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Domestication of wheat started with the dawn of human civilization. Since then,

improvement in various traits including resistance to diseases, insect pests,

saline and drought stresses, grain yield, and quality were improved through

selections by early farmers and then planned hybridization after the discovery of

Mendel’s laws. In the 1950s, genetic variability was created using mutagens

followed by the selection of superior mutants. Over the last 3 decades, research

was focused on developing superior hybrids, initiating marker-assisted

selection and targeted breeding, and developing genetically modified wheat

to improve the grain yield, tolerance to drought, salinity, terminal heat and

herbicide, and nutritive quality. Acceptability of genetically modified wheat by

the end-user remained a major hurdle in releasing into the environment. Since

the beginning of the 21st century, changing environmental conditions proved

detrimental to achieving sustainability in wheat production particularly in

developing countries. It is suggested that high-tech phenotyping assays and

genomic procedures together with speed breeding procedures will be

instrumental in achieving food security beyond 2050.

KEYWORDS

domestication, hybrid wheat, NGS, CRISPR, genomic selection (GS), climate change,
food security

Introduction

Wheat (Triticum aestivum L.) is cultivated in 89 countries to feed around 2.5 billion

people—one-fifth of the total world population. Bread wheat is grown on about 95% of the

total wheat cropped area while the remaining 5% area is covered by the durum wheat

(Mastrangelo and Cattivelli, 2021). The contribution of durum wheat in total wheat

production is also around 5%.

Wheat domestication and human civilization evolved simultaneously in the history of

mankind. Among the cereals, it is one of the most important crops with relatively more

potential to get adapted in challenging environments. With the increasing food demand

and depleting agricultural land, it is pivotal to enhance the grain yield in a sustainable way
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to feed the increasing human population beyond 2025. Nearly

100% increase in wheat production is inevitable to meet the

global food requirements by the end of 2050 (Senker, 2011).

Concerning the advancements in research and development, all

the major events and technologies that paced up wheat research

and have a plethora of contributions towards wheat

improvement after its domestication as a cereal crop have

been described in this article.

Origin and domestication of wheat

The hexaploid wheat (AABBDD) contains three different

genomes each derived from different diploid species viz.,

Triticum urartu (AA genome), Aegilops speltoides

(controversial, BB genome), and Aegilops tauschii (DD

genome) (Feldman et al., 1995; Nesbitt and Samuel, 1996).

According to the archeological records, wheat originated in

Southeast Turkey. Initially, the progenitor species containing

AA and BB subgenomes were discovered (Aaronsohn, 1910) and

these were hybridized followed by a doubling of chromosomes

which resulted in tetraploid fertile wheat, T. turgidum (AABB) (v.

Tschermak and Von, 1914). Then the T. turgidum, wild emmer,

was domesticated in Fertile Crescent. Afterward, T. turgidum

hybridized with a diploid specie A. tauschii (Kihara, 1944;

McFadden, 1944; McFadden and Sears, 1946) which resulted

in the formation of hexaploid wheat (AABBDD). The hexaploid

bread wheat evolved in the Fertile Crescent (Figure 1). It is worth

mentioning that tetraploid ancestors spread into the natural

range of diploid species Ae. tauschii. Because of its high

acceptance as an ultimate source of calories, it was spread

into different parts of the world via different routes

(Figure 1). After domestication, hexaploid wheat was

cultivated and selected in diverse geographical regions for

centuries which resulted in present-day cultivated bread wheat

(McFadden and Sears, 1946; Dubcovsky and Dvorak, 2007).

Among diploids, einkorn wheat, Triticum monococcum, is

considered the first domesticated hulled wheat. The historical

record shows that it was domesticated 12,000—c. 8,500 years ago

in the Pre-Pottery Neolithic period (Zaharieva and Monneveux,

2014). However, cultivated tetraploids Triticum dicoccum (wheat

emmer) and Triticum durum (tetraploid durum), both arose

from wild ancestors.

Initially, the wheat was spread to Greece, Cyprus, India, and

Egypt followed by other countries around the world (Cooper,

2015). Domesticated wheat had large-sized hulled seeds attached

to the ear as compared to its wild species. The wheat grain in

primitively cultivated species was long, thin, and small in size.

