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Purpose: The diagnosis of autism spectrum disorder (ASD) is reliant on

evaluation of patients’ behavior. We screened the potential diagnostic and

therapeutic targets of ASD through bioinformatics analysis.

Methods: Four ASD-related datasets were downloaded from the Gene

Expression Omnibus database. The “limma” package was employed to

analyze differentially expressed messenger (m)RNAs, long non-coding (lnc)

RNAs, and micro (mi)RNAs between ASD patients and healthy volunteers

(HVs). We constructed a competing endogenous-RNA (ceRNA) network.

Enrichment analyses of key genes were undertaken using the Gene

Ontology database and Kyoto Encyclopedia of Genes and Genomes

database. The ImmucellAI database was used to analyze differences in

immune-cell infiltration (ICI) in ASD and HV samples. Synthetic analyses of

the ceRNA network and ICI was done to obtain a diagnostic model using LASSO

regression analysis. Analyses of receiver operating characteristic (ROC) curves

were done for model verification.

Results: The ceRNA network comprised 49 lncRNAs, 30 miRNAs, and

236 mRNAs. mRNAs were associated with 41 cellular components,

208 biological processes, 39 molecular functions, and 35 regulatory

signaling pathways. Significant differences in the abundance of 10 immune-

cell species between ASD patients and HVs were noted. Using the ceRNA

network and ICI results, we constructed a diagnostic model comprising five

immune cell-associated genes: adenosine triphosphate-binding cassette

transporter A1 (ABCA1), DiGeorge syndrome critical region 2 (DGCR2),

glucose-fructose oxidoreductase structural domain gene 1 (GFOD1),

glutaredoxin (GLRX), and SEC16 homolog A (SEC16A). The diagnostic

performance of our model was revealed by an area under the ROC curve of

0.923. Model verification was done using the validation dataset and serum

samples of patients.

Conclusion: ABCA1, DGCR2, GFOD1, GLRX, and SEC16A could be diagnostic

biomarkers and therapeutic targets for ASD.
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Introduction

Autism spectrum disorder (ASD) is a group of heterogeneous

neurodevelopmental disabilities characterized by an early onset

of impaired social function, abnormal stenosis, and repetitive

behaviors and interests (Lord et al., 2018). Worldwide ASD

prevalence is approximately 0.8–1.7%, and the ratio of ASD in

males:females varies between 2:1 and 4:1 (Mattila et al., 2011;

Russell et al., 2014). ASD etiology is incompletely understood,

but genetic, environmental, and immune factors may play a part

in its pathogenesis (McAllister, 2017; Vorstman et al., 2017).

Efficacious drugs for the core symptoms of ASD are lacking.

Some antiepileptic and psychotropic drugs have been approved

for treating the epilepsy and mood abnormalities associated with

ASD (Berry-Kravis et al., 2018).

Behavioral and educational interventions remain the most

popular treatment measures for ASD. Early behavioral

interventions improve the core symptoms of ASD patients, as

well as their verbal and cognitive ability and social adaptability

(Lai et al., 2014; Lord et al., 2018). Several genes have been

associated with ASD, and many metabolites (e.g., amino acids,

organic acids, phospholipids, and purines) show significantly

different expression in ASD patients (Vorstman et al., 2017;

Likhitweerawong et al., 2021). However, due to heterogeneity

among ASD patients, the diagnosis of ASD is reliant on

evaluation of the patient’s behavior. Therefore, identifying the

characteristic molecular markers may contribute to

understanding of the pathophysiological mechanism of ASD,

thereby increasing the chance of a correct diagnosis and

improvement in therapeutic interventions.

