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Background: Extensive research showed costimulatory molecules regulate

tumor progression. Nevertheless, a small amount of literature has

concentrated on the potential prognostic and therapeutic effects of

costimulatory molecules in patients with glioma.

Methods: The data were downloaded from The Cancer Genome Atlas (TCGA)

database, Chinese Glioma Genome Atlas (CGGA) database, and Gene

Expression Omnibus (GEO) database for bioinformatics analysis. R software

was applied for statistical analysis. Using the FigureYa and Xiantao online tools

(https://www.xiantao.love/) for mapping.

Results: The Least absolute shrinkage and selection operator (LASSO) and Cox

regression analysis were utilized to identify the signature consisting of five

costimulatory molecules. Multivariate regression analysis revealed that the

prognosis of glioma could be independently predicted by the riskscore.

Furthermore, we explored clinical and genomic feature differences between

the two groups. The level of tumor mutational burden (TMB) was higher in the

high-risk group, while more mutation of IDH1 was observed in the low-risk

group. Results of Tumor Immune Dysfunction and Exclusion (TIDE) analysis

showed that high-risk patients were more prone to be responded to

immunotherapy. In addition, subclass mapping analysis was performed to

validate our findings and the results revealed that a significantly higher

percentage of immunotherapy response rate was observed in the high-risk

group.

Conclusion: A novel signature with a good independent predictive capacity of

prognosis was successfully identified. And our findings reveal that patients with

high-risk scores were more likely to be responded to immunotherapy.
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Introduction

Gliomas are the most common and aggressive primary

tumors of brain, with approximately 200,000 deaths

worldwide (Sung et al., 2021). Generally, according to the

World Health Organization (WHO) standards, grades I-II are

low-grade gliomas (LGGs) and grades III-IV are high-grade

gliomas (HGGs) (Figarella-Branger et al., 2021). It is worth

noting that glioblastoma (GBM) with WHO grade IV, well

known for their aggressiveness and high propensity to

metastasize, have only a 5% five-year survival rate (Shergalis

et al., 2018). Despite major advances in cancer treatment and

many emerging therapies that have been proposed for glioma

patients, the overall survival rate (OS) has not significantly

increased in recent years (Xu et al., 2020). Under most

circumstances, patients with glioma have advanced into the

intermediate and advanced stages at the time of diagnosis,

missing out on the optimal treatment time (Wang et al.,

2020a). Currently, WHO grade is most commonly used as a

reference to judge the clinical prognosis of glioma patients, which

is valuable but insufficient for prognostic prediction and

evaluation of subgroups of patients (Ali et al., 2021). Thus, it

is important to find additional more effective targets and more

susceptible therapeutic options for glioma patients to improve

the prognosis.

With the development of molecular biology, immunotherapy

has been recognized as a promising treatment for overcoming

glioma despite the presence of the blood-brain barrier (BBB) (Ye

et al., 2019; Marcucci et al., 2021). Costimulatory molecules and

signals consisting of the tumor necrosis factor (TNF) families and

B7/CD28 family are promising candidates for immunotherapy

(Croft et al., 2013). On the one hand, molecules belonging to B7/

CD28 family are essential for triggering immune responses

including the most common immune checkpoint inhibitors

(ICIs) target PD-1 and PD-L1 (Keir et al., 2008). In another

hand, molecules belonging to TNF/TNFR family are essential for

the promotion of anti-tumor immunity (Driessens et al., 2009).

In recent years, many literatures show that costimulatory

molecules are linked to the tumorigenesis and promotion of

various cancers. CD40LG (CD40L, TNFSF5, CD154), one of the

most well-studied TNFSF, has been a therapy target in cancer

treatment and is typically associated with the prognosis of lung

cancer (Mu et al., 2015). Overexpression of TNFSF14 can stop or

delay the development of human papillomavirus 16-induced

tumors via enhancing the functional responses of T cells

(Kanodia et al., 2010). Moreover, EDAR is an important

effector of typical Wnt signaling in the development of skin

attachment, which can adjust Wnt/β-catenin signaling pathway

to promote the proliferation of colorectal cancer cells (Wang

et al., 2020b). Given the prominent values of costimulatory

molecules, it is essential to screen the costimulatory molecules

associated with the prognosis for improving prognosis

evaluations of glioma patients.