The first naturally mutated traits in the wild germplasm were

non-brittle rachis and naked grain that were responsible for the

domestication of wheat (Pourkheirandish et al., 2018). The

process of natural selection played a significant role in

shaping the present-day cultivated wheat. Selections were

made by the early farmers on the basis of phenotypic traits

FIGURE 1
Routes showing the migration of wheat from the center of origin-Fertile Crescent-to other continents of the world. The green color indicates
Fertile Crescent and the red lines indicate different known routes (Pont et al., 2019). Post-Domestication to Mendel’s Era.
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such as grain size, grain color and non-shattering type (Eckardt,

2010). Seeds from the best plants were used to grow the next

generation while inferior quality seeds were discarded (Charmet,

2011).

During the 1800s, several wheat varieties were developed by

selecting superior lines by the wheat breeders. Wheat growers or

distributors were used to select different wheat spikes with

desirable quality followed by assigning a new fancy name to

the selected spikes such as ‘Thomas Rust Resistant’ for wheat

variety resistant to rust and ‘Landretti’s Hard Winter’ for

resistance to changing climate (Spennemann, 2001).

In the 18th century, wheat ‘rust’ was scientifically described

for the first time (Eriksson and Henning, 1896). Efforts were

made to improve wheat varieties mainly for high yield and

resistance to diseases. Similarly, wheat breeding for protein

content and baking quality was initiated by William James

Farrer (Wrigley et al., 1981). Then in 1873, interspecific

hybridization between rye and wheat was successfully made,

and thereafter enormous valuable hybrids of wheat showed

significant improvements in yield and other traits such as

early maturity, rust-resistance with stiff straws, gluten content,

and non-shattering traits were developed (Beach, 1923).

Wheat genetics in post-
mendelian era

In the late 19th century, Mendel published data pertaining

to his historic experiments conducted on pea plants. In the early

1900s, his work was re-discovered which provided him

recognition as the “Founder of Genetics” (Wrigley et al.,

1981). Since then, breeding based upon scientific knowledge

started and the whole research perspective was shifted towards

improving desirable traits such as plant height, seed color, and

seed shape instead of the plant as a whole (Biffen, 1905). In

1916, the first hard wheat variety ‘Yeoman’ having low protein

content was developed through hybridization. It was discovered

that for achieving genetic stability, more than 10 generations

were required for fixing the traits (Bajaj, 1990). In 1920, the

stem rust gene, Sr2 was incorporated into wheat from tetraploid

emmer wheat (Singh and McIntosh, 1984). Following several

hybridization experiments, Italian landraces and inbred lines

were crossed with the Japanese variety ‘Akakomugi’.

Resultantly, new varieties harboring improved resistance to

rust diseases, early flowering, and early maturing were

developed. These varieties were used in other wheat

breeding programs, and laid down a firm foundation for

achieving green revolution (Salvi et al., 2013). During the

early period of hybridization-based breeding programs,

varieties depicting high yield potential were developed

without focusing on improving resistance to biotic stresses.

Another winter wheat variety ‘Turkey red’ was also developed

and cultivated in the United States (Olmstead and Rhode,

2002). Drought resistance was incorporated from landraces

to ‘Aragon 03’ (Royo and Briceño-Félix, 2011). Later on, wheat

varieties with high Zn and protein content as well as biotic and

abiotic stress tolerance were also developed through

conventional breeding.

The era of mutagenesis

By the process of mutagenesis, novel genetic variability in

plants was induced by exposing them to physical or chemical

mutagens (de Oliveira Camargo et al., 2000). Over the last

century, physical mutagens, for example, gamma rays, UV

rays, fast neutrons, and the chemical mutagens such as

sodium azide, N-methyl-N-nitrosourea, ethyl methansulfonate

and hydrogen fluoride have been widely used. Biological

mutagens like Agrobacterium are also being used (Krishnan

et al., 2009). Recently, the mutant population was developed

by exposing the seeds of a wheat cultivar ‘Punjab-11’ to gamma-

rays. The developed mutants were found to be resistant to either

leaf rust, yellow rust or, stem rust (Hussain et al., 2021). Few of

these mutants also demonstrated high grain quality traits as

compared to wild type (Zulfiqar et al., 2021).

Mutation breeding techniques were resurrected during early

years of the 21st century due to a better understanding of

mutagens, their use, the process of mutagenesis, and its

application in related disciplines. Nowadays, traditional

approaches being used for the selection of mutants in second

and third generations have provided high yielding as well as

better quality varieties (Singh and Balyan, 2009; Albokari, 2014).

Consequently, a huge number of varieties with improved traits

have been released through mutation induction which reveals the

economic impact of this technology (Micke et al., 1990;

Jankowicz-Cieslak et al., 2017). To date, ~ 3400 mutant

varieties have been produced through mutagenesis directly or

indirectly, including 265 varieties of bread wheat (https://

nucleus.iaea.org/sites/mvd/SitePages/Search.aspx) (Figure 2).

