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Breast cancer and colorectal cancer are two of the most common

malignant tumors worldwide. They cause the leading causes of cancer

mortality. Many researches have demonstrated that long noncoding

RNAs (lncRNAs) have close linkages with the occurrence and

development of the two cancers. Therefore, it is essential to design an

effective way to identify potential lncRNA biomarkers for them. In this

study, we developed a computational method (LDA-RWLMF) by

integrating random walk with restart and Logistic Matrix Factorization

to investigate the roles of lncRNA biomarkers in the prognosis and

diagnosis of the two cancers. We first fuse disease semantic and

Gaussian association profile similarities and lncRNA functional and

Gaussian association profile similarities. Second, we design a negative

selection algorithm to extract negative LncRNA-Disease Associations

(LDA) based on random walk. Third, we develop a logistic matrix

factorization model to predict possible LDAs. We compare our

proposed LDA-RWLMF method with four classical LDA prediction

methods, that is, LNCSIM1, LNCSIM2, ILNCSIM, and IDSSIM. The

results from 5-fold cross validation on the MNDR dataset show that

LDA-RWLMF computes the best AUC value of 0.9312, outperforming

the above four LDA prediction methods. Finally, we rank all lncRNA

biomarkers for the two cancers after determining the performance of

LDA-RWLMF, respectively. We find that 48 and 50 lncRNAs have the

highest association scores with breast cancer and colorectal cancer

among all lncRNAs known to associate with them on the MNDR

dataset, respectively. We predict that lncRNAs HULC and HAR1A could

be separately potential biomarkers for breast cancer and colorectal

cancer and need to biomedical experimental validation.
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1 Introduction

Breast cancer is the second leading cause of cancer-related death

in women worldwide and the most common malignant tumor

among US woman (Sun et al., 2017; DeSantis et al., 2019; Yang

et al., 2013; Waks andWiner, 2019). During the past 25 years, breast

cancer mortality rate showed a substantial increase in the world

(Garrido-Castro et al., 2019). This increasing rate is one threaten to

health forwomen in theworld, in particular women fromdeveloping

and low-income regions. More than 1.5 million women were

diagnosed to breast cancer every year, which accounts for 25%

among all women with cancers (Sun et al., 2017). In 2018, breast

cancer accounts for approximately 24% of new cancer cases and

approximately 15% of cancer deaths in women (Heer et al., 2020). In

2019, it is estimated that about 268,600 new patients suffer from

invasive breast cancer and 48,100 patients suffer from ductal

carcinoma in situ among US women. Moreover, 41,760 women

may die from breast cancer in the same year (DeSantis et al., 2019).

About 13% of women may suffer from invasive breast cancer in

lifetime (DeSantis et al., 2019). The incident rate of breast cancer will

increase by more than 46% by 2040 (Heer et al., 2020).

Consequently, breast cancer has been one essential problem to be

solved around the world.

However, the precise mechanisms of breast cancer remain

unclear (Barzaman et al., 2020). Systemic treatment of breast

cancer patients mainly consists of chemotherapy, endocrine

treatment, and targeted therapy (Campos-Parra et al., 2018). In

spite of rapid progress in different treatment strategies, accumulating

patients show recurrence of the disease and decreased survival

because of therapy resistance, which increases metastasis rates

(Sledge et al., 2014). Once the metastasis occurs, the 5-year

overall survival rate may be below 25% (Siegel et al., 2013).

Colorectal cancer is the third most frequent cancer and the

second most death-caused cancer. It is estimated that there are

about 1.9 million new cases and 0.9 million death cases

worldwide in 2020 (Xi and Xu, 2021). Of new diagnose cases,

20% of patients have metastases and another 25% with localized

disease may later developmetastases (Biller and Schrag, 2021). Its

incidence is high in developed countries and is increasing in low-

and middle-income countries, which poses a challenge to global

public health (Biller and Schrag, 2021; Xi and Xu, 2021).

In this situation, it is essential to discover novel molecular

biomarkers that can characterize therapy response for breast cancer

and colorectal cancer. We can extend the overall survival rates of

patients and delay or prevent the two cancers frommetastases based on

molecular biomarkers (Campos-Parra et al., 2018). Consequently,

screening reliable biomarker is a research hotspot on the diagnosis

and treatment of cancer including breast cancer and colorectal cancer

(Huang et al., 2019; Yang et al., 2020; Peng et al., 2022a).