To investigate the significant role of costimulatory molecules

in glioma, RNA sequencing data was used to systematically

analyze the costimulatory molecules expression with distinct

clinicopathological features of gliomas in four independent

cohorts according to the TCGA and CGGA datasets. A

prognostic signature was then developed that could effectively

predict the glioma prognosis. Moreover, we investigated

discrepancies in clinical and genomic profiles in two risk

groups and explored potential targets for therapies.

Materials and methods

Data acquisition and processing

The relevant clinical data and RNA-sequencing data of

TCGA-LGG patients and TCGA-GBM patients were acquired

from the TCGA database (https://portal.gdc.cancer.gov/) as the

training cohort. In addition, four datasets including data of

glioma were retrieved from the CGGA and GEO databases

(https://cgga.org.cn/ and https://www.ncbi.nlm.nih.gov/geo/) as

the validation cohorts. The Genotype-Tissue Expression (GTEx)

database (https://gtexportal.org/) RNA-Seq data was also

downloaded for further analysis. Then, data was merged,

converted to TPM values (Zhao et al., 2020), annotated with

probes, and removed samples with incomplete information and

duplicates. The data were then batch normalized using the

“ComBat” algorithm to decrease the possibility of batch effects

in disparate datasets. The expression profile of patients who

responded to immunotherapies was collected from the known

literature and was applied for predicting the immunotherapy

response of glioma patients (Roh et al., 2017). Single-sample

GSEA analysis (ssGSEA) was conducted via the “GSVA” R

package (version 4.0.2).

Differential expression analysis

All costimulatory molecules were gotten from the

published literature (Aye et al., 2021). RNA sequencing

expression data of 56 costimulatory molecules in our

research including normal samples and tumor samples were

obtained via UCSC XENA data hubs (https://tcga.xenahubs.

net). Then differential expression analysis of all these

costimulatory molecules was conducted via the “EdgeR” R

package (version 4.0.2), and we visualized the results via the

“ggplot2” R package (version 4.0.2).

Frontiers in Genetics frontiersin.org02

Wang et al. 10.3389/fgene.2022.1024922

https://portal.gdc.cancer.gov/
https://cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://gtexportal.org/
https://tcga.xenahubs.net/
https://tcga.xenahubs.net/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1024922


Establishment and evaluation of the
prognostic feature in a combined glioma
cohort

After eliminating patients with survival time less than 30 days

and deficient clinic information, 622 patients in the TCGA

database were used to establish a prognostic signature, and

929 patients in the CGGA database were utilized to estimate

the predictive ability and reliability of the signature. First,

univariate Cox regression was conducted to obtain the

costimulatory molecules related to OS of glioma patients (p <
0.01). The LASSO regression analysis was then conducted via the

“glmnet” R package (version 4.0.2) to confirm the selected hub

genes further. Finally, the prognostic signature was defined via a

multivariate Cox regression analysis and the riskscore was

obtained for each patient using the following formula:

Riskscore = coef1*costimulatory molecule +

coef2*costimulatory molecule2 + coef3*costimulatory

molecule3 + . . . + coefN*costimulatory molecules. Then,

patients with glioma were divided into two groups according

to the riskscore.

The OS time and the AUC corresponding to 1-, 3-, and 5-

years were compared between two risk groups based on the

Kaplan-Meier (KM) survival analysis. Furthermore, univariate

and multivariate Cox regression analyses were conducted to

explore the independence of the riskscore as a predictor by

comparing the riskscore and different clinical factors.