However, the majority of the varieties (~85%) are the result of

mutation inductions through gamma rays. All these varieties

released through mutation breeding are high yielding, with better

tolerance to pests, diseases, and biotic and abiotic stresses.

The use of chemical mutagens on a large scale has been

started in 2000. Ethyl methanesulphonate (EMS) –the most

commonly used mutagen-generates random point mutations

in the entire genome (Brini and Masmoudi, 2014). For

example, a single nucleotide polymorphism (SNP) in Lr21 was

identified in one of the resistant mutants (to leaf rust) of ‘NN-

Gandum-1’. This mutation caused a substitution of glutamic acid

with alanine (Hussain et al., 2018). Few of these mutants also

demonstrated better tolerance to drought stress as compared to

wild type (Zahra et al., 2021). It is suggested that mutagenesis

experiments are effective in inducing useful mutations in wheat

which can be used in forward and reverse genetic studies for
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gaining insights into the important biological traits of the

complex wheat genome.

In the beginning of the 21st century, an advanced method,

Targeting Induced Local Lesions IN Genomes (TILLING) was

used for identifying point mutations in targeted genes of mutants

and or genetic stocks (Henikoff and Comai, 2003). In 2009,

through TILLING, complete waxy wheat was bred by crossing

Wx-A1 and Wx-D1 truncation mutant whereas Wx-B1was

naturally null in both of them (Dong et al., 2009). Similarly, a

waxy gene GBSS-I (granule-bound starch synthase I) in near null

waxymutant was identified (Slade et al., 2012). In 2012, the wheat

mutant geneMNR220 was identified that carried resistance locus

to powdery mildew and other types of rust. The mutant

population resulted after TILLING with many novel alleles

that could be a good genetic resource for improvement of

wheat (Chen et al., 2012). Novel genetic variations in the

SBEIIa gene for amylose content, TaAGP gene for starch

biosynthesis and, TaMlo gene for durable resistance against

powdery mildew were also identified through TILLING (Slade

et al., 2012; Acevedo-Garcia et al., 2017; Guo et al., 2017).

Introgression wheat breeding

Among cereals, a lot of introgression work was done on

wheat (Dempewolf et al., 2017), resulting in significant

improvement in the genetic diversity of wheat (Lu and

Ellstrand, 2014). The genetic sources of wheat, consisting of

wild relatives, landraces, and close relatives have contributed

significantly to adding novel genetic variations to modern wheat

cultivars (Molnar-Lang et al., 2016). In 1930, stem rust resistance

Sr2 gene was introgressed into cultivated wheat from its wild

relative emmer wheat cultivar “Yaroslav” (McFadden and Sears,

1946). Several genes against biotic stresses such as Ug99 were

found in Aegilops. Genes for stem rust including Sr33, Sr45, Sr45,

Sr46, and SrTA1662 were introgressed and localized into the

genome of cultivated wheat (Olson et al., 2013).

Secale cereale, commonly known as rye, is one of the most

important wheat relatives which was used for incorporating

several genes into the cultivated wheat. After hybridization

with rye, translocations and substitutions played a role in

transferring genes responsible for high yield and disease

resistance (Rabinovich, 1998). The most important non-

Triticum introgressions in the wheat genome were 1BL/1RS,

1DL/1RS and 1AL/1RS translocations that contained biotic and

abiotic stress resistance genes (Rabinovich, 1998; Mago et al.,

2015). The 1BL/1RS translocation between wheat chromosome

‘1B’ and rye chromosome ‘1R’ carrying genes for leaf rust (Lr26),

stem rust (Sr31), stripe rust (Yr9), and powdery mildew (Pm8)

improved the resistance to fungal diseases in wheat (Singh et al.,

1990; Friebe et al., 1996; Friebe et al., 1999; Baffes, 2005). The

wheat lines containing the 1RS chromosomal arm exhibited a

substantial increase in the root length and spike length (Liu et al.,

2020a). Likewise, introgression of 4R and 6R chromosomes from

FIGURE 2
Percentage of mutant wheat varieties developed through mutagenesis in various decades (Data source: https://nucleus.iaea.org/sites/mvd/
SitePages/Search.aspx).
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rye cultivar ‘Kriszta’ resulted in a significant increase in protein

content (Schneider et al., 2016). A novel stem rust resistant gene

Sr59, yellow rust resistant gene Yr83, and powdery mildew

resistant gene Pm56 from rye were introgressed into wheat as

a 2DS:2RL and 6AL:6RS Robertsonian translocations,

respectively (Table 1) (Rahmatov et al., 2016; Hao et al., 2018)

