
(2022), Transcription start site signal
profiling improves transposable
element RNA expression analysis
at locus-level.
Front. Genet. 13:1026847.
doi: 10.3389/fgene.2022.1026847

COPYRIGHT

© 2022 Savytska, Heutink and Bansal.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Brief Research Report
PUBLISHED 21 October 2022
DOI 10.3389/fgene.2022.1026847

https://www.frontiersin.org/articles/10.3389/fgene.2022.1026847/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1026847/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1026847/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1026847/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1026847&domain=pdf&date_stamp=2022-10-21
mailto:vikas.bansal@dzne.de
https://doi.org/10.3389/fgene.2022.1026847
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1026847


Introduction

The dysregulation of Transposable elements (TEs) has been

associated with many phenotypes and disorders such as ageing

(Andrenacci, et al., 2020; Gorbunova et al., 2021),

neurodegenerative diseases (Guo et al., 2018; Jacob-Hirsch

et al., 2018; Savage et al., 2019) and cancers (Jansz and

Faulkner, 2021; Grundy, et al., 2022). These findings fuel the

interest in profiling the repeatome on a global scale in related or

similar physiologies. For instance, TEs transcriptional profiling

led to the formulation of the “retrotransposon storm” hypothesis

of age-dependent neurodegeneration due to a global derepression

of TEs (Dubnau, 2018). These discoveries also opened new

therapeutic avenues targeting the activity of TEs by applying

viral suppressants (Gold et al., 2019; Tam et al., 2019).

TEs are repetitive DNA segments that have the ability to

move and replicate in the genome and occupy large fractions in

mammalian genomes. At least 45% and 37.5% of the human and

mouse genome, respectively, is composed of TE DNA sequences

(Pace and Feschotte, 2007). Consequently, the computational

analysis for the detection and differential expression (DE) of TEs

face significant challenges due to a high false discovery rate

(FDR). The repetitiveness of TEs leads to the generation of

multiple identical or highly similar reads that can be

attributed back to multiple genomic loci, i.e. multimappers.

Moreover, many TEs are annotated in intronic regions, which

makes it difficult to distinguish between the autonomous TE

transcription and exaptation events like TE exonization in coding

transcripts (Zemojtel et al., 2007; Lin et al., 2008; Schmitz and

Brosius, 2011; Park et al., 2012; Davis et al., 2017; Deininger et al.,

2017; Gonçalves et al., 2017). Both of these challenges can

exacerbate one another, as an expression of the coding

transcript with an exapted TE sequence might be reflected in

multimappers. To resolve these challenges, the expression

analysis of TEs at the subfamilies level has become a popular

strategy. However, in some cases, the activity of a single locus

could also be themain driver for “subfamily” level overexpression

and hence, the primary pathology cause. Such singular active loci

could promote tumorigenesis via the regulation of oncogenes

(Babaian et al., 2016; Jang et al., 2019). Another evidence for this

comes from discordant epigenetic profiles of various normal and

tumour tissues, where only some TE loci were demethylated, and

most of the loci within the same subfamilies remain repressed

(Ewing et al., 2020).

Regardless of the quantification level (locus or subfamily),

two major approaches are usually undertaken to deal with

multimappers—1) incorporate them and distribute their total

counts or fractions between the putative origin entities; 2) discard

the multimappers altogether. Depending on the tool, the former

strategy may overinflate the expression estimates for subfamilies;

while the latter may result in an estimate of mappability rather

than an expression for the subfamilies, especially for the

evolutionary younger ones (Lanciano and Cristofari, 2020).

One major strategy for incorporating multimappers in the TE

expression analysis, irrespective of the analysis level (locus or

subfamilies), is leveraging the Expectation-Maximization (EM)

algorithm into the quantification step. This method relies on the

iterative redistribution of the count fractions across putative read

origin loci/consensus sequences, which may [SalmonTE (Jeong

et al., 2018), SQuIRE (Yang et al., 2019)] or may not

[TEtranscript (Jin et al., 2015), TElocal (https:/github.com/

mhammell-laboratory/TElocal)] include the number of

uniquely mapping reads in the estimation for each entity.