A microRNA (miRNA) is a non-coding RNA with a length of

~22 nucleotides. miRNAs can inhibit the translation of target

messenger (m)RNAs by binding to partially complementary

sequences within them (Correia de Sousa et al., 2019). The

sequence fragments on the target mRNA that can bind to the

miRNA are called “miRNA response elements” (MREs) (Salmena

et al., 2011). In 2011, Salmena et al. first proposed the concept of

“competitive endogenous RNAs” (ceRNAs), which are different long

non-coding-RNAs (lncRNAs), mRNAs, circular RNAs (circRNAs),

or pseudogenes with identical MREs that can bind to the same

miRNA competitively and interact with each other indirectly. Thus,

these RNAs compete with and regulate each other’s expression, with

miRNA as the core, forming a complex transcriptional regulatory

network (Salmena et al., 2011). For example, as the main type of

ceRNA, in a lncRNA–miRNA–mRNA network, lncRNA and

mRNA interact indirectly by sharing the same target miRNA. In

short, lncRNA can downregulate miRNA expression, whereas

miRNA can downregulate mRNA expression; thus, lncRNA can

upregulatemRNA expression indirectly. Conversely, mRNA can also

increase lncRNA expression. This action helps to coordinate the

proliferation, differentiation, and apoptosis of cells (Schmitz et al.,

2016). Multiple studies have shown that cancer, ischemic stroke,

Parkinson’s disease, and other diseases are related to an abnormal

ceRNA network comprising lncRNA–miRNA–mRNA (Long et al.,

2019; Zhang et al., 2020; Berti et al., 2021; Li et al., 2021). However,

the specific role of a ceRNAnetwork in ASD has not been elucidated.

We aimed to screen the potential diagnostic markers and

therapeutic targets of ASD from the perspective of a ceRNA

network. We downloaded ASD-related datasets from the Gene

Expression Omnibus (GEO) database to screen differentially

expressed mRNAs, lncRNAs, and miRNAs in ASD patients to

construct a ceRNA network. Based on analyses of differences in

the infiltration of immune cells between samples from ASD

patients and healthy volunteers (HVs), and combining

analyses of the ceRNA network, diagnostic marker genes were

obtained by least absolute shrinkage and selection operator

(LASSO) regression analyses. Finally, we validated the

diagnostic model through validation datasets and samples of

peripheral blood from ASD patients (Figure 1).

Materials and methods

Data collection

By searching the GEO database (www.ncbi.nlm.nih.gov/geo/),

19 datasets were found pertaining to ASD (Homo sapiens): five

brain-sample datasets, 11 blood-sample datasets, and three stem

cell- or fibroblast-sample datasets. Considering the tissue

differences in gene expression, we chose four brain datasets

(GSE38322, GSE36315, GSE59286, and GSE28475) for analyses

(GSE102741 was eliminated because it focused mainly on genes

related to the histamine system). mRNA expression data were

acquired from the GSE38322 dataset (Ginsberg et al., 2012), which

contained brain transcriptional data of 18 ASD and 18 HVs

samples used to detect DE-mRNAs. The lncRNA expression

profile was downloaded from the GSE36315 dataset (Ziats and

Rennert, 2013), including brain transcriptional data of four ASD

and four HVs samples, which was used to screen DE-lncRNAs.

miRNA high-throughput sequencing data acquired from the

GSE59286 dataset, which contained brain transcriptional data

of 25 HVs and 20 ASD samples, were used to select

DEmiRNAs. The expression profile data were downloaded from

the GSE28475 dataset (Chow et al., 2011), which contained brain

transcriptional data of 61HVs and 52ASD samples and served as a

validation set. The demographic and clinical characteristics of

samples from the GSE38322, GSE36315, GSE59286, and

GSE28475 datasets are shown in Table 1.
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Gene screening

The mRNAs, lncRNAs, and miRNAs that showed different

expression between ASD patients and HVs were screened in the

corresponding datasets using “limma 3.5.1” within R (R Institute

for Statistical Computing, Vienna, Austria). The screening

thresholds were p < 0.05 and |log2 fold change (FC)| >0.5 to

obtain genes with significantly different expression.

Construction of a ceRNA network

The predicted target mRNA was obtained by predicting the

target mRNA of differentially expressed miRNA in the

GSE59286 dataset using the miRWalk database (http://

mirwalk.umm.uni-heidelberg.de/). In the Comparative

Toxicogenomics Database (CTD; http://ctdbase.org/),

24,785 genes related to ASD were retrieved using “Autism” as

the keyword. At the intersection of predicted target mRNAs and

ASD-related genes in the CTD, mRNAs that showed differential

expression in the GSE38322 dataset were obtained using Venn

(http://bioinformatics.psb.ugent.be/webtools Venn/).

Subsequently, miRNA–mRNA pairs conforming to the

regulation principles of miRNA and mRNA in the ceRNA

network were obtained.

The LncBaseV3 database (https://diana.e-ce.uth.gr/

lncbasev2/home/) was used to predict the target lncRNAs of

differentially expressed miRNAs obtained in the

GSE59286 dataset, and a threshold score >0.6 was set. Venn

was employed to obtain the intersection of predicted lncRNAs

and differentially expressed lncRNAs in the GSE36315 dataset.

According to the functional mechanism of ceRNAs, differentially

TABLE 1 Demographhic and clinical characteristics of samples from the datasets.