A substantial number of evidence suggest that over 80% of

the human genome can be transcribed into non-coding RNAs,

such as microRNAs (Peng et al., 2017; Peng et al., 2018; Chen

et al., 2019; Huang et al., 2021), circle RNAs (Zhao et al., 2019;

Lan et al., 2022), and long non-coding RNAs (lncRNAs) (Zhang

et al., 2021a; Peng et al., 2021a; Peng et al., 2022b; Zhou et al.,

2021a; Zhou et al., 2021b). In particular, lncRNAs obtain

emerging interest as diagnostic biomarkers and therapeutic

targets (Chandra Gupta and Nandan Tripathi, 2017; Guo

et al., 2022). Differential expression of lncRNAs forms specific

patterns to various complex diseases including cancer

(Wahlestedt C, 2013). Once the regulation effects of lncRNAs

are detected, they are promising therapeutic targets.

LncRNAs are closely related to breast cancer and colorectal

cancer. For example, lncRNA BCRT1, MaTAR25, DSCAM-AS1,

and CDC6 can promote breast cancer progression (Niknafs et al.,

2016; Kong et al., 2019a; Chang et al., 2020; Liang et al., 2020),

BCRT4 can induce signaling transduction in breast cancer (Xing

et al., 2015), LINC00673 can promote cell proliferation of breast

cancer (Qiao et al., 2019), and BORG can cause breast cancer

metastasis and disease recurrence (Gooding et al., 2017).

SNHG11, FEZF1-AS1, RP11, and DLEU1 have been reported

to novel biomarkers of colorectal cancer (Bian et al., 2018; Liu

et al., 2018; Wu et al., 2019; Xu et al., 2020). Thus, many

computational models have been developed to discover

lncRNA biomarkers for cancers (Peng et al., 2020a; Shen

et al., 2022; Sun et al., 2022), for instance, rotation forest

(Guo et al., 2019), KATZ measure (Chen, 2015), collaborative

deep learning (Lan et al., 2020), matrix factorization (Fu et al.,

2018; Wang et al., 2021a), network consistency projection (Li

et al., 2019), and graph autoencoder (Shi et al., 2021).

In this manuscript, inspired by the association prediction

method provided by Peng et al. (2020b), we develop a

computational method, LDA-RWLMF, to predict LncRNA-

Disease Associations (LDAs). LDA-RWLMF integrates random

walk and Logistic Matrix Factorization to discover the roles of

lncRNA biomarkers in the prognosis and diagnosis for breast

cancer and colorectal cancer. First, we compute disease similarity

and lncRNA similarity. Second, we first use random walk to extract

negative LDAs. Third, we explored a logistic matrix factorization

model to predict possible LDAs. The results from 5-fold cross

validation show that LDA-RWLMF computes the best AUC

value of 0.9312 on the MNDR dataset. Finally, we rank all

lncRNA biomarkers for breast cancer and colorectal cancer after

determining the performance of LDA-RWLMF.

2 Datasets

2.1 LncRNA-disease associations

Human LDA dataset was collected from the MNDR database

(Cui et al., 2018; Fan et al., 2020) (http://www.rna-society.org/

mndr/index.html). There are 1,529 LDAs between 89 diseases

and 190 lncRNAs after preprocessing. For an LDA matrix

between n lncRNAs and m diseases, we use YϵRn×m to

describe the association information by Eq. 1:
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Y ij � { 1 If lncRNA li associates withdj

0 otherwise
(1)

2.2 Disease semantic similarity

We use the method provided by Fan et al. (2020) to compute

disease semantic similarity based on the MeSH descriptors.

Disease semantic similarity method provided by Fan et al.

(2020) was based on LNCSIM1 and LNCSIM2 provided by

Chen (2015). For a disease A, suppose that TA represents its

ancestor node set, EA denotes all edge set, its Directed Acyclic

Graph (DAG) is represented as DAGA � {TA, EA}. For a disease
term t ∈ TA in DAGA, its semantic contribution to A is

calculated by Eq. 2 (Chen, 2015):

SV1
A(t) �

1 t � A
max (Δ× SV1

A(t′)∣∣∣∣∣∣t′ ∈ C(t) t ≠ A{ (2)

where C(t) indicates the children of t, Δ indicates the sematic

contribution factor related to edges that link t′ to t, and Δ was

usually set as 0.5 (Wang et al., 2010).

The above equation demonstrates that terms at the same layer

from DAGA have the same semantic contribution to A. But if two

terms t1 and t2 are in the same layer ofDAGA and t1 appears in less in

DAGA than t2, the conclusion from t1 will be more specific than one

from t2, thus, SV1
A(t1) is higher than SV1

A(t2).
In this case, we compute the second semantic contribution of

term t ∈ TA to disease A by Eq. 3:

SV2
A(t) � −logDags(t)

D
(3)

whereD indicates the number of diseases inMeSH,Dags(t) indicates
the number ofDAGs that contain the disease term t. And the semantic

contribution of t in DAGA can be defined by Eq. 4:

SV3
A(t) �

1 t � A
max ((Δ + ∇)SV3

A(t′)∣∣∣∣∣∣t′ ∈ C(t) t ≠ A{ (4)

where ∇ indicates the contribution factor related to information

content, and is computed by Eq. 5:

∇ � maxk∈K(Dags(k)) − dags(t)
D

(5)

where K indicates the disease set in MeSH.