Deficiency of essential micronutrients also called as hidden

hunger has affected around two billion people in the world. As a

major staple crop, wheat provides almost 20% protein and energy

to mankind. Hence, wheat is an ideal candidate for

biofortification. Improvement of protein content in wheat

grain has been remained a major breeding objective of several

wheat groups around the globe. In wild emmer wheat, a Gpc-B1

locus was discovered which can enhance the content of protein,

Zn and Fe; hence can be incorporated into cultivated wheat to

increase its nutritional value (Uauy et al., 2006). This gene was

introgressed into two cultivars HUW468 and HUW234 through

marker assisted backcrossing (Vishwakarma et al., 2014; Mishra

et al., 2015). The introgression of Gpc-B1 gene for increasing

grain protein content has also been achieved in 10 elite wheat

cultivars (Kumar et al., 2011). Moreover, introgression of Gpc-B1

gene was also performed in different spring wheat cultivars

(Carter et al., 2012; Tabbita et al., 2012; Eagles et al., 2014),

where grain protein contents were substantially increased.

Tolerance to salt, and (1,3;1,4))-β-D-glucan content were also

transferred in wheat as a 7BS.7HS wheat/barley Robertsonian

translocation (Türkösi et al., 2018). Recombinant inbred wheat

lines were developed by introgression with A. caudate; newly

TABLE 1 List of genes/translocations successfully transferred from wild relatives into wheat.

Sr # Donor species Name of gene Translocation chromosome Reference

1 Aegilops speltoide Stem rust/Sr39 2S/2B Niu et al. (2011)

2 Aegilops speltoide Tan spot TsrAes1 Septoria nodorum blotch SnbAes1 2S/2B Zhang et al. (2019)

3 Aegilops sharonensis Lr56/Yr38 T6AS.6AL-6Ssh/6L Marais et al. (2010)

4 Thinopyrum
intermedium

Wheat streak mosaic virus Wsm3 T7BS·7S#3L Danilova et al. (2017)

5 Dasypyrum villosum Stem rust Sr52 T6AS·6V#3L Li et al. (2019)

6 Hordeum vulgare β-glucan synthesis HvCslF6 T7AS·7HL, T7BS·7HL and T7DS·7HL Danilova et al. (2019)

7 Elymus tsukushiensis Fusarium head blight Fhb6 1Ets#1S Cainong et al. (2015)

8 Hordeum vulgare Salt tolerance β-D-glucan 7BS.7H Türkösi et al. (2018)

9.10 Hordeum vulgare cellulose synthase-like F6 gene (CslF6) A complete set of six compensating RobT
chromosomes

Danilova et al. (2018)

10.11 Secale cereal Powdery mildew resistance gene Pm56 6AL.6RS Hao et al. (2018)

11.12 Secale cereal Stem rust Sr59 2DS.2RL Rahmatov et al. (2016)

12.13 Dasypyrum villosum Glume ridges (Bgr-V1) photoperiod response gene
(Ppd-V1)

2VS.2DL Rahmatov et al. (2016)

13.14 Secale cereal stripe rust and powdery mildew 1BL.1RS Ren et al. (2018)

14.15 Secale cereal stripe rust and powdery mildew 1RS.1BL Ren et al. (2017)

15.16 Secale cereal Greenbug resistance genes Gb2 and Gb6 1AL.1RS Lu et al. (2010)

16.17 Secale cereal Drought-responsive genes 1BL.1RS Jang et al. (2017)

17.18 Secale cereal Stripe Rust Yr24/26 1RS.1BL Yang et al. (2016)

18 Th. bessarabicum High Fe and Zn contents 6EbS·6DL Ardalani et al. (2016)

19 Th. Elongatum Flour Quality genes 1AS.1EL Tanaka et al. (2017)

20 Aegilops searsii Powdery mildew Pm57 2Ss#1/2B Liu et al. (2017)

21 Aegilops speltoides Stem rust Sr39 2S/2B Zhang et al. (2019)

22 Th. elongatum Wheat streak mosaic virus Wsm3 2E/2B Zhang et al. (2018b)

23 T. durum Yr7 2BL Marchal et al. (2018)

24 T.spelta Yr5 2BL Marchal et al. (2018)

25 P. Huashania All disease resistance and agronomic traits 2Ns/2D Bai et al. (2020)

26 Secale cereal Aphid and Hessian fly 3DL.3RS and 5AL.5RS Johansson et al. (2020)

27 Thinopyrum elongatum Fusarium head blight 7E.7D Fedak et al. (2021)

28 Secale cereal Pest and disease resistance 1BS Przewieslik-Allen et al. (2019)

29 Triticum timopheevii Agronomic traits 2At.A5, 6At.A9, 7G.B4 King et al. (2022)

30 Aegilops tauschii Quality traits, Resistance to biotic and abiotic
stresses

5D.5B Othmeni et al. (2022)
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developed lines showed improved disease resistance. Also,