Inclusion or exclusion of unique mappers depends on the

basic underlying assumption about TE-derived reads—1) loci/

subfamilies that already have unique mappers unambiguously

derived from them are more likely to be the source for the

multimappers (SQuIRE, SalmonTE); 2) younger subfamilies and

their individual copies (loci) have higher similarity and hence will

be primarily represented by multimappers (TEtranscript,

TElocal). While benchmarking across the publicly available

tools is previously reported (Teissandier et al., 2019; Schwarz

et al., 2022), an effort to propose a systematic downstream

strategy for improving the performance of existing methods is

still lacking, particularly at the loci level.

In this short report, we evaluated 8 TE quantification

pipelines (4 tools) based on simulated (synthetic) RNA-seq

data from human and mouse. We tested the most recent and

popular quantification strategies with a focus on locus-specific

detection and differential expression in a dataset simulated for

both gene and TE expression. Hence, we included featureCounts

within Rsubread (Liao, et al., 2014), SalmonTE, TElocal within

the TEToolkit suite and SQuIRE. We aimed to identify the best

performing tool using simulated RNA-seq data, subsequently

improving the FDR and F1 score by utilising the mapping

statistics around the Transcription Start Site (TSS) of TEs.

Among the considered tools here, TElocal produced the best

results based on our simulated RNA-seq data. We demonstrated

that the choice of counts and baseMean expression cutoff is

critical for reducing the false positive hits. Furthermore, k-means

clustering based on the signals around the TSS of TEs aided us in

filtering out a substantial amount of false positives. In a nutshell,

we propose an additional TSS profiling downstream of TElocal

along with visual inspection of genomic regions to significantly

improve the TE expression analysis at the loci level.

Materials and methods

Bulk RNA-seq data simulation

Both stranded and unstranded paired-end 100-bp long reads

were simulated from the human substantia nigra (~37 million

reads) and the mouse forebrain (~47 million reads) using R

(v.4.0.3) and RStudio (v.1.3.1093). R package polyester v.1.26.0

(Frazee et al., 2015) was used for simulating RNA-seq data,
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derived from both TEs and genes. For additional details see

Supplementary Methods.

Tested strategies and tools

We chose the widely accepted strategies for TEs quantification

that allowed for the quantification on the locus level [e.g. SQuIRE

(v.0.9.9.92) and TElocal (v.0.1.0)] or allowed for building a custom

library [SalmonTE (v.0.4)]. We excluded the tools that at the

moment of benchmarking had limited use restricted to single

class of elements and no custom database building functionality

[REdiscoverTE (Kong et al., 2019)] and/or did not get developers

support at the time [Telescope (Bendall et al., 2019)].

In addition to EM-mode, SQuIRE and TElocal have a

unique mode as an additional quantification option that we

also tested. SalmonTE relies on the quasi-mapping with

Salmon for which custom databases were built using

default command “index” and fasta file containing all TE

instances [from mm9 (mouse) and GRCh38 (human)

reference genomes]; EM step applies to the sets of reads

mapping to the identical sets of target TEs. However,

SalmonTE does not have a specific strategy to deal with the

reads that span both gene and TE. TElocal and SQuIRE rely on

the RNA-seq read alignment, e.g. produced by STAR; SQuIRE

by design relies on mapping with STAR, hence we chose STAR

(v.2.7.5a) (Dobin et al., 2013) and used the same alignment

files for quantification. SQuIRE and TElocal prioritise read

assignment to genic coding regions over the TEs to account for

genic reads incorporating TEs within them.

In addition, three simplistic quantification strategies were assessed

using featureCounts function of rSubread R package (v.1.34.7), which

relies on the provided alignment files. We leveraged the inbuilt

strategies of dealing with multimappers i.e. exclude multimappers,

distribute fractions of counts evenly or assign randomly.