Variables GSE38322 GSE36315 GSE59286 GSE28475

Total (N) 36 8 45 113

Control 18 4 25 61

ASD 18 4 20 52

Sample type Occipital cortex/Cerebellum Prefrontal cortex/cerebellum Superior frontal gyrus Superior frontal gyrus

Mean Age (range) 21 (1–60) 10 (4–16) 16 (1–62) 19 (2–56)

Gender (male/female) No data 8/0 31/14 No data

Ethnicity No data Caucasian No data No data

Countries and regions USA/Cleveland USA/Bethesda China/Shanghai USA/La Jolla

FIGURE 1
Study flowchart.
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expressed miRNAs that had a regulatory relationship with the

obtained lncRNA were acquired to construct miRNA–lncRNA

pairs. Finally, according to the miRNA–mRNA pairs and

miRNA–lncRNA pairs obtained, the lncRNA–miRNA–mRNA

associations with the same miRNA as the core were screened to

construct the ceRNA network, and Cytoscape (https://cytoscape.

org/) was used to visualize the results.

Infiltration of immune cells

Analyses of the infiltration of immune cells were undertaken on

the brain-tissue samples of 18 HVs and 18 ASD patients from the

GSE38322 dataset using the ImmucellAI database (http://bioinfo.

life.hust.edu.cn/web/ImmuCellAI/). Then, Student’s t-tests were

undertaken using “ggplot2” in R to analyze the different immune

cells between samples from ASD patients and HVs. The correlation

between significantly different immune cells and mRNAs in the

ceRNA network was analyzed by the Spearman method using the

“ggstatsplot” in R. The relationship between different immune

cell–mRNA pairs was screened using a threshold of p < 0.05 and

correlation coefficient |r| > 0.8.

Screening and identification of diagnostic
markers

Based on the obtained mRNAs associated with immune cells

and their expression in each sample of the GSE38322 dataset,

“glmnet” v4.0-2 in R (https://cran.r-project. org/web/packages/

glmnet/index.html/) was used for the LASSO screening of

diagnostic genes for ASD. The parameters were set as

family = “binomial” and n fold = 20 (i.e., 20-fold cross-

validation was undertaken to screen for diagnostic markers).

The eigenvalue of each sample was calculated based on the

regression coefficient of screened genes and expression of the

genes in the GSE38322 dataset using the formula :

featuresample � ∑
n

1

Coefipxi

where Coefi denotes the LASSO regression coefficient of the

NO. i gene, xi denotes expression of the NO. x gene, and n

denotes the number of diagnostic markers in the diagnostic

model. The receiver operating characteristic (ROC) curve was

plotted using “pROC” within R to assess the predictive efficacy

of the diagnostic model and diagnostic markers for the

disease.

Enrichment analyses

Analyses of the enrichment of the function and signaling

pathways of mRNAs in the ceRNA network were done using the

Gene Ontology database (GO; http://geneontology.org/) and

Kyoto Encyclopedia of Genes and Genomes (KEGG; https://

www.genome.jp/kegg/) database, respectively, using “cluster

Profiler” in R. The relevant biological processes, molecular

functions, cellular components, and regulatory signaling

pathways involved were obtained using a significance

threshold of p < 0.05. Gene set enrichment analysis (GSEA)

was done for each diagnostic marker gene using GSEA v4.0.3

(www.gsea-msigdb.org/gsea/index.jsp/). Enrichment analyses

using GO and KEGG databases were conducted using GSEA

for high and low expression of the diagnostic biomarker genes.

An FDRq-value < 0.05 was considered to denote significant

enrichment.

Validation of expression of diagnostic
genes

“ggplot2” in R was employed to undertake Student’s t-tests to

measure expression of the diagnostic markers in samples from

ASD patients and HVs in the GSE28475 dataset, and the results

are presented as boxplots.

Real-time reverse transcription-
quantitative polymerase chain reaction of
serum samples

This study was conducted in accordance with the Declaration

of Helsinki 1964 and its later amendments. The study protocol

was approved by the medical ethics committee of Shengjing

Hospital of China Medical University (Liaoning, China). Written

informed consent was obtained from all participants.

Blood samples from 10 ASD patients were obtained from the

Liaoning Disability Service Center (Liaoning, China) and blood

samples from 10 HVs were obtained from Shengjing Hospital of

China Medical University between January 2022 to March 2022.

Supplementary Table S1 shows specific information of these

individuals.