GSEA and mutation analysis

The “ClusterProfiler” R package (version 4.0.2) was utilized

for performing GSEA. Curated gene sets, oncogenic signature

gene sets, ontology gene sets and hallmark gene set (https://www.

gsea-msigdb.org/gsea/downloads.jsp) was recognized as the

reference sets to investigate the discrepancy in the tumor

genetic pathways. Immunotherapy-related positive signatures

from the known literature were obtained to conduct the

correlation analysis with riskscore (Hu et al., 2021). Moreover,

somatic mutation data used to calculate tumor mutational

burden (TMB) were available from the cBioPortal website

(https://www.cbioportal.org/datasets). Differentially mutated

genes with p-value < 0.05 in two risk groups were screened

and maftools were applied for analyzing the interaction between

gene mutations.

Investigation of immune signatures and
immunotherapeutic response prediction

The scores of ESTIMATE, immune, and stromal were

counted by “estimate” R package (version 4.0.2). The ssGSEA

algorithm was applied for quantifying the enrichment scores of

39 immune signatures. The 48 immune-checkpoint-relevant

genes expression were selected for disparate expression

analysis in two risk groups. TIDE analysis could precisely

model immune escape and predict cancer response to

immunotherapy (Jiang et al., 2018). Patients with TIDE

score >0 were considered to have no immunotherapy

response, and patients with TIDE score <0 were considered to

have the immunotherapy response. Moreover, a subclass

mapping algorithm (https://cloud.genepattern.org/gp), was

utilized for determining which group was more likely to

benefit from immunotherapy (Hoshida et al., 2007). In

addition, appropriate targeted drugs were defined by

differential expression analysis of drug sensitivity.

Statistical analysis

According to the R software (version 4.0.2), all analyses were

conducted. All statistical tests were two-sided, and the difference

was statistically significant when p-value <0.05. Continuous

variables with normal distribution were contrasted via an

independent t-test. Wilcoxon rank-sum test was applied for

comparing continuous variables.

Results

Data combination and correction for
batch effect

After comprehensively retrieving the TCGA and CGGA

databases, four glioma cohorts conformed to our standard,

including TCGA-GBM, TCGA-LGG, CGGA_325, and

CGGA_693 databases. Meanwhile, we found an evident batch

effect in the four datasets (Figure 1A). The “sva” R package was

applied for eliminating the potential batch effect, and inter-assay

differences were found significantly decreased in the conjunct

glioma cohort (Figure 1B). Moreover, the expression of

costimulatory molecules in each patient was quantified via the

ssGSEA algorithm for further analysis (Figure 1C).

Costimulatory molecules-based
prognosis signature

After a comprehensive search performed on public databases,

1,152 normal samples from the GTEx database, 689 tumor

samples, and five adjacent samples from the TCGA database

were screened. Differential expression analyses of all

costimulatory molecules were performed between normal

samples from TCGA and GTEx databases, and tumor samples

from the TCGA database. 57 differentially expressed

costimulatory molecules with p < 0.001 were identified,
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among which the expression of six costimulatory molecules

including HHLA2, TNFRSF14, TNFRSF18, TNFRSF25,

TNFRSF6B, and TNFSF9 were decreased in tumor samples

(Figure 2A), whereas other costimulatory molecules were

increased in tumor samples (Figures 2B–E). Patients with

intact survival information were screened for further analysis

(Supplementary Table S1). The training cohort was the TCGA

cohort and the verification cohort was the CGGA cohort.