Transposable element detection
benchmarking

The main parameters we relied upon for comparing the

performance of different strategies were FDR and F1 score.

Identified TEs were considered True Positive, if they were

both actually present in the simulation and they were assigned

more counts than the detection thresholds tested—0, 5, 10, 20,

30, 50, 70, and 100 raw counts. For human stranded

simulation, we also tested the length filters, which would

exclude elements below 50, 100, 150, 200, 250 or

300 bp. Detection filtering cutoff used raw counts assigned

per element after mapping the reads.

Transposable element differential
expression benchmarking

We used FDR and F1 score for assessment of differential

expression of TEs (DE-TEs). Identified DE-TEs were considered

True Positive, if they 1) were simulated to be DE, 2) had the

correct direction of the expression change as the simulated one,

and 3) had a baseMean expression above a filter threshold, 4) had

padj <0.01 and |log2FC| ≥2. For human simulation, we also

tested the length filters. Differential expression detection used

DESeq2 normalized baseMean values for filtering after running

DE analysis.

Transcription start site profiling

We estimated the coverage for a window of 400 bp around

TSS and used it to further split putatively active TEs into True or

False Positives. Coverage was calculated for alignment files using

deeptools (v.3.5.1) (Ramírez et al., 2016) bamCoverage

(“--binSize 1 --normalizeUsing RPKM”). We used all

putatively active loci passing the threshold of five counts

irrespective of their status (True or False) and further

aggregated coverage statistics with deeptools computeMatrix

(“--beforeRegionStartLength 200 --referencePoint TSS”).

K-means clustering (“--silhouette”) was further applied to the

coverage statistics matrix using deeptools

plotHeatmap. Silhouette score is a metric to study the

goodness of a clustering technique. The silhouette ranges

from −1 to +1, where a high value indicates that a region is

well matched to its own cluster. K between 3 and 8 were tested for

optimising the number of filtered FP hits using average silhouette

scores, F1 score, and percentages for FP and TP. Visual

inspection of cluster’s TSS profiles was used to assign the

clusters between True and False categories. If a reliable peak

of averaged coverage coincided within the window downstream

of TSS, the cluster was assigned as True; if coverage was even or

peaked upstream to TSS the cluster was assigned as False. K =

2 was excluded both due to its insufficiency to differentiate

between our minimal expectation of three different TSS

profiles shapes described above, as well as its confirmed poor

performance for the trial sample. FN was assessed as a number of

actual TP in False clusters. FDR and F1 scores were calculated

and compared to the performance statistics of the expression-

based filtering. Only the TEs in the identified True clusters were

further retained for the DE analysis for the calculation of the

FDR. This was achieved by assigning 0 counts per sample to those

elements, which were outside the True clusters. The further

quantitative and qualitative estimates were obtained as

described in the previous method section.
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FIGURE 1
Benchmarking of TE quantification tools on human model, stranded experiment. (A) A general overview of the simulation setup and the
strategies used in benchmarking. For human simulation 2,000 TEs over 200 bp long and top 13,000 genes expressed in substantia nigra were
simulated in stranded and unstranded experiments using Polyester 1.22.0. The resulting simulated sequencing data was processed using 3 EM-based
tools (both in EM and no EM modes, where permissible) and 3 modes of featureCounts. (B) TE Detection FDR for different detection cutoffs
using the tested tools. TElocal in unique mode (TElocal_UM) outperformed other strategies closely followed by TElocal in EM mode (TElocal_MM),
however even with higher cutoffs FDR reached 26%. (C) TE Differential Expression detection FDR for different expression cutoffs. (D,E) Length
distribution of True Positive (TP) and False Positive (FP) hits for TElocal in UMmode at detection cutoff 5 (D) and 50 (E). (F) Family Composition of total
FP hits (Total) and FP hits overlapping the simulated expressed genes (Overlap Genes) for TElocal_UM at detection cutoffs 5 and 50. Only a minority
of the FPs at both cutoffs can be explained by misattribution of the genic reads (2091/13301 for cutoff = 5 and 887/3705 for cutoff = 50). (G) Family
Composition of TP hits categorized by total and overlap genes. FC_MM_F, featureCounts using multimappers in “fraction” mode; FC_MM_R,
featureCounts using multimappers in “random”mode; FC_UM, featureCounts using unique mappers only; SalTE, SalmonTE; SQuIRE_EM, SQuIRE in
EM mode; SQuIRE_UM, SQuIRE in unique mode; TElocl_EM, TElocal in EM mode; TElocal_UM, TElocal in unique mode.
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Results