We isolated the serum fromwhole blood. Then, we extracted the

total RNA from serum using TRIzol™ Reagent (Ambion, Austin,

TX, United States). Reverse transcription was undertaken using the

SweScript RT I First Strand cDNA Synthesis Kit (Servicebio,

Wuhan, China). PCRs were carried out using the 2× universal

Blue SYBR Green qPCR Master Mix Kit (Servicebio) according to

manufacturer instructions. The reaction conditions were 95°C for

1 min (initial denaturation), 95°C for 20 s (denaturation), 55°C for

60 s (annealing), and 72°C for 30 s (extension) and 40 cycles in total.

Relative quantification was undertaken with the 2−ΔΔCT method, and

the gene for glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

was used as the internal control for normalization.

The primer sequences (forward and reverse, respectively)

used were: 5′-CTGGGAAGGTGGTTGTGTT-3′ and 5′-GTG
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GTTGGTGGCTGTGATA-3′ for GLRX; 5′-ACCCGTCCATCC
TACATC-3′ and 5′-TCACCTCGTCTCTCTTCCGTC-3′ for

SEC16A; 5′-GCGGGGAGAACTACTGGGAT-3′ and 5′-GTG
GAGAAGGTGGCGAGAGA-3′ for DGCR2; 5′-GACTGCCTG
TATGCCTTGT-3′ and 5′-CCGTCTGGCTGGACCTCTT-3′ for
GFOD1; 5′-TCCTCTTTCCCGCATTATCT-3′ and 5′-GTC
CATTTCTTGGCTGTTCT-3′ for ABCA1; 5′-CCCATCACC
ATCTTCCAGG-3′ and 5′-CATCACGCCACAGTTTCCC-3′
for GAPDH.

Statistical analyses

Statistical analyses were undertaken using R 3.6.2. The

Student’s t-test was used to compare gene expression among

serum samples, and p < 0.05 was considered significant.

Results

Differentially expressed lncRNAs, miRNAs,
and mRNAs

According to the screening conditions that we set (p <
0.05 and |log2 FC| >0.5), 662 differentially expressed mRNAs

were obtained in the GSE38322 dataset, of which 295 had

upregulated expression and 367 had downregulated expression

in the samples from ASD patients and HVs, respectively

(Figure 2, Supplementary Table S2). Furthermore,

83 differentially expressed lncRNAs and 35 differentially

expressed miRNAs were obtained from the GSE36315 dataset

and GSE59286 dataset, respectively, of which 47 lncRNAs and

20 miRNAs had upregulated expression and 36 lncRNAs and

15 miRNAs had downregulated expression in the samples from

ASD patients and HVs, respectively (Figure 2).

ceRNA network

Based on the 35 differentially expressed miRNAs of the

GSE59286 database, 14,477 mRNAs were predicted using the

miRWalk database. By searching the CTD, 24,785 ASD-related

mRNAs were obtained. Finally, 622 differentially expressed

mRNAs were obtained from the GSE38322 dataset. We

obtained 303 mRNAs after intersecting the three data sources

mentioned above (Figure 3A). Furthermore, according to the

reverse expression (one upregulated and the other

downregulated) of miRNA and mRNA, 735 miRNA–mRNA

pairs were obtained, which contained 35 miRNAs and

252 mRNAs.

Based on the 35 differentially expressed miRNAs of the

GSE59286 database, 13,584 lncRNAs were predicted using the

LncBaseV2 database. Subsequently, 83 lncRNAs were obtained

from the differential-expression analysis of the

GSE36315 dataset. Finally, 52 lncRNAs were obtained after

intersecting the data from the lncBaseV2 database with

FIGURE 2
Differentially expressed lncRNAs, miRNAs, and mRNAs (top 45) between ASD patients and HVs in the dataset.
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FIGURE 3
Construction of the ceRNA network. (A) Intersection of the differentially expressedmRNAs in the GSE38322 dataset, ASD-relatedmRNAs in the
CTD, and the predicted mRNAs from differentially expressed miRNAs in the GSE59286 dataset. (B) Intersection of the differentially expressed
lncRNAs in the GSE36315 dataset and lncRNAs predicted from differentially expressedmiRNAs in the GSE59286 dataset. (C) lncRNA–miRNA–mRNA
regulatory network constructed based on the mechanism of action of ceRNAs. Pink triangle: highly expressed miRNA; green dot: low
expression of lncRNA; light-blue rhombus: low expression of mRNA; blue triangle: low expression of miRNA; red dot: high expression of lncRNA;
orange rhombus: high expression of mRNA.
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analyses of differential expression (Figure 3B). According to the