Furthermore, the contribution of all terms in DAGA to the

disease A is computed by Eq. 6:

SV(A) � ∑
t∈TA

SV3
A(t) (6)

Finally, the semantic similarity between two diseases (A and

B) can be computed by Eq. 7:

Ssd(A, B) �
∑t∈TA∩TB

(SV3
A(t) + SV3

B(t))
SV(A) + SV(B) (7)

2.3 LncRNA functional similarity

We use the method provided by Fan et al. (Fan et al., 2020)

to compute lncRNA functional similarity. Let that DG(u) [or

DG(v)] indicate diseases linking to lncRNA u (or v) on LDA

matrix, the similarity between two lncRNAs u and v is

obtained through disease semantic similarity in DG (u) and

DG (v). A disease semantic similarity sub-matrix is first

constructed. In the constructed matrix, rows and columns

are diseases in DG (u) ∪DG (v), and each element indicates the

semantic similarity between diseases. Suppose that du indicate

a disease in DG (u), the similarity between du and DG(v) is

computed by Eq. 8:

S(du,DG(v)) � max
d∈DG(v)

(Sd(du, d)) (8)

Similarly, the similarity between dv and DG (u) is computed by

Eq. 9:

S(dv, DG(u)) � max
d∈DG(u)

(Sd(dv, d)) (9)

And the similarity of DG(u) → DG(v) is computed by Eq. 10:

Su→v � ∑
d∈DG(u)

S(d,DG(v)) (10)

And similarity of DG(v) → DG(u) is computed by Eq. 11:

Sv→u � ∑
d∈DG(v)

S(d,DG(u)) (11)

The similarity between lncRNAs u and v is measured based

on the disease semantic similarity by Eq. 12:

Sfl (u, v) �
Su→v + Sv→u

|DG(u)| + |DG(v)| (12)

where |DG(u)| and |DG(v)| are the number of diseases in

DG(u) andDG(v).

3 Methods

We want to compute association probability for each

lncRNA-disease pair based on disease semantic similarity

and lncRNA functional similarity. The pipeline is shown in

Figure 1.

3.1 Gaussian association profile similarity
and similarity fusion

In this section, we use Gaussian Association Profile (GAP) to

compute the GAP similarity of diseases and lncRNAs. For a

lncRNA li, its GAP AP(li) is denoted using the i th row of Y. The
GAP similarity of lncRNAs li and lj is defined by Eq. 13:
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Sgl (li, lj) � exp ( − γl





AP(li) − AP(lj)




2) (13)

where γl � γ′l/(1n ∑n
k�1 ‖ AP(li)‖2) is the normalized kernel

bandwidth with parameter γ′l . Thus, the lncRNA similarity

matrix Sl is computed by Eq. 14:

Sl � 1
2
(Sfl + Sgl ) (14)

Similarly, the disease GAP similarity Sd can be computed.

3.2 Screening negative LDAs

There are not negative LDAs in the MNDR dataset. Credible

negative LDAs help improve LDA prediction performance and

further more effectively find potential lncRNA biomarkers for

FIGURE 1
The pipeline of LDA-RWLMF.
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breast cancer and colorectal cancer. Peng et al. (2021b) developed

a random walk with restart-based virus-drug association

prediction method and obtained better performance. Inspired

by the method provided by Peng et al. (2021b), we first compute

association probability for each lncRNA-disease pair through

random walk with restart and then screen credible

negative LDAs.

We first constructed a heterogeneous network composed of

lncRNA similarity network, disease similarity network, and LDA

network. lncRNA similarity matrix Sl, disease similarity matrix

Sd, and LDA matrix Y are used as the adjacency matrices related

to the heterogeneous network. The adjacency matrix related to

the heterogeneous network is represented as Eq. 15:

H � [ Sl Y
YT Sd

] (15)

where YT denotes the transpose of Y .
We then compute transition probability on the

heterogeneous graph. Suppose that H � [ H ll H ld

Hdl Hdd
] indicate

transition probability matrix, where H ll and Hdd indicate the
walks within lncRNA similarity network and disease similarity
network, respectively, H ld and Hdl indicate the jumps between
networks. For an lncRNA/disease, when there is an association
between the lncRNA/disease and diseases/lncRNAs, the node
will either continue to walk in the current network based on a
transition probability λ ∈ [0, 1] or jump between the above four
networks.