To determine the performance of Transposable Elements

(TEs) quantification pipelines, we commenced our study by

simulating both stranded and unstranded paired-end

sequencing reads for the human substantia nigra and the

mouse forebrain (see Methods, Figure 1A; Supplementary

Figure S1A; Supplementary Table S1). We assessed the

detection and differential expression of TEs (DE-TEs)

performance of all the pipelines using false discovery rate

(FDR) and F1 score.

Improvement of transposable elements
characterization using expression
thresholds

We observed that all the pipelines employed in this study,

when using default parameters, performed poorly due to the high

number of false positives (FPs) for both stranded and unstranded

human RNA-seq data (Figures 1B,C; Supplementary Figure S2B).

For instance, using human stranded simulated data, without

applying any filtering to the putatively active TEs, we found a

FDR range of 71%–86% and 40%–59% for detection and DE-

TEs, respectively (Figures 1B,C; Supplementary Table S1A).

When we applied a detection cutoff based on the counts (for

detection) or baseMean (for DE-TEs), FDR decreased for all the

pipelines. While TElocal surpassed the other methods, TElocal in

unique mode (TElocal_UM) exhibited the lowest FDR value

followed by TElocal in multimapping mode (TElocal_MM).

Next, we focused on the characterization of the FP hits using

several strategies to mitigate their numbers in the best

performing pipeline (TElocal_UM). We hypothesised that the

two major sources of the FPs can be related to either mapping

errors or annotation errors. To test their relevance, we focused on

characterising FP content, length distribution and overlap with

the simulated genes. For human simulation and detection with

TElocal_UM, we observed a presence of shorter elements in FPs

with the length below the minimal cutoff for the simulated

elements (TPs) length (Figures 1D,E; Supplementary Figure

S2C). Additionally, we observed much higher enrichment for

longer elements in FPs compared to TPs—a secondary peak at

6 kbp that corresponds to the average length of L1HS elements.

We then tested TE length as a filter in order to reduce the FPs that

possibly arise from the misattribution of reads to the shorter

elements (Supplementary Figures S2A,E), nevertheless, FDR did

not significantly improve for either of the detection cutoffs (5 and

50 counts or baseMean). When the composition of FP hits for

both cutoffs (5 and 50 counts, 200 bp length) was examined,

L1 elements were revealed to be the dominating FPs, followed by

Alu and SVA elements (Figure 1F; Supplementary Figure S2D).

The general composition of the FP hits at the detection cutoff five

was strongly enriched in L1P and L1HS elements, as well as SVAs

(Supplementary Tables S2A,B). While expression was simulated

for only 491 SVA loci for stranded data, TElocal_UM detected

1455 SVA loci as putatively active, including 67 loci for SVA_B

that had no simulated loci and 911 loci for SVA_D that had only

4 loci simulated. Similarly, far fewer loci for L1 elements were

simulated as compared to the number of loci detected as

putatively active. Only a minority of the total FPs (16%–24%

and 18%–29% for stranded and unstranded simulations,

respectively) could be explained by the reads misattribution

derived from the overlapping simulated genes (Figure 1F;

Supplementary Figure S2D). Similar distribution was observed

for the TPs (Figure 1G).