resistance to the take-all disease was incorporated in the 2NS/

2D substitution line of bread wheat by making a cross with

Psathyrostachys huashania Keng (Table 1) (Bai et al., 2020).

Recent technological advancements in genomics and

cytogenetics offer new avenues for transferring alien genes to

wheat, avoiding issues like linkage drag.

The era of the green revolution in
wheat production

In 1950, photoperiod insensitive (ppd1 and ppd2) genes were

transferred into wheat for expanding germplasm usage globally

(Rajaram, 2001). After the wheat rust epidemic (1951–1954) in

North America, research for the development of rust-resistant

modern cultivars was initiated by the CIMMYT (International

Maize and Wheat Improvement Center, Mexico). Another

initiative that prevented the outbreak of the famine in 1970s

was the introduction of genes which resulted in a significant

reduction of plant height in wheat. These genes were derived

from a wheat genotype ‘Norin-10’. The semi-dwarf “Norin-10”

was about 60 cm in height, more responsive to nitrogen fertilizer,

resistant to rust, and had lodging resistance. Norin-10 was

estimated to be cultivated on 15–18 million acres worldwide

(Reitz and Salmon, 1968). The genes responsible for conferring

short height were named Rht-B1 and Rht-D1 (Khush, 1999). The

introduction of these genes in wheat paved the way for wheat

breeding aimed at enhancing yield potential which ultimately

helped in alleviating hunger and poverty across the globe. These

varieties brought a green revolution in several developing

countries like Pakistan, India, Turkey, Afghanistan, etc. Dr.

Norman Borlaug was awarded Nobel Peace Prize for his

brilliant work (Borlaug, 2007).

After the Green revolution, the wheat yield increased many

folds (Figure 3), however, the nutritional quality was

compromised (Ortiz-Monasterio et al., 2007). Increasing the

nutritional quality of cultivated wheat became another

challenge for wheat breeders. Also, the other disadvantage of

the green revolution was that many old varieties disappeared, and

many of these led to extinction (Eliazer Nelson et al., 2019).

Almost 63% of wheat varieties released in the 21st century contain

“Green revolution” alleles (Würschum et al., 2017). But the

performance of varieties having these alleles was not

satisfactory in dry and warm regions owing to arrested growth

of coleoptile and seedling emergence (Rebetzke et al., 2014). An

alternative dwarfing allele, Rht18 was identified that has no

impact on coleoptile length, and hence can be used to replace

previous dwarfing genes in target environments (Pearce, 2021).

In the post-green evolution era, stem rust had also threatened

these short-statured varieties. So, during this period, Sr2, Sr5, Sr6,

Sr7a, Sr7b, Sr8a, Sr9b, Sr9d, Sr9e, Sr9g, Sr10, Sr11, Sr12, Sr17,

FIGURE 3
Worldwide wheat production after the green revolution (FAOSTAT, 2022).
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Sr24, Sr26, Sr30, Sr31 and Sr36 genes were incorporated into

wheat (Knott, 1988). However, later on, new devastating rust

races evolved that became a serious threat to wheat germplasm,

globally. Stem rust race Ug99 and its variants caused 80–100%

yield losses in different countries of the world (Khan et al., 2013).

These fast-evolving races of rust put the attention of breeders

toward pyramiding two or three major genes to induce durable

resistance in wheat. Later on, different varieties having minor

genes for stem rust, leaf rust, and yellow rust were developed to

avoid the issue of resistance breakdown (Figure 4).