The i -th lncRNA will walk to the j -th lncRNA through the

transition probability Hll(i, j) by Eq. 16:

H ll(i, j) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sl(i, j)∑n
k�1 Sl(i, k)

, if ∑m

k�1 Y(i, k) � 0

(1 − λ)Sl(i, j)∑n
k�1 Sl(i, k)

, otherwise

(16)

or jump to a disease dj through the transition probability

Hld(i, j) by Eq. 17:

H ld(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λY(i, j)∑m
k�1 Y(i, k)

, if ∑m

k�1 Y(i, k) ≠ 0

0, otherwise

(17)

Similarly, the i -th disease di will walk to the j -th disease dj
through the transition probability Hdd(i, j) by Eq. 18:

Hdd(i, j) �
Sd(i, j)∑m
k�1 Sd(i, k)

, if ∑n
k�1

Y(k, i) � 0

(1 − λ)Sd(i, j)∑m
k�1 Sd(i, k)

, otherwise

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(18)

or jump to an lncRNA lj through the transition probability

Hdl(i, j) by Eq. 19:

Hdl(i, j) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λY(i, j)∑n
k�1 Y(k, i)

, if ∑m

k�1 Y(k, i) ≠ 0

0, otherwise

(19)

At the t− th step, the association probability matrix between

all lncRNA-disease pairs on the heterogeneous network is

computed by Eq. 20:

P(t + 1) � (1 − θ)HT*P(t) + θP(0) (20)

where HT indicates the transpose of H, and θ is the restarting

probability. P(0) indicates the initial probability with

pi(0) � [ (1 − η)vi
ηsi

], where vi and sj indicate the initial

probability distributions on disease similarity network and

lncRNA similarity network, respectively. And η ∈ [0, 1] is

used to control the restarting probability in these two

similarity networks. If η< 0.5, the particle will more tend to

restart from one of the seed microbes than from one of the seed

diseases.

In the second step, we consider known LDAs as positive

sample set P, unknown lncRNA-disease pairs as unlabeled set U

and propose a PU learning approach to screen credible negative

LDA sample set RN. The method contains the following six

steps:

Step 1. Randomly screening positive sample subset D from P

Step 2. Adding D into U;

Step 3. Considering P −D as positive samples, U +D as negative

samples;

Step 4. Obtaining LDA score matrix SNeg using random walk

with restart;

Step 5. Ranking lncRNA-disease pairs in D based on SNeg
min and

obtaining the minimum score SNeg
min in D;

Step 6. For every lncRNA-disease pair x in U:

If SNeg(x)< SNeg
min then RN � RN ∪ x.

3.3 LDA prediction based on logisticmatrix
factorization

Logistic matrix factorization has been applied to multiple areas

(Liu et al., 2020; Tang et al., 2021; Tian et al., 2022). Inspired by the

approaches, we develop a logistic matrix factorization-based LDA

prediction method, LDA-RWLMF.

Assume that both lncRNAs and diseases are mapped to

r-dimensional shared latent spaces (r≪ n,m), thus an lncRNA

li or disease di can be represented as a latent vector

ai ∈ R1×t or bi ∈ R1×t. The association probability pij between

li and di is calculated by Eq. 12:
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pij �
exp(aibTj )

1 + exp (aibTj ) (21)

The latent vector matrix of all lncRNAs or diseases can be

represented as A ∈ Rn×rorB ∈ Rm×r where ai or bi indicates the i
th or j th row in A orB. In addition, known LDAs are more

credible than unknown lncRNA-disease pairs. Thus, we assign

higher confidence values to known LDAs than unknown

lncRNA-disease pairs. Similar to Peng et al. (2020b), we use a

constant c to assess the importance of known LDAs and

construct a prediction model by Eq. 22:

p(Y | A,B) � ⎛⎝ ∏
1≤ i≤ n,1≤ j≤m,yij�1

[pyij
ij (1 − pij)(1−yij)]c⎞⎟⎠

× ⎛⎝ ∏
1≤ i≤ n,1≤ j≤m,yij�0

[pyij
ij (1 − pij)(1−yij)]⎞⎟⎠

� ∏n
i�1

∏m
j�1

p
cyij
ij (1 − pij)(1−yij)