We obtained similar results for the mouse simulation RNA-

seq dataset (Supplementary Figure S2A; Supplementary Table

S1B). Poor FDR performance for all the pipelines was improved

upon the increase of the detection threshold, with the

TElocal_UM outperforming other methods (Supplementary

Figures S1B,E; Supplementary Tables S3E,F). Lower cutoffs

were required to achieve major FP reduction, as compared to

the detection of the human simulation. Majority of the mouse FP

hits at the detection level were driven rather by long TEs of

L1 and ERV classes with very few short elements (Supplementary

Figures S1C,D,F,G). Detection of the short SINE elements such as

B2 and B4 was impaired with the best performing pipeline,

suggesting a possible bias in detecting these elements

(Supplementary Figures S1D,G). Consistent with the human

simulation, only a minor fraction of FP hits could be

explained by the misattribution of reads derived from the

simulated genes (~9% of FP hits at cutoff 5).

Improvement of transposable elements
characterization using transcription start
site profiling

As the majority of FP hits were potentially derived from

mapping errors, we aimed to profile mapping statistics over

putatively active elements as a means to filter out false hits.

TEs vary greatly in size, therefore, we focused on the profiling of

the window of 200 bp up- and downstream of TSS (seeMethods).

This strategy would also potentially allow to account for the FPs

derived from reads misattribution from the longer transcripts to

the exapted TEs within them. The theoretical profile of the

autonomously expressed (defined here as independently

expressed as opposed to exapted TEs) TE elements would be

reflected in a mapping peak downstream of their annotated TSS.

Exapted TEs within a longer transcript element would have an

evenly distributed coverage both upstream and downstream of its

annotated TSS or a minor drop off in coverage down TSS at the

highly repetitive regions. In the case of the erroneous mapping of

reads derived from the related element, we expect coverage to be

shallow and scarce across the examined locus. Hence, it is

theoretically possible to separate false hits from the truly
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independently expressed elements based on their mapping

statistics from RNA-seq data. To this end, we used k-means

clustering to keep the clusters of TEs that showed an enrichment

downstream of the annotated TSS. For instance, an enrichment

profile using all the detected TEs from the human stranded

simulated RNA-seq data showed a mapping peak at downstream

of the annotated TSS (Supplementary Figure S3). To separate the

background clusters (potentially FPs), we first assessed silhouette

scores for k = [3:8] to find the optimal value for k-means

clustering applied to the TSS profiles (Figure 2A;

Supplementary Figure S4A; Supplementary Figures S5A,F).

Based on this, we chose two best k values for downstream

filtering, five to six and seven to eight for human and mouse

simulation, respectively.

Using k-means profiling on human stranded simulation data,

we observed that the detection performance improved greatly. The

FIGURE 2
TSS profiling improves detection and differential expression detection for human stranded simulation. (A) Average silhouette scores for different
k values per each sample. Best silhouette scores for most samples are reached with k = 5 and k = 6. (B,C) F1 Score and False Positive proportions
improvement with TSS profiling at the detection level. Both parameters improve significantly (Wilcoxon signed-rank test, p < 0.001) when TSS
profiling is applied to elements retained with detection cutoff 5 (E5_K5 and E5_K6) as compared to only filtering by low detection cutoff
(5 counts, E5) or increasing detection cutoff (50 counts, E50). (D,E) Family Composition of FP and TP hits categorized by total and overlap genes after
TSS profiling (F,G) F1 Score and FDR improvement for differential expression detection with TSS profiling.
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FDR values dropped from 54.9% (counts cutoff 5) to 11.2% (counts

cutoff 5, k = 5) and 10.6% (counts cutoff 5, k = 6). This improvement

was achieved by a reduction of the number of FPs by over 10 times

without losingmuch of TP hits as the F1 score increased significantly

from 61% (counts cutoff 5) to 86% (counts cutoff 5, k = 5) and 87%

(counts cutoff 5, k = 6) (Supplementary Table S3C; Figures 2B,C).