Hybrid wheat: Future prospects

Breeding hybrids remains instrumental in uplifting the

production of several crop species including corn. There is a

dire need to breed for adding resilience to changing

environments and high-yielding wheat varieties to address the

pressing issue of global food security. The exploitation of hybrid

vigor may entail the desired increase in wheat yield (Longin et al.,

2013), biotic/abiotic stress tolerance as well as grain quality

(Gowda et al., 2012; Longin et al., 2013; Longin et al., 2014;

Mühleisen et al., 2014; Longin et al., 2015; Jiang et al., 2017;

Thorwarth et al., 2018);

The development of wheat hybrid is entirely dependent upon

manual crossing between the two inbred lines. Efforts to develop

hybrid wheat have a long history, however, the success rate is very

slow because of its autogamous nature and tedious procedure of

making crosses. Heterosis was first time reported in wheat in

1919, since then several efforts have been attempted to establish a

well-defined hybrid production system in wheat (Freeman, 1919;

Pickett, 1993). During the 1950s and 1980s, hybrid wheat

breeding showed 10% mid-parent heterosis for grain yield.

For hybrid development, cytoplasmic male sterility (CMS) and

chemical hybridizing agents (CHA) were two methods practiced

for removing pollens of the lines used as female (Kihara, 1951).

The CMS and restorer genes were derived from T. timopheevii

(Wilson, 1962). The research efforts being done in hybrid

breeding could not be continued in real spirit owing to the

maintenance of three lines, and some genetic issues related to

FIGURE 4
Timeline of historical developments in wheat research since its domestication.
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complete restoration of fertility as well as the undesirable effect of

alien cytoplasm (Singh et al., 2010).

Recent years witnessed the cloning of several male sterility

genes which provided new tools for producing hybrid seeds in

wheat. The dominant male-sterility geneMs2 present in common

bread wheat facilitated the evolution of several lines and cultivars,

and could further be utilized in developing a high-throughput

hybrid production system (Ni et al., 2017). The cloning of a

nuclear recessive male sterility gene Ms1 also provides a new

resource for large-scale commercial hybrid seed production

(Wang et al., 2017). In addition, orthologous male sterile

genes identified in grasses could help to understand the male

sterile trait in wheat. In total, three homoeoalleles of OsNP1

showed similar expression to OsNP1 and ZmIPE1 in wheat. The

optimized CRISPR/Cas9 mediated triple homozygous Tanp1

mutant displayed complete male sterility and only one wild

type of TaNP1 gene was sufficient for the maintenance of

male fertility (Li et al., 2022). This work provided an

optimized CRISPR/Cas9 vector system in wheat, elucidated

the highly conserved function of TaNP1 genes, and produced

complete male sterile mutants which can be used in hybrid seed

production. This genetic male sterile line will lead to two-line

hybrid seed production in wheat. The two-line system will be free

of negative effects associated with alloplasms, cytoplasm, and

restorer line. This two-line system is relatively simple and

potentially more efficient as compared to the existing 3-lines

hybrid system; which demands a high cost of maintenance with a

limited level of success in restoring fertility in F1 hybrids (Li et al.,

2020). Despite several limitations, different attempts to develop

wheat hybrids were made but still, hybrid breeding is not

completely established.

During the 1990s, hybrid wheat programs were re-initiated

by the CIMMYT-Monsanto joint project. Over the last few

decades, global area under hybrid wheat is increasing; in Europe

hybrid wheat cultivation impressively increased from

100,000 ha to 560,000 ha during 2017–2018. The success of

hybrid wheat production can be witnessed in winter wheat

variety ‘Hystar’ produced by the joint collaboration of Germany

and Portugal. Moreover, several public and private companies

have launched programs for the development hybrid wheat

such as CROPCO’s program in the United Kingdom. Syngenta

claims for the release first wheat hybrid in India in near future.

In China, more than 50 wheat hybrids having 10–20% increased

yield potential have been developed; out of these, seven hybrids

(Yunza 6, Yunza 3, Jingmai 6, Mianyang 32, Jingmai 7, Yunza 5,

Mianzamai 168) were approved. In another study, 3000 wheat

lines were evaluated for hybrid wheat production which

highlighted the importance of hybrid wheat production

targeted at multiple traits (Baenziger et al., 2019). The recent

studies suggest that recurrent genomic selection may help in

achieving long-term selection gain of hybrid breeding (Rembe

et al., 2019). By reducing the cost of hybrid seeds production, a

better understanding of heterosis, developing heterotic groups,

and incorporating novel technologies for fertility restoration,

wheat hybrids can be developed in the future.

Use of DNA markers in wheat
breeding

Research on the development of DNA markers started in

the early 1980s (Figure 4). In 1984, the restriction fragment

length polymorphism (RFLP) assay was deployed for

developing linkage and physical maps and studying the

extent of genetic diversity among the wheat genotypes (Chao

et al., 1989; Lagudah et al., 1991). Subsequently, PCR-based

fingerprinting assays including random amplified polymorphic

DNA (RAPD), sequence characterized amplified regions

(SCAR), and simple sequence repeats (SSRs) were used for

the amplification of desired DNA fragments. These DNA

markers were associated with several traits including disease

resistance, kernel traits, lodging, vernalization response, etc.