(22)
Model (21) can be optimized based on the Bayesian

distribution by Eq. 23:

min
A,B

∑m
i�1

∑n
j�1
(1 + cyij − yij)log[1 + exp(aibTj )] − cyijaib

T
j +

λl
2

‖ A‖2F +
λd
2
‖ B‖2F (23)

where λl and λd are two parameters, ‖A‖F indicates the Frobenius
norm of A. (Zhang et al. 2019a; Zhang et al. 2019b) integrated

linear neighborhood information to model (22) to predict

various associations. Similarly, we fuse neighborhood

information to Eq. 23 by Eq. 24:

min
A,B

∑m
i�1

∑n
j�1
(1 + cyij − yij) ln[1 + exp(aibTj )] − cyijaib

T
j

+1
2
tr [AT(λlI + αLl)A + 1

2
tr [BT(λdI + αLd)B

(24)

where tr (·) indicates the trace of the matrix. Ll and Ld indicate
the corresponding Laplacian matrix of A and B. Ll �
(Dl + ~Dl) − (A + AT) where Dl and ~Dl are two diagonal

matrices and Dl(i, i) � ∑m
j�1aij and ~Dl (i, i) � ∑m

i�1aij.
Similarly, Ld can be computed.

We compute A and B by solving Eq. 24 through an

alternating gradient ascent approach.

TABLE 1 AUCs of LDA identification approaches on the MNDR dataset.

Dataset LNCSIM1 LNCSIM2 ILNCSIM IDSSIM LDA-RWLMF

the MNDR dataset 0.9251 0.9280 0.9267 0.9302 0.9312

FIGURE 2
The AUC of LDA-RWLMF from 10 time cross validation (t = 1, 2, 3, . . . , 10).
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TABLE 2 The rankings of the predicted top 48 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

1 CASC2 Known 25 PVT1 Known

2 DLEU2 Known 26 RMST Known

3 MIR17HG Known 27 TRAF3IP2-AS1 Known

4 DSCAM-AS1 Known 28 HCP5 Known

5 SNHG4 Known 29 LINC00271 Known

6 TCL6 Known 30 GHET1 Known

7 XIST Known 31 SNHG3 Known

8 CBR3-AS1 Known 32 TDRG1 Known

9 MIAT Known 33 DAOA-AS1 Known

10 CCAT2 Known 34 BACE1-AS Known

11 SOX2-OT Known 35 NAMA Known

12 GAS5 Known 36 BDNF-AS Known

13 PCA3 Known 37 SNHG11 Known

14 MALAT1 Known 38 UCA1 Known

15 BANCR Known 39 SNHG16 Known

16 WT1-AS Known 40 MIR100HG Known

17 PANDAR Known 41 H19 Known

18 HNF1A-AS1 Known 42 TERC Known

19 HAR1B Known 43 MEG3 Known

20 CCDC26 Known 44 SPRY4-IT1 Known

21 BCAR4 Known 45 DANCR Known

22 PDZRN3-AS1 Known 46 KCNQ1OT1 Known

23 HIF1A-AS2 Known 47 IFNG-AS1 Known

24 CRNDE Known 48 HOTAIR Known

TABLE 3 The rankings of the remaining 41 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

49 HULC PMID: 31824174, 33107484, 33745450 70 ZFAT-AS1 Unconfirmed

50 CCAT1 Known 71 PTENP1 PMID: 28731027, 29085464, 29212574, 31196157

51 NPTN-IT1 Unconfirmed 72 HIF1A-AS1 Unconfirmed

52 PCAT1 PMID: 32853955, 28989584, 33850635, 32220602 73 SRA1 Known

53 HAR1A PMID: 26942882 74 MINA Unconfirmed

54 LSINCT5 Known 75 DLEU1 Known

55 TUG1 PMID: 28950664, 27848085, 30098551, 33380806 76 PSORS1C3 Unconfirmed

56 MIR155HG Unconfirmed 77 LINC00032 Unconfirmed

57 DGCR5 PMID: 32521856 78 WRAP53 Unconfirmed

58 IGF2-AS PMID: 33175607 79 7SK Unconfirmed

59 BCYRN1 Known 80 RRP1B Unconfirmed

60 EPB41L4A-AS1 PMID: 35181612 81 MYCNOS Unconfirmed

61 PINK1-AS Unconfirmed 82 PRINS Unconfirmed

62 DNM3OS Unconfirmed 83 ATP6V1G2-DDX39B Unconfirmed

63 ADAMTS9-AS2 PMID: 30840279 84 MKRN3-AS1 Unconfirmed

64 MIR31HG lncRNADisease 85 NRON Unconfirmed

65 BOK-AS1 Unconfirmed 86 MESTIT1 Unconfirmed

66 ESRG Unconfirmed 87 LINC00162 Unconfirmed

67 KCNQ1DN Unconfirmed 88 DISC2 Unconfirmed

68 ATXN8OS PMID: 31173245, 33385064, 33477683 89 SCAANT1 Unconfirmed

69 CDKN2B-AS1 Known
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Finally, lncRNA-disease association score Yfin(i, j) for each
lncRNA-disease pair can be computed by Eq. 25:

Yfin � ABT (25)