Importantly, the reduction in FDR using the k-means approach at a

cutoff of 5 was ~3-fold less than FDR at a cutoff of 50 when the

k-means approach was not utilised (29.9). Comparing family

composition of FPs and TPs before TSS profiling (Figures 1F–G)

and after TSS profiling (Figures 2D,E) revealed that the TSS profiling

reduces false positive TE hits irrespective of gene overlap and

without losing TPs. We further tested the outcomes of the DE

analysis performed on the putatively active TEs present within

filtered clusters only. We found that the TSS profiling

significantly reduced the FDR (k = 6, FDR = 1.7%) and

increased the F1 score (k = 6, F1 = 0.79) as compared to using

only a baseMean expression filter of 5 (FDR = 33%, F1 = 0.61) and

50 (FDR = 10%, F1 = 0.73) (Figure 2F,G; Supplementary Table S3I).

We then compared the expression levels of the differentially

expressed elements detected with only high expression cutoff

against TSS profiling approach. The application of TSS profiling

allowed for detecting some lowly expressed elements, which would

be otherwise filtered out with a higher expression cutoff. However,

overall mean expression of the detectable elements was higher after

TSS profiling (Supplementary Figure S3D). Similarly, detection was

improved for human unstranded simulation i.e. FDR dropped from

58.7% (counts cutoff 5) and 37.5% (counts cutoff 50) to 11.2%

(counts cutoff 5, k = 5) and 10.5% (counts cutoff 5, k = 6)

(Supplementary Figures S4B,C; Supplementary Table S3D). TSS

profiling also improved DE detection FDR (k = 6, FDR = 29%) as

compared to applying a low expression cutoff (baseMean = 5, FDR=

35%), however, the profiling did not outperform the performance

when a higher expression cutoff (baseMean = 50, FDR = 14%) was

applied (Supplementary Figures S4D,E; Supplementary Table S3J).

Application of the TSS profiling and clustering as a filtering

measure improved the detection outcome for the simulated stranded

RNA-seq data from mice (FDR = 18.1% at k = 7 as well as k = 8),

when compared to the basic detection cutoff of 5 (FDR = 60%).

However, the results were comparable to the higher expression cutoff

filter (counts cutoff 50, FDR = 18.4%) (Supplementary Figure S5C;

Supplementary Table S3G). Additionally, the F1 score also improved

with TSS profiling (F1 = 0.88 at counts cutoff five and k = 7 or 8) or

high detection cutoff (F1 = 0.88 at counts cutoff 50) as compared to

the basic detection cutoff (counts cutoff 5, F1 = 0.55 Supplementary

Figure S5B; Supplementary Table S3). At the level of detecting DE-

TEs, TSS profiling was outperformed by filtering with the high

expression cutoff (baseMean = 50, FDR = 5.4%, F1 = 0.85)

(Supplementary Figure S5D; Supplementary Table S3K). Similar

to what we observed for the human stranded simulation, TSS

profiling allowed us to detect some lowly expressed TEs, and the

overall mean expression of these elements was higher than the

elements retained with the high expression cutoff filtering

(Supplementary Figure S5E). Finally, we obtained comparable

results for the simulated unstranded RNA-seq data from mice

(Supplementary Figure S5F–I; Supplementary Table S3H,L).