(Galiba et al., 1995; Keller et al., 1999a; Keller et al., 1999b;

Shahid et al., 2002; Campbell et al., 1999; Rahman et al., 2004;

Marza et al., 2006). Consequently, several quantitative trait loci

(QTLs) associated with heat stress and drought stress were

identified which were located on different chromosomes (Malik

and Malik, 2015; Sarkar et al., 2021). The use of DNA markers

in marker-assisted breeding paved the way for the identification

and selection of desirable genotypes/cultivars. Vrn, Ppd, and

Rht were frequently used in marker-assisted selection to

develop wheat cultivars/lines. By using RAPD and SCAR

molecular markers, Dn 2 genes linked to Russian aphid

resistance were identified which were used in developing new

resistant wheat cultivars. The SSRs for Fusarium head blight

resistance (FHB), pre-harvest sprouting tolerance, and mildew

resistance were identified and used in marker-assisted selection

in wheat (Del Blanco et al., 2003; Kottearachchi et al., 2006;

Tucker et al., 2006). Similarly, SSR markers were also used in

marker-assisted backcross breeding (MABB) for introducing

traits such as grain protein content and drought tolerance in

wheat (Davies et al., 2006; Rai et al., 2018).

Single nucleotide polymorphism (SNPs) is an efficient

marker system (Gupta et al., 1999) that is found in abundance

throughout the genome. Recently, technological advancements

have resulted in the identification of important SNPs linked to

traits such as tiller number, spikelets per spike, plant height, spike

length, protein content, and grain yield per spike (Marcotuli

et al., 2017; Chai et al., 2018; Wang et al., 2018).

Development and utilization of SNP
chips in wheat breeding

The SNPs-based platforms, containing informative SNPs are

attractive and powerful tools used for studying the genetic
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diversity in wheat. The diversity array technology (DArT) was

among the initial array-based technologies that generated

hundreds of anonymous markers in wheat (Allen et al., 2011).

A 9K SNP chip was developed for genotyping 2994 wheat lines.

The generated information was used in genome-wide association

studies (Cavanagh et al., 2013). The development of Illumina 90K

gene-associated SNPs array designed to identify polymorphism

in wheat, and KASP assays accelerated the use of SNP markers in

wheat breeding (Allen et al., 2011; Wang S. et al., 2014). For

detecting polymorphism in primary, secondary, and tertiary

pools, an 820 K Affymetrix Axiom SNP array was developed

(Winfield et al., 2016). The Wheat Breeders’ 35K Axiom array

was later derived from the Wheat 820K SNP array (Allen et al.,

2017). Another genome-specific and widely used 660K SNP array

was fabricated for studying the polymorphism among the wheat

genotypes (Sun et al., 2020). Moreover, some other SNP chips

including 15K SNP (Boeven et al., 2016; Qaseem et al., 2019), and

55K SNP developed from 660K has been widely used for GWAS

in wheat (Ye et al., 2019; Jin et al., 2020).

Whole genome sequencing of wheat

The huge size of the wheat genome (~17.6 Gb) contains

approximately 90% repetitive DNAwhich was the main hurdle in

sequencing the whole genome (Li et al., 2004; Wanjugi et al.,

2009). The International Wheat Genome Sequencing

Consortium (IWGSC) was initiated to sequence the complex

genome of wheat (Gill et al., 2004). Finally, in 2012, the first

whole genome sequencing information of a Chinese Spring

wheat variety “CS42” was released by deploying the short gun

whole genome sequencing technique (Brenchley et al., 2012).

Afterward, one chromosome at a time was sequenced and the

genome assembly of 10.2 billion bases was constructed (IWGSC:

The International Wheat Genome Sequencing Consortium,

2014). In the third attempt, 12.7 billion bases were assembled

(Clavijo et al., 2017). Eventually, in the year, 2017–2018, the

wheat genome of Chinese spring wheat was sequenced and

released as the first reference wheat genome. With the rapid

advancements in sequencing and assembly tools, many wheat

cultivars were resequenced including the Chinese wheat-rye

1RS.1BL translocation cultivar “Aikang 58” (Ru et al., 2020),

French bread wheat cultivar “Renan” (Aury et al., 2022),

transformation-amenable common wheat cultivar “Fielder”

(Sato et al., 2021), etc.