Univariate Cox regression analysis was performed on the

differentially expressed costimulatory molecules and

FIGURE 1
Integration of glioma cohorts and the expression of costimulatory molecules. (A) Used in our analysis of the four glioma cohorts had significant
batch differences (Comp 1: 29.9% variance, Comp 2: 11.9% variance). (B) The “sva” R package for glioma cohort combinations significantly decreased
the batch difference (Comp 1: 18.1% variance, Comp 2: 9.6% variance). (C) Costimulatory molecules expression profile of all patients.
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31 costimulatory molecules were screened (Figure 3A). Next,

11 OS-related costimulatory molecules were identified by LASSO

Cox regression analysis (Figures 3B,C). According to five

costimulatory molecules defined by multivariate Cox

regression analysis, a prognosis signature was constructed and

the riskscore was calculated by the formula: riskscore = CD274 *

0.198666431 + TNFRSF11B * 0.207922941 + TNFRSF14 *

0.18558208 + TNFRSF19 * 0.130431237404669 + TNFRSF21

* −0.1078322 (Figure 3D). Then, KM survival analysis of these

five costimulatory molecules was conducted to contrast the OS

time between two groups (Figure 3E).

Validation of the prognostic feature

The optimal truncation value of riskscore 1.07792 in the

training cohort and 0.159026 in the validation cohort were

counted via the “maxstat” R package. Depended on the

FIGURE 2
Differential expression analysis of costimulatory molecules. (A) Six costimulatory molecules HHLA2, TNFRSF14, TNFRSF18, TNFRSF25,
TNFRSF6B, and TNFSF9 were underexpressed in tumor samples. (B–E) The other 48 costimulatory molecules were highly expressed in tumor
samples.
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optimal truncation value, patients were classified into high- and

low-risk groups. Clinical information analysis indicated that

high-risk patients may have adverse events (Figure 4A). KM

survival analysis suggested that in the training cohort (Figure 4B)

and validation cohort (Figure 4C), the OS time was markedly

shorter in the high-risk group, showing that riskscore could

predict the prognosis. As the riskscore increased, there was also a

prominent increase in mortality in both the training cohort

(Figure 4D) and validation cohort (Figure 4E). Consistently,

the AUC value of 1-, 3-, and 5 years were respectively 0.70,

0.76, and 0.75 in the training cohort (Figure 4F) and 0.73, 0.77,

and 0.79 in the validation cohort (Figure 4G). Moreover, to verify

results in microarray datasets, GSE4290 and GSE108474 series

were selected to perform the differential expression analysis and

the clinical analysis, from which we found the expression of the

signature costimulatory molecules was significantly different

between tumor and normal tissues (Supplementary Figures

S1A,B), and patients with advanced gliomas have a higher

riskscore (Supplementary Figures S1C,D). Furthermore, given

that the difference between two risk groups may just cause by

natural difference between HGG and LGG, we conducted KM

and ROC analysis in GBM and LGG patients independently,

which were matching our results (Supplementary Figures

S2A–F). Univariate and multivariate Cox regression analyses

were conducted to demonstrate the possibility of the riskscore

being a prognostic element distinct from common clinical

factors. With the lowest p-value both in univariate and

multivariate Cox regression analyses, the riskscore was linked

to the prognosis (Figures 4H,I).

Enrichment analysis and tumor mutation
burden

The enrichment scores of known immunotherapy-related

positive signatures were calculated for each patient and we found

FIGURE 3
The construction of the model based on costimulatory molecules. (A) 31 costimulatory molecules, including 1 protective factor and 30 risk
factors, were identified by univariate regression analysis. (B,C) LASSO regression analysis was performed on costimulatory molecules identified by
univariate Cox regression analysis. (D) Multivariate Cox regression analysis identified five costimulatory molecules for model construction. (E) KM
survival curves analysis was performed on five model costimulatory molecules.
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that riskscore positively correlated with all these signatures

(Figure 5A), indicating that high-risk patients could be more

suitable for anti-tumor immunotherapy. Furthermore, we also

analyzed the correlations between riskscore and the scores of the

hallmark gene set (Figure 5A). To better understand the

biological processes and pathways of riskscore on the patient

prognosis in two risk groups, oncogenic signature gene sets,

ontology gene sets and curated gene sets were selected to perform

GSEA analysis both in high- and low-risk groups patients

(Figures 5B–G). Figure 6A showed the TMB level of all cancer

types in the TCGA database, from which a clear difference in

TMB value was observed between LGG and GBM patients, and

FIGURE 4
The validation of the model based on costimulatory molecules. (A) Clinical correlation analysis of the model. (B,C) KM survival curve analysis of
the model [(B); HR = 3.72, p = 7.8e-26] [(C); HR = 3.55, p = 8.7e-37]. (D,E) The risk graph shows that the mortality rate of patients increases gradually
as their risk value increases. (F,G) 1, 3, and 5 years ROC curve analysis of the model. (H,I) Univariate andmultivariate independent prognostic analysis
for the RiskScore.
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the TMB level in high-risk patients was evidently higher than that