reverse expression (one upregulated and the other

downregulated) of miRNA and lncRNA, 109 miRNA–lncRNA

pairs were obtained, which contained 30 miRNAs and

49 lncRNAs. Moreover, among the 735 miRNA–mRNA pairs

and 109 miRNA–lncRNA pairs obtained, the

lncRNA–miRNA–mRNA associations with the same miRNA

as the core were screened, and a ceRNA network consisting of

FIGURE 4
Enrichment analyses of mRNAs in the ceRNA network using the GeneOntology (GO) database and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. (A) Cellular components (CC); (B) biological process (BP); (C) molecular functions (MF); (D) regulatory signaling pathways.
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49 lncRNAs, 30 miRNAs, and 236 mRNAs was constructed

(Figure 3C).

Further enrichment analyses of the mRNAs in the ceRNA

networks revealed that these genes were associated with

41 cellular components, including “mitochondrial protein

complexes”, “organelle ribosomes”, “cytochrome complexes”,

“respiratory chain”, “focal adhesion”, and “cation-transport

ATPase complexes” (Figure 4A). These genes in the ceRNA

network were also associated with 208 biological processes,

including “electron transport chain”, “translation termination”,

protein-containing complex disassembly”, “adhesion junction

organization”, “glial cell fate commitment”, and “cell

communication by electrical coupling” (Figure 4B);

39 molecular functions, including “electron transport activity”,

“NADH dehydrogenase (ubiquinone) activity”, “structural

components of ribosomes”, “ubiquinone-cytochrome c

reductase activity”, “NADH dehydrogenase (quinone)

activity”, and “protein kinase C binding” (Figure 4C). Finally,

we found 35 regulatory signaling pathways associated with these

genes, including “oxidative phosphorylation”, “reactive oxygen

species”, and “multiple neurodegenerative disease pathways”

such as Parkinson’s disease and Huntington’s disease

(Figure 4D).

Immune-cell infiltration in ASD patients

Differential analysis of the infiltration of 24 immune-cell

types in ASD patients and HVs showed that populations of

cluster of differentiation (CD)4-initial cells (CD4− naïve),

induced regulatory T cells (iTregs), type-1 helper T cells

(Th1), Th2 cells, central-memory cells, effector-memory

cells, natural killer T (NKT) cells, monocytes, CD4− T cells,

CD8− T cells, and 10 types of immune cells were significantly

different between the two groups. Significantly more CD4−

naïve, central-memory, effector-memory, monocyte, and

CD4− T cells infiltrated in samples from ASD patients than

in samples from HVs, whereas significantly fewer iTregs, Th1,

Th2, NKT, and CD8− T cells infiltrated in ASD patients than

in HVs (Figure 5A).

FIGURE 5
Construction of an immune cell-associated ceRNA network. (A) Infiltration of immune cells of ASD patients in the GSE38322 dataset; (B)
immune cell–mRNA pairs; (C) Immune cell-associated ceRNA network.
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Spearman correlation analysis of 10 types of immune cells

and mRNAs with significantly different expression revealed

24 significantly correlated immune cell–mRNA pairs for four

types of immune cells and 23 mRNAs (Figure 5B) at a threshold

of p < 0.05 and |r| > 0.8. Subsequently, using Cytoscape, an

immune cell-associated ceRNA network was constructed. This

network generated 277 lncRNA–miRNA–mRNA–immune-cell

associations from 42 lncRNAs, 21 miRNAs, 23 mRNAs, and four

types of immune cells (Figure 5C).

Construction of a diagnostic model

We undertook LASSO regression analyses on 23 mRNAs

associated with immune cells under 20-fold cross-validation

(Figure 6A) and screened five ASD-associated diagnostic

marker genes: adenosine triphosphate-binding cassette

transporter A1 (ABCA1), DiGeorge syndrome critical region 2

(DGCR2), glucose-fructose oxidoreductase structural domain

gene 1 (GFOD1), glutaredoxin (GLRX), and SEC16 homolog

A (SEC16A). Based on the regression coefficient of each gene, the

sample eigenvalue was calculated as:

Feature = ABCA1ch × −1.719843535 +

DGCR2 × −0.003835302 + GFOD1 × −0.277741202 +

GLRX × 0.01064725 + SEC16A × −1.697826627.

Analyses of the ROC curve of the model composed of the

five diagnostic genes revealed that the area under the ROC

curve (AUC) of the model was ≤0.923: the diagnostic

performance of the model was good. Single-gene analyses

of the ROC curve revealed an AUC for ABCA1 of 0.883,

whereas for DGCR2 it was 0.836, for GFOD1 it was 0.824,

for GLRX it was 0.759, and for SEC16A it was 0.849. Hence,

single genes could also be used as diagnostic biomarkers

(Figure 6B).