4 Results

4.1 Experimental settings

We conduct 5-fold cross validation for 10 times to investigate

the performance of LDA-RWLMF. AUC is used to evaluate the

prediction accuracy of LDA identification models. AUC is the

area under the true positive rate (TPR)-false positive rate (FPR)

curve, where TPR and FPR are defined by Eqs 26, 27:

TPR � TP
TP + FN

(26)

FPR � FP
TN + FP

(27)

where TP, FP, TN, FN represent the number of true positives,

false positives, true negatives, false negatives, respectively. Higher

AUC is, better the prediction performance is. In addition,

parameters in LDA-RWLMF are set to defaults provided by

Peng et al. (2020b). And parameters in the other four comparison

LDA prediction methods (LNCSIM1, LNCSIM2, ILNCSIM, and

IDSSIM) are set to the same values provided by corresponding

methods.

4.2 Performance comparison with other
methods

To measure the performance of the proposed LDA-RWLMF

method, we compare it with four other representative LDA

inference approaches on the MNDR dataset. That is,

LNCSIM1 (Chen, 2015), LNCSIM2 (Chen, 2015), ILNCSIM

(Huang et al., 2016), and IDSSIM (Fan et al., 2020).

LNCSIM1 and LNCSIM2 used Laplacian regularized least

squares to predict possible LDAs based on disease DAGs and

the information content, respectively. ILNCSIM first combined

the hierarchical structure of disease DAG and the information

content to compute disease similarity and then used Laplacian

FIGURE 3
The associations between the remaining 41 lncRNAs and breast cancer.
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regularized least squares to infer new LDAs. IDSSIM designed a

weighted K nearest neighbor approach to identify potential

associations between lncRNAs and diseases by integrating

disease semantic similarity and lncRNA functional similarity.

Table 1 gives the AUC values of the four LDA identification

methods and our proposed LDA-RWLMF on theMNDR dataset.

The results from Table 1 demonstrate that LDA-RWLMF

computes the highest AUC compared to LNCSIM1, LNCSIM2,

ILNCSIM, and IDSSIM on the MNDR dataset. Figure 2 gives the

results of LDA-RWLMF from 10 time cross validation. From

Figure 2, we can find that AUC obtain by LDA-RWLMF is

relatively steady during 10 time cross validation.

4.3 Case study

4.3.1 lncRNA biomarker identification for breast
cancer

Breast cancer is the commonest life-threatening cancer in

women (Key et al., 2001; Sharma, et al., 2010). lncRNAs play

important roles in epigenetic regulation, transcriptional

regulation and post-transcriptional regulation and have been

potential biomarkers of many diseases. Substantial publications

have reported that lncRNAs affect proliferation and apoptosis,

invasion and metastasis, and cancer stemness of breast cancer.

For example, LSINCT5 and Zfas one can promote the

proliferation of breast cancer, HOTAIR suppresses invasion

and migration of breast cancer, SOX2OT induces

SOX2 expression in breast cancer, and SRA is the expression

activator of breast cancer (Sun et al., 2017). We want to conduct

case analyses to find possible lncRNA biomarkers for breast

cancer based on the proposed LDA-RWLMF model.

In the MNDR dataset, there are 89 lncRNAs that may

associate with breast cancer, where 54 lncRNAs have been

experimentally validated to associate with the cancer and

35 lncRNAs have unknown associations with it. We use the

proposed LDA-RWLMF method to rank the 89 lncRNAs for

breast cancer. The results are shown in Tables 2, 3. Table 2

demonstrates the ranking results of the predicted top 48 lncRNAs

according to the computed association score with breast cancer

on the MNDR dataset. These 48 lncRNAs are known to link to

breast cancer on the MNDR dataset and are ranked as top 48.

Table 3 gives the rankings of the remaining 41 lncRNAs

according to the association scores with breast cancer on the

TABLE 4 The rankings of the identified top 50 lncRNAs associated with colorectal cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

1 SOX2-OT Known 26 NAMA Known

2 DLEU2 Known 27 WT1-AS Known

3 CASC2 Known 28 TDRG1 Known

4 TCL6 Known 29 GHET1 Known

5 TRAF3IP2-AS1 Known 30 CRNDE Known

6 DSCAM-AS1 Known 31 XIST Known

7 GAS5 Known 32 MALAT1 Known

8 MIR17HG Known 33 RMST Known

9 HAR1B Known 34 SNHG3 Known

10 CCDC26 Known 35 BACE1-AS Known

11 CBR3-AS1 Known 36 MIR100HG Known

12 PANDAR Known 37 IFNG-AS1 Known

13 MIAT Known 38 DANCR Known

14 SNHG4 Known 39 SNHG16 Known

15 HIF1A-AS2 Known 40 SNHG11 Known

16 HNF1A-AS1 Known 41 TERC Known

17 PCA3 Known 42 KCNQ1OT1 Known

18 BANCR Known 43 MEG3 Known

19 LINC00271 Known 44 HULC Known

20 PDZRN3-AS1 Known 45 UCA1 Known

21 CCAT2 Known 46 SPRY4-IT1 Known

22 BCAR4 Known 47 PCAT1 Known

23 DAOA-AS1 Known 48 HOTAIR Known

24 BDNF-AS Known 49 PVT1 Known

25 HCP5 Known 50 CCAT1 Known
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MNDR dataset. Among all lncRNAs unknown to associate with