in low-risk patients (Figure 6B). The somatic mutation profiles

revealed that IDH1 mutations were more frequent in low-risk

patients and high-risk patients possessed specific top mutated

genes (Figure 6C). Given the difference in TMB value between

LGG andGBMpatients, we then performed differential mutation

analysis between two risk groups both in LGG and GBM patients.

IDH1, EGFR, CIC, NF1, ATRX, TP53, FUBP1, and

SMARCA4 in LGG patients, and ATRX, IDH1, UGGT1,

DNAH7, ROBO1, PCNT, EP400, DSG3, SLIT3, RB1, VWF,

TAF1L, and HMCN1 in GBM patients were identified that

mutated significantly different between two risk groups

(Figures 6D,E). Moreover, co-occurrences were confirmed in

the mutations of these genes (Figures 6F,G).

FIGURE 5
Enrichment analysis of signal pathways. (A) Correlations between riskcore and enrichment score of immunotherapy prediction pathway and
hallmark gene set. (B,C) GSEA analysis between high-risk (B) and low-risk (C) groups based on curated gene set. (D,E) GSEA analysis between high-
risk (D) and low-risk (E) groups based on Ontology gene set. (F,G) GSEA analysis between high-risk (F) and low-risk (G) groups based on oncogenic
signature gene set.
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Immunity and immunotherapy response
analysis

The ESTIMATE algorithmwas firstly conducted to quantify

the immune scores, ESTIMATE scores, and stromal scores, and

all the scores were higher in high-riskscore patients (Figure 7A).

Then, according to the ssGSEA Z-scores of 39 immune

signatures, glioma patients were segmented into high- and

low-immunity groups. We could see that high-risk patients

consisted of more proportions of the high-immunity group

(Figure 7B). Between the two risk groups, there were evident

disparities in 39 immune signatures including immune

functions and immune cells (Figures 7C,D). In light of the

significant role of ICIs therapy in cancer, the expression

distribution of 48 immune-checkpoint-correlated genes was

presented in Figure 7E. Further, the correlation analysis

showed that riskscore had a strong association with PD-1,

PD-L1, PD-L2, and CTLA4 expression (Figure 7F). Most

notably, all these findings revealed that high-riskscore

patients had a stronger immune-signature infiltration.

Figure 8A showed the distribution of the TIDE score. In the

high-risk group, there were 71.01% of patients responded to

immunotherapy, while in the low-risk group, only 53.96% of

patients responded to immunotherapy (Figure 8B). Following,

FIGURE 6
Analysis of tumor mutation characteristics. (A) TMB value display of all cancer types in TCGA. (B) TMB difference analysis between high- and
low-risk groups of glioma patients. (C) The profiles of mutations between high- and low-risk groups of glioma patients. (D,E) Analysis of mutated
gene differences between high- and low-risk groups in patients with glioma. (F,G) Co-mutation correlation of mutated genes.
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we conducted a TIDE analysis of our combined cohort, and the

result revealed that the high-risk score linked to the low-TIDE

score, demonstrating that these patients may be more likely to

respond to immunotherapy (Figure 8C). Moreover, the TIDE

analysis in GBM and LGG patients showed the same results

independently (Supplementary Figures S3A,B). Besides the

TIDE prediction, subclass mapping analysis was applied for

verifying our findings, and we were delighted to see that high-

riskscore patients were more potential to profit from PD-1

checkpoint treatment both in LGG and GBM patients (Figures

8D,E). Finally, the IC50 for each sample of 179 drugs were

estimated via R “oncoPredict” package (version 4.0.2) in the

GDSC database and between the two risk groups, drugs that

have disparities in sensitivity were identified. The drugs with

the most prominent sensitivity discrepancies in the two risk

groups were displayed in Figures 8F,G.