GSEA of each diagnostic marker gene-
associated gene set

After GSEA for screened ASD-associated diagnostic marker

genes, the top-10 pathways (according to GO and KEGG

databases) for each diagnostic marker gene ranked by FDR

q-values were obtained (Figures 7A–E). These results

suggested that marker genes-associated gene sets were

enriched mainly in immune-response signaling pathways.

Validation of expression of diagnostic
marker genes

mRNA expression of the five diagnostic marker genes for ASD

(ABCA1, DGCR2, GFOD1, GLRX, and SEC16A) was analyzed in the

GSE28475 dataset and the serum samples collected from study

participants (Figure 8). Expression ofABCA1, DGCR2, GFOD1, and

SEC16A was significantly higher, whereas that of GLRX was lower,

in ASD patients than that in HVs. Hence, these five genes showed

differential expression in ASD patients, which was consistent with

the diagnostic model.

Discussion

Since the first report of autism in 1943 by Kanner,

understanding of this disease has changed dramatically.

Initially, ASD was thought to be caused by inappropriate

parenting practices. However, it was discovered later that ASD

is a developmental disorder of the central nervous system (CNS),

and individuals who carry rare de novo genetic mutations are at a

greater risk of developing ASD. Furthermore, it was not until the

1980s that, due to the development of epigenetics, ASD was

FIGURE 6
Construction of a model for genetic diagnostic markers. (A) λ selection plot in the LASSO model; (B) ROC curve of the diagnostic model and
diagnostic markers.
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recognized to be the result of a combination of environmental

stimuli in a certain genetic background.

Sequencing has been the most promising strategy to reveal

the pathogenesis and diagnosis of ASD (Stefanski et al., 2021).

Through an exome-sequencing study of >10,000 ASD patients,

Satterstrom et al. found most ASD-associated genes to show

differential expression in the early stages of brain development,

and that these genes primarily regulated gene transcription,

neuronal development, and physiological function

(Satterstrom et al., 2020). By taking a single-cell genomics

FIGURE 7
Gene set enrichment analysis of the diagnostic marker genes ABCA1 (A), DGCR2 (B), GFOD1 (C), GLRX (D), and SEC16A (E).
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approach, Velmeshev et al. found that differentially expressed

genes in ASD patients were concentrated in excitatory neurons

and microglia in the cerebral cortex, and were functionally

enriched in neuronal projections and adhesions. Furthermore,

differential expression of specific genes in cortical–cortical

projection neurons correlated with the severity of the clinical

manifestations of ASD (Velmeshev et al., 2019). Through whole-

exome sequencing, Liu et al. found that the function of the genes

associated with gut microbes in ASD patients was mainly

enriched in the innate immune response, protein

glycosylation, and retrograde axonal transport, which

emphasized the role of the brain–gut axis and neuroimmunity

in ASD development (Liu et al., 2021). However, even

though >1,000 mutations, chromosomal abnormalities, and

copy-number variants have been associated with ASD

development, each type of variant cannot be used to explain

most cases due to the heterogeneity of ASD.

An approach using bioinformatics analysis can be helpful in

this scenario. A weighted gene co-expression network was

constructed to analyze the genes known to be related to ASD,

and to find intersections of these risk genes to discover novel

diagnostic and therapeutic options (Parikshak et al., 2015). We

attempted to obtain an ASD-related ceRNA regulatory network

through bioinformatics analysis. Furthermore, we combined our

ceRNA network with differential analyses of immune-cell

infiltration to identify ASD biomarkers.

miRNAs are at the core of a ceRNA network. There have

been many reports of abnormal expression of multiple miRNAs

in the brain tissue and peripheral blood of ASD patients (Xiong

et al., 2020). Given that one miRNA can simultaneously regulate

expression of multiple genes, and that each gene is also regulated

by multiple miRNAs, an “miRNA imbalance” may explain the

heterogeneity among ASD patients. Moreover, miRNAs are

epigenetic regulatory molecules, so changes in their expression

can help unravel the link between heredity and the environment

(Masini et al., 2020).