breast cancer on the MNDR dataset, lncRNA HULC is predicted

to link to breast cancer with the highest association scores. Shi

et al. (2016) observed that HULC can act as an oncogene

biomarker in triple-negative breast cancer and as an

independent possible poor prognostic factor in patients

suffered from triple-negative breast cancer. Wang et al. (2019)

found that HULC can promote the development of breast cancer

through regulating the expression of LYPD1. Gavgani et al.

(2020) investigated that the HULC knockdown can induce

apoptosis and suppress cellular migration in breast cancer cells.

PCAT1 may link to breast cancer with the ranking of three

among all lncRNAs unknown to associate with breast cancer on

the MNDR dataset. Several studies have reported that

PCAT1 can associate with breast cancer although its

association with the cancer on the MNDR dataset is

unobserved. Abdollahzadeh et al. (2020) reported that the

altered regulation of PCAT1 may play crucial roles in the

development and pathogenesis of breast cancer. Sarrafzadeh

et al. (2017) assessed the expression of PCAT-1 through real-

time reverse transcription polymerase chain reaction in breast

tumor samples from 47 breast cancer patients and found that

PCAT-1 may involve in the pathogenesis of breast cancers. Wang

et al. (2021a) observed that PCAT-1 can facilitate breast cancer

progression by binding to RACK1 and thus boosting oxygen-

independent stability of HIF-1α. Tang et al. (2022) detect that

PCAT1 can regulate the expression of PITX2 in breast cancer.

In addition, we predict that nephronectin intronic

transcript 1 (NPTN-IT1, also known as lncRNA-LET) may

have relationship with breast cancer. NPTN-IT1 has been

reported to associate with bladder cancer through

attenuating the expression of the target of miR-145 and

ILF3 in bladder cancer (Zhang et al., 2021b). It was

significantly down-regulated in multiple tumor tissues of

colorectal cancer. It also has a regulation role in hypoxia

signaling of hepatocellular carcinoma (Sun et al., 2013) and

was highly expressed in HepG2 cells (Kong et al., 2019b). We

hope that association between three lncRNAs (HULC, NPTN-

IT1, and PCAT1) and breast cancer can be validated through

wet experiments. Figure 3 shows the associations between the

41 lncRNAs that are ranked as the last 41 and breast cancer.

Black solid lines represent known LDAs in the MNDR

database. Green solid lines represent LDAs that can be

observed in the lncRNA disease database. Red dots lines

represent LDAs that are predicted to be potential lncRNA

biomarkers of breast cancer and can be confirmed by related

publications. Blue equal dash lines represent unknown LDAs.

4.3.2 lncRNA biomarker identification for
colorectal cancer

Colorectal cancer is a heterogeneous disease. It has high

morbidity and mortality. lncRNAs demonstrate dense

associations with colorectal cancer. In this study, we

conduct case analyses to identify possible lncRNA

TABLE 5 The rankings of the remaining 41 lncRNAs according to association with breast cancer on the MNDR dataset.

Rank lncRNA Evidence Rank lncRNA Evidence

51 HAR1A Unconfirmed 71 ZFAT-AS1 Unconfirmed

52 NPTN-IT1 known 72 SRA1 Unconfirmed

53 TUG1 known 73 PSORS1C3 Unconfirmed

54 IGF2-AS PMID: 32853944, 30581274 74 HIF1A-AS1 Unconfirmed

55 LSINCT5 known 75 MINA Unconfirmed

56 DGCR5 PMID: 31452812 76 LINC00032 Unconfirmed

57 H19 known 77 WRAP53 Unconfirmed

58 EPB41L4A-AS1 PMID: 32557646 78 DLEU1 Unconfirmed

59 MIR155HG PMID: 34562123,31228357 79 RRP1B Unconfirmed

60 CDKN2B-AS1 known 80 7SK Unconfirmed

61 MIR31HG PMID: 30447009,35733512,34485123 81 PRINS Unconfirmed

62 ESRG PMID: 34896077 82 MYCNOS Unconfirmed

63 BCYRN1 PMID: 30114690,32944001,31773686 83 ATP6V1G2-DDX39B Unconfirmed

64 BOK-AS1 Unconfirmed 84 MKRN3-AS1 Unconfirmed

65 PINK1-AS Unconfirmed 85 NRON Unconfirmed

66 KCNQ1DN Unconfirmed 86 SCAANT1 Unconfirmed

67 ATXN8OS Unconfirmed 87 DISC2 Unconfirmed

68 DNM3OS Unconfirmed 88 MESTIT1 Unconfirmed

69 PTENP1 Unconfirmed 89 LINC00162 Unconfirmed

70 ADAMTS9-AS2 Unconfirmed
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biomarkers for colorectal cancer based on LDA-RWLMF. In