FIGURE 7
Explore differences in immune characteristics between high- and low-risk groups. (A) Differences between the three scores in the high- and
low-risk groups. (B) Based on 39 immune characteristics, the high-risk group had more highly immunized patients. (C,D) Expression differences of
39 immune characteristics between high- and low-risk groups of patients with glioma. (E) Differences in expression of common immune
checkpoints between high- and low-risk groups of glioma patients. (F) Correlation analysis of four immune checkpoints between high- and
low-risk groups of glioma patients.
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FIGURE 8
Immunotherapeutic response prediction and screening of potential drugs. (A)Distribution of TIDE score. (B) Patients in the high-risk group have
a higher percentage of responders. (C) Patients in the high-risk group have a lower level of TIDE score. (D,E) Subclass mapping analysis indicated
patients in the high-risk group could be more sensitive to the PD-1 inhibitor in both LGG and GBM. (F,G) Drugs with the most significant sensitivity
differences in high- and low-risk groups.
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Discussion

With the most pernicious kind of primary brain cancer,

glioma is famous for its high possibility of metastasis and

recurrence (Yang et al., 2022). In the one hand, most glioma

patients have developed to the intermediate and advanced stages

at the time of diagnosis, missing the optimal treatment time. In

another hand, glioma patients lack targeted therapy for specific

subtypes and the current treatment can not control glioma

invasion to normal adjacent brain tissue (Lee et al., 2018).

The prognosis for patients with glioma remains dismal due to

intratumoral heterogeneity (Jan et al., 2010). Accumulating

evidence revealed a prominent association between different

molecular subtypes and clinical outcomes in glioma patients

(Li et al., 2022; Zheng et al., 2022). And several studies showed

that costimulatory molecules took a great part in initiating anti-

tumor immune responses (Zhang et al., 2020), but there was little

literature focused on the correlation between costimulatory

molecules and stratification of patients with glioma. This

study discovered a novel signature that could effectively reflect

the survival and immunotherapy response of glioma patients.

In our study, we firstly combined four independent cohorts into

a large glioma cohort and used “sva” R package to decrease bias

resulting in the small sample size. Univariate Cox analysis verified

31 costimulatory molecules closely correlated to patients’ prognosis

and five costimulatory molecules including CD274, TNFRSF11B,

TNFRSF14, TNFRSF19, and TNFRSF21 were selected by

multivariate Cox analysis for signature construction. Recent

research revealed that the expression of CD274 induced under

hypoxia condition was signally associated with poor survival in

glioma patients (Ding et al., 2021). In addition, TNFRSF11B might

be involved in the malignant progression of gliomas and was one of

the signature genes that predicted patient prognosis (Kang et al.,

2021). TNFRSF14 served a tumor suppressive role by suppressing

tumor cell proliferation and inducing apoptosis in bladder cancer

and could act as a new diagnosis and prognostic biomarker for

bladder cancer (Zhu and Lu, 2018). Further, TNFRSF19, essential

for cell proliferation and development of nasopharyngeal carcinoma,

represented a mechanism for tumor cells to escape from TGF-β
growth-inhibitory action (Deng et al., 2018). Besides, a study

demonstrated that the TNFRSF21 expression was strongly

negatively linked to the miR-20a-5p expression, and the

downregulation of TNFRSF21 functioned as an oncogene in

squamous cell carcinoma of the head and neck (Wu et al., 2018).

With the in-depth study of costimulatory molecules, the significant

costimulatory molecules verified in this study might provide a

foundation for further exploring the prognostic and therapeutic

role of glioma.