Discussion

Detecting the expression of TEs at the individual loci level

remains a challenging task that includes the choice of methods,

parameters and downstream filtering criteria. To resolve this, we first

performed benchmarking of various quantification strategies using

simulated short-read RNA-seq data on humans and mice. In

general, all the pipelines used in this study performed poorly if

no filtering was applied. TElocal is compared favourably to the other

methods and worked slightly better for stranded paired-end reads

than unstranded paired-end reads. Filtering on the minimum

number of read counts is an important parameter to consider as

we see a significant decrease in the number of false positives by

increasing the mapped reads cutoff. While exploring the source of

false positives, we found that only a small fraction of the TE false

positives overlapped with the simulated gene coordinates. Low rates

of false positives that could be derived from genic reads and high

rates for unsimulated loci presence in the putatively active dataset

suggest that most false positive hitsmight be derived from erroneous

mapping. Following these leads, we observed that such errors

directly lead to false identification of whole subfamilies of

elements as active, affecting the analysis quality on the whole

subfamily level. We did not find any significant relation between

the false positive hits and the length of TEs. However, there was an

overrepresentation of L1HS loci identified as false positives. It has

been previously proposed that younger active mobile elements have

relatively fewer variants, which makes them challenging to

characterise with current technology on the individual loci level

(Criscione et al., 2014; Jin et al., 2015). As shown before (Teissandier

et al., 2019; O’Neill et al., 2020), specifically younger L1 elements in

the human genome have one of the worst mapping rates of all TEs

examined in human repetitome when short-read paired-end

sequencing is applied. To further reduce the false positive hits,

we profiled TSS mapping signals using the k-means clustering

approach. In the past, k-means clustering has been used on TSS

mapping chromatin or expression data to identify ubiquitous and/or

tissue-specific patterns (Shimokawa et al., 2007; Cui et al., 2017). We

hypothesised that the false positive and true positive TEs would have

different patterns of mapping signal distribution around the TSS;

therefore, we aimed to separate them using a k-means clustering

approach. Indeed, for the human genome assembly, our results

showed a significant decrease in false positive hits and an increase in

overall F1 score, especially using stranded human simulated RNA-

seq data (F1 > 85%). However, the k-means clustering approach

failed to significantly improve the results in the mouse assembly as

we obtained a F1 score similar to simply increasing the count or

baseMean expression cutoff. This result was not surprising as the

mouse genome is known to be more permissive for
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retrotransposition in comparison to humans; therefore, it has a

relatively complex TE landscape and annotations than the human

genome (Bourque et al., 2018). This finding, however, suggests one

needs to adopt the stringency of filtering parameters depending on

the repetitive complexity of the organism.

Our study has some limitations due to the use of simulated

RNA-seq data and the availability of limited resources. First, we

relied only on one tool for simulation. We cannot exclude the

possibility that multiple simulations using different tools could

lead to inconsistent results. For example, a recent study used the

same R package polyester (although a different version) for

simulating most of their RNA-seq reads (Schwarz et al.,

2022). The authors simulated only the TE loci but in high

numbers, whereas we simulated the reads for both genes and

TEs with the majority of reads derived from the genes rather than

TEs to incorporate more biological information. In contrast to

our results, they found SalmonTE as the best performing tool for

the detection, quantification and DE of TEs. Notably, the authors

relied on modifying TEtranscript to quantify TEs at the loci level

instead of using TElocal explicitly, which in principle should

produce the same results. Another possible limitation of our

study might be that we employed only one clustering method. In

the future, it would be essential to compare the performance of

other clustering algorithms (e.g. Hererichal and Fuzzy C-means

clustering) around the different window sizes of TSS in

numerous species. Therefore, we recommend adapting the

specific parameters according to the organism that is being

studied and their respective repetitome qualities, such as

transpositional activity, TE age and dominating TE species, as

well as the expected proportion of TE transcripts in the whole

transcriptome. Nevertheless, in agreement with the previous

study (Schwarz et al., 2022), we observed that the slight

modifications like stringent filtering cutoff of counts or

baseMean expression could improve the outcome of existing

methods, especially using human stranded paired-end RNA-seq

data. Additionally, we showed that the TSS profiling of TEs

significantly reduced the number of false positives. While further

work is required to automate a robust pipeline, we envision that

our study will serve as a reference guide to improve the TE

expression analysis at the loci level Liao et al., 2019.
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