the MNDR dataset, 89 lncRNAs possibly associate with

colorectal cancer, where 55 lncRNAs have been validated to

be the biomarkers of the cancer and remaining 34 lncRNAs

have not been validated. We use LDA-RWLMF to compute the

association scores between all 89 lncRNAs and colorectal

cancer and rank the 89 lncRNAs for colorectal cancer. The

results are shown in Tables 4, 5. Table 4 shows the rankings of

the identified top 50 lncRNAs according to the computed

association score with colorectal cancer on the MNDR dataset.

The 50 lncRNAs are known to associate with colorectal cancer

on the MNDR dataset and are ranked as top 50.

Table 5 gives the rankings of the remaining 39 lncRNAs

according to the association scores with colorectal cancer on the

MNDR dataset. Among all lncRNAs unknown association with

colorectal cancer on the MNDR dataset, lncRNA HAR1A is

inferred to link to colorectal cancer with the highest association

scores. HAR1A is a favorable prognostic biomarker for patients.

Shi et al. (2019) analyzed the expression profiles of HAR1A using

RT-qPCR and found its expression level was significantly lower

in hepatocullular cancer. Chen et al. (2020) have still reported

that the HAR1A expression levels were reduced in hepatocellular

carcinoma tissues.

Figure 4 gives the associations between the remaining

39 lncRNAs and colorectal cancer. Black solid lines represent

known LDAs in the MNDR database. Red dots lines represent

LDAs that are predicted to be potential lncRNA biomarkers of

breast cancer and can be confirmed by related publications. Blue

equal dash lines represent unknown LDAs.

5 Discussion and conclusion

Breast cancer and colorectal cancer are the most frequent

cancers with high mortality rates. They demonstrate very high

heterogeneity at molecular and clinical levels. With the fast

development of next generation sequencing technologies, we

can more accurately characterize the human genome.

lncRNAs act mainly as gene expression regulators. The

dysregulation of lncRNAs may destroy the normal

transcriptional landscape and thus cause malignant

transformation. In addition, their highly specific expression

FIGURE 4
The associations between the remaining 39 lncRNAs and colorectal cancer.
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and functional tertiary structure force them to be as promising

diagnostic biomarkers and potential targets for various diseases

including breast cancer and colorectal cancer.

In this study, we proposed a computational lncRNA-disease

associationmethod (LDA-RWLMF) to identify potential biomarkers

for breast cancer and colorectal cancer. First, a random walk with

restart method was designed to extract negative LDAs. Second, a

logistic matrix factorization model was explored to infer possible

associations between lncRNAs and diseases. Finally, all lncRNAs are

ranked according to association scores with breast cancer and

colorectal cancer on the MNDR dataset.

We conduct 5-fold cross validation for 10 times to compare

LDA-RWLMF with state-of-the-art LDA prediction models on

the MNDR dataset, that is, LNCSIM1, LNCSIM2, ILNCSIM, and

IDSSIM. The results show that LDA-RWLMF computes the best

AUC values of 0.9312. We predict that lncRNAs (HULC, NPTN-

IT1, and PCAT1) may be possible biomarkers of breast cancer

and colorectal cancer.

Our proposed LDA-RWLMFmethod has two disadvantages.

First, it extracted credible negative LDA samples. In the area of

association prediction, there are no negative association samples

because of the limitation of biomedical experiments, which

causes relatively poor performance. Thus, we designed a

negative LDA extraction method based on PU learning.

Second, the logistic matrix factorization model can effectively

discover possible associations between two biological entities.

Thus, we used the model to identify new LDAs. In addition,

diseases and lncRNAs exhibit abundant biological features. In

this study, we failed to consider these diverse features. In the

future, we will further integrate more biological information to

improve LDA prediction.

In the future, we will further design more effective negative

sample screening method based on positive-unlabeled learning.

In addition, we will also develop deep learning model for LDA

prediction. We anticipate that the proposed LDA-RWLMF

method can help design therapeutic regimens for personalized

treatment of breast cancer and colorectal cancer and thus

opportunely inhibit its recurrence.
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