We constructed a ceRNA network comprising 49 lncRNAs,

30 miRNAs, and 236 mRNAs by processing the differentially

expressed miRNAs, mRNAs, and lncRNAs obtained from

targeting predictions in databases. Through analyses of

functional enrichment, we discovered that the top-10

biological processes and molecular functions involved in the

genes in this network were mainly related to mitochondrial-

energy metabolism, cellular communication, transcriptional

regulation, and glial-cell fate, whereas the main signaling

pathways involved were associated with energy metabolism

and neurodegeneration. These findings are consistent with the

underlying pathological changes in ASD: examinations using

functional magnetic resonance have demonstrated abnormal

activation/inhibition of several brain regions involved in social

interaction and information integration in the brains of ASD

patients. Moreover, neuropathological examinations have

revealed extensive abnormalities in synaptic development/

structure and brain function in ASD patients. The brain is a

region of high energy metabolism whose neurons are highly

dependent on mitochondrial energy metabolism to support

neurogenesis, signaling, and synaptic remodeling (Hollis et al.,

2017). Furthermore, transcriptional regulation and glial-cell fate

can influence neuronal activity and synaptic development, while

themselves being highly dependent on mitochondrial energy

FIGURE 8
Validation of expression of diagnostic marker genes. Expression of the diagnostic marker genes ABCA1 (A), DGCR2 (B), GFOD1 (C), GLRX (D),
and SEC16A (E) in the GSE28475 dataset. Expression of the diagnostic marker genes ABCA1 (F), DGCR2 (G), GFOD1 (H), GLRX (I), and SEC16A (J) in
serum samples. *p < 0.05, **p < 0.01.
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supply. Hence, mitochondrial dysfunction and abnormal energy

metabolism may be a potential common mechanism in ASD

pathogenesis.

Studies have demonstrated immune dysregulation,

inflammation, and endogenous production of autoantibodies

due to abnormalities of innate and adaptive immune systems

in ASD patients (Meltzer and Van de Water, 2017).

Autoantibodies against neuronal antigens have been detected

in children with ASD and their mothers. Moreover, use of

immunoglobulin-G from the mothers of mice and rhesus

monkeys with ASD has been shown to induce ASD-like

symptoms in their offspring. Those findings suggest that the

humoral immune system is critical for ASD pathogenesis (Gupta

et al., 2010).

We discovered infiltration of fewer iTregs as well as Th1, Th2,

NKT, and CD8− T cells in ASD patients than in HVs. Infiltration

of more CD4−initial, central-memory, effector-memory,

monocytes, and CD4− T cells was noted, which suggested that

cellular immunity was also associated with ASD development.

Mostafa et al. showed a reduction in the number of

CD4+CD25high Tregs in ASD children (Mostafa et al., 2010).

Abdallah et al. reported a reduction in cytokine secretion by

Th1 and Th2 cells in children with ASD (Abdallah et al., 2012).

Enstrom et al. found a lower responsiveness by NK cells in

children with ASD (Enstrom et al., 2009) and an increase in

monocyte response (Enstrom et al., 2010). Interestingly, some

scholars have reached different conclusions. Gupta et al. reported

a reduction in the number of CD8+CCR7+ CD45RA CD8+

central-memory T cells in ASD children (Gupta et al., 2010).

Ashwood et al. suggested that increased responses from Th1 cells

were associated with the core symptoms of ASD (Ashwood et al.,

2011). We noted increased infiltration of Th17 cells (which have

been reported to be associated with ASD (Choi et al., 2016)) but

the difference was not significant. Thus, even though a

heterogeneous pattern of changes in the immune cells of

patients with ASD is apparent (which may be related to

differences in samples and selection of different HVs), there is

little doubt that cellular immunity participates in ASD

development, and that clinical application of

immunomodulators (e.g., pro-immunoglobulin and IL-6

antagonists) improves (at least in part) ASD symptoms in

children.

Given the relevance of the immune system in ASD, we used

an established ceRNA network to synthesize the results of an

analysis of immune cell infiltration, and we obtained five

diagnostic genes using the LASSO algorithm: ABCA1, DGCR2,

GFOD1, GLRX, and SEC16A. Analyses of ROC curves revealed

that the diagnostic model based on a combination of these five

diagnostic genes had an AUC of 0.923. This value is higher than

the AUC (0.910) of the three-methylation-markers diagnostic

model identified using the same algorithm (Zhang et al., 2022),

the AUC (0.910) of the five-gut-bacterial-markers diagnostic

model identified by a metagenomic analysis combined with a

random forest algorithm (Wan et al., 2022), and the AUC (0.860)

of the autism-risk-index diagnostic method based on eye-

tracking measures (Frazier et al., 2018), but slightly lower

than the AUC (0.947) of the DarkASDNet diagnostic model

based on 3D-fMRI (Ahammed et al., 2021). Finally, we

confirmed the expression of these five genes in collected

serum samples and the validation dataset. The results showed

that the five genes had differential expression in ASD patients,

which was consistent with the trend predicted by the diagnostic

model.