We further investigated the potential biological discrepancy

between the two risk groups through GSEA and mutation burden

analysis. We found that riskscore positively associated with all known

immunotherapy correlated positive signals. With the curated gene

sets being a reference set, GSEA analysis indicated that

Glioblastoma_Mesenchymal, Nakayama_Soft_Tissue_Tumors_

PCA1_Up, Noushmehr_GBM_Silenced_by_Methylayion, Blanco_

Melo_COVID-19_Sars, Mclachlan_Dental_Caries_Up pathways

were evidently stimulated in high-risk patients. And Acute_

Inflammatory_Response, B_cell_Receptor_Signaling_Pathyway,

B_Cell_Mediated_immunity, Adaptive_Immune_Response_Based_

On_Somatic_Recombination and Adaptive_Immune_Response

were also significantly activated in high-risk patients with the

ontology gene sets being

a reference set. These findings might partially explain the worse

prognosis of high-risk patients and suggested that these patients

might be more suitable for anti-tumor immunotherapy. In addition,

we found that the TMB level was evidently higher in high-risk

patients. Besides, IDH1, associated with a good prognosis in

glioma patients, was also observed in more mutations in low-risk

patients (Bai et al., 2016).

Moreover, we explored the situation of immune cells and related

immune pathways. Results suggested that high-riskscore patients got

a higher level of most immune features. We also observed higher

levels of PD-L1 and PD-L2 in high-risk patients. Studies had

demonstrated that the PD-L1 was a predictive marker for tumor

immunotherapy (Patel and Kurzrock, 2015). A study also reported

that PD1 expression increased neuronal killing of cancer cells and

was associated with long-term survival (Kingwell, 2013). The results

of TIDE analysis suggested that in the high-risk group, patients had a

higher immunotherapy response rate, which might be correlated to

higher immune-checkpoint-related gene levels in high-risk patients.

In addition, the subclass mapping algorithm analysis verified that

patients with high-risk score were more potential to benefit from

PD-1 checkpoint therapy.

To sum it up, this study successfully constructed and

validated costimulatory molecules based on the prognostic

feature, which might be applied for further guiding treatment

and improving clinical outcomes for glioma patients. However,

there are several limitations to the study. Firstly, bacause only

individuals from Western and China populations are included,

the samples may generate some population and genome bias.

Then, this study lacks verification from other clinical data sets

which will be beneficial to our signature. Finally, given the

incompleteness of patient information and the sensitivity to

incorrect model specification in our multivariate regression

analysis, further analysis of patients with complete clinical

information can be very beneficial in the future. Therefore,

further investigation of prospective studies and other

costimulatory molecules are needed such as functional

experiments and underlying molecular mechanisms.

Conclusion

In conclusion, we investigated the biological features and

prognostic value of costimulatory molecules in patients with

glioma. We developed a new prognostic signature, and
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demonstrated the potential immune-related mechanisms of this

signature. Then, most importantly, our findings indicated that

high-riskscore patients were more likely to benefit from

immunotherapy.
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SUPPLEMENTARY FIGURE S1
Differential expression analyses and the clinical analyses in microarray
datasets. (A,B) Results of differential expression analyses showed that
patients with glioma had in a higher level of the signature genes in
tumor tissues both in GSE4290 (A) and GSE108474 series (B). And
patients with advanced stage qqhad a higher level of riskscore (C,D).

SUPPLEMENTARY FIGURE S2
The validation of themodel using LGG andGBMdata independently. (A,B)
KM survival curve analysis of the model. (C,D) The plots shows that the
mortality rate of patients increases gradually as their riskscore
increases. (E,F) 1, 3, and 5 years ROC curve analysis of the model in both
LGG and GBM data independently.

SUPPLEMENTARY FIGURE S3
The results of TIDE analyses in LGG and GBM patients independently.
(A,B) The TIDE analyses showed that patients in high risk group with LGG
or GBM all had a lower TIDE score.
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