ABCA1 is a transmembrane protein that maintains cellular

cholesterol homeostasis and affects the transport of free

cholesterol and phospholipids (Brousseau, 2003). Within the

nervous system, ABCA1 is expressed mainly in neurons and

astrocytes. ABCA1 is associated with apolipoprotein 1-mediated

transport of cholesterol and phospholipids, which is involved in

the development of Alzheimer’s disease and Parkinson’s disease.

ABCA1 is also associated with cardiolipin-driven mitochondrial

dysfunction (Jacobo-Albavera et al., 2021). Approximately 23%

of the body’s cholesterol is found in the CNS, and it is an

important raw material for the growth and differentiation of

neurons. Moreover, metabolic dysregulation characterized by

reduced phospholipid levels in the brain and plasma has been

implicated in ASD pathogenesis (Alfawaz et al., 2018).

DGCR2 is associated with susceptibility to schizophrenia, and

is expressed throughout brain development. DGCR2 encodes an

activation-dependent adhesion protein involved in regulating the

migration and localization of neurons during early corticogenesis

(Molinard-Chenu and Dayer, 2018). Belangero et al. found that

certain mutations in DGCR2may also be associated with cortical

thickness (Belangero et al., 2019). Abnormal projections of

cortex–cortical circuits (Chow et al., 2011) and abnormal

cortical growth during infancy (Hazlett et al., 2017) are also

present in the brains of ASD patients, which suggests that

DGCR2 may be involved in ASD development. However, the

exact mechanism must be investigated.

GLRX encodes GLRX, a crucial member of the dithiol-disulfide

oxidoreductase family, which is involved in regulation of the

transcription factors involved in antioxidative stress and synthesis

of control DNAby regulating the activity of ribonucleotide reductase

(Chang et al., 2020). Studies have demonstrated increased oxidative

stress in the brain of children with ASD, increased levels of

glutathione disulfide, and decreased levels of glutathione/

glutathione disulfide (reduced/oxidized glutathione) in peripheral

blood (Chen et al., 2021). Bowers and colleagues found, through a

family-lineage study, that mutations in GLRX (a critical component

of the glutathione-GLRX reduction system) resulted in a fourfold

increase in ASD risk (Bowers et al., 2011).

Little research has been done on GFOD1, but it shows high

expression in the early development of zebrafish brains. GFOD1

may be associated with neurons that produce gamma-

aminobutyric acid (Lechermeier et al., 2020). Increased

expression of GFOD1 has been noted in the hippocampal
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tissue of patients with temporal-lobe epilepsy and patients with

attention deficit hyperactivity disorder (Lasky-Su et al., 2008;

Dixit et al., 2016). Trent et al. found increased expression of

GFOD1 in a study of XY*O mice (a genetically defective mouse

associated with attention deficit hyperactivity disorder and ASD)

(Trent et al., 2014), but the exact function of the GFOD1 protein

is not known.

SEC16A encodes an endoplasmic-reticulum exit-site scaffolding

protein, which is an important component of coat protein complex

II (COP II) vesicles and mediates the transport of substances from

the endoplasmic reticulum to the Golgi apparatus (Hughes and

Stephens, 2010). COPII is involved in metabotropic glutamate-

mediated long-range inhibition (Pick et al., 2017), and defective

long-term depression of metabotropic glutamate receptors is

associated with ASD development (Li et al., 2015). COPII is also

involved in the development of Crohn’s disease and obligatory

spondylitis (Nakamura et al., 2021). Hence, SEC16A may be

involved in ASD development through the immune system.

Rapid advancement of sequencing technology has led to great

progress in screening for the diagnostic markers of ASD, but it had

two main limitations in our study. First, the sequencing results for

mRNAs, lncRNAs, and miRNAs arose from three datasets and

belonged to different patients, which brings uncertainty to the

diagnosis of ASD. Second, the results of bioinformatics analysis

must be validated by clinical and in vitro studies, but the sample size

of our validation dataset was small.

Conclusion

We constructed an ASD-associated ceRNA regulatory

network. This network will provide a new perspective for

explaining the biological processes of ASD. Furthermore, we

identified five immune cell-associated potential molecular

marker genes of ASD, which could be novel targets for

therapy and immunotherapy strategies against ASD.
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