Genome editing as an emerging
technique

Genome editing can specificallymodify the genome by inducing

insertions, deletions, substitutions, and or targeted mutations

(Zhang J. et al., 2018). Earlier genome editing tools such as zinc

finger nucleases (ZNFs) and transcription activator-like effector

nucleases (TALENs) have been replaced with Clustered Regularly

Interspaced Short Palindromic Repeats and associated protein 9

(CRISPR Cas/9). CRISPR/Cas9, a highly precise genome editing

tool is used to induce specific double-stranded breaks in the genome

(Azhar et al., 2021). This assay is relatively more economical and

user-friendly than other editing assays including ZNFs and TALENs

(Razzaq et al., 2021). Previously, CRISPR/Cas9 and transcription

activator-like effector nucleases (TALEN) were used to knock out

Mildew Locus O (Mlo) gene for enhancing resistance to powdery

mildew (Wang C. et al., 2014).

Due to allohexaploid nature of wheat, it is very difficult to

target three or more genes simultaneously. After successful

development of stable plants in wheat, α-gliadin genes were

targeted to decrease the gluten content (Sánchez-León et al.,

2018). Similarly, TaGW2 homeologs were knocked out to

develop mutant lines containing high protein content and

grain weight (Zhang Y. et al., 2018). Furthermore, EDR1

homeologs and TaEDR1 lines showed resistance to

powdery mildew (Zhang et al., 2017). To understand

meiotic crossover, TaZIP4-B2 was targeted (Rey et al.,

2018). Likewise, through Agrobacterium-mediated

CRISPR/Cas9, each of the Qsd1 homeo alleles was targeted

to suppress pre-harvest sprouting (Abe et al., 2019). Haploid

wheat was developed by editing matrilineal (TaMTL) that

triggers haploid production and centromere-specific histone

H3 (CENH3I) gene that plays a vital role in the segregation of

chromosomes during cell division (Liu et al., 2020b).

Genomic selection

Genomic selection (GS) helps to select superior genotypes

by integrating genotypic and phenotypic data of a training

population (TP) to predict breeding values (GEBVs) of a

breeding population (BP) (Meuwissen et al., 2001). On the

basis of these GEBVs, better performing plants can be selected

for use as parent genotypes in the next breeding programs.

The similarity index of the molecular marker profile of these

individuals with TP allows us to predict the best performing

plants. Over time, GS has been efficiently used in wheat

breeding due to its high accuracy. In the wheat breeding

program, genotype-by-sequencing (GBS) was used to detect

polymorphisms followed by the estimation of prediction

accuracy (Poland et al., 2012). Relatively, low to moderate

prediction accuracy (0.28 and 0.42) was recorded that was

higher than the established marker platforms. Another study

showed that Fusarium head blight resistance showed moderate

to high prediction accuracies (0.67–0.82) making it a

promising approach for improving resistance to Fusarium

(Arruda et al., 2015). In GS, the prediction accuracy for grain

quality ranged from 0.27 to 0.81, thus showed its potential for

deploying in a wheat breeding program (Sandhu et al., 2021).
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Speed breeding—A way to accelerate
breeding cycles

Conventional wheat breeding systems take several years

to release a stable variety which hinders the breeding

progress. However, speed breeding made it possible to

harvest up to 4–6 generations of spring/winter wheat per

year (Watson et al., 2018). The photoperiod of wheat has

been extended to accelerate the developmental stages of

plants. Plants grown under controlled environment

chambers (speed breeding) reach the anthesis and heading

stage almost half the time earlier than the plants grown

under natural field conditions. The plant grown under

light supplemented glasshouses have been evaluated on

the basis of their germination rate.

Speed breeding is instrumental in advancing

5–6 generations per year. Thus, speed breeding can help

in lessening the time required for each breeding cycle

(Watson et al., 2018). Several protocols have been

proposed for undertaking phenotypic characterization of

wheat plants which can add synergism to speed breeding.

For instance, grain dormancy to tolerate sprouting after

harvesting (Hickey et al., 2009, 2010), resistance to stripe

rust in wheat (Hickey et al., 2011), screening of root traits for

improving adaptation to drought stress (Richard et al.,

2015), resistance to yellow spot disease (Dinglasan et al.,

2016), and leaf rust resistance traits (Riaz et al., 2016) were

targeted through speed breeding in wheat. Several other

traits including disease related traits, plant height, root

traits, and flowering time have also been screened through

speed breeding in wheat (Alahmad et al., 2018; Ghosh et al.,

2018). Genomic selection together with speed breeding was

used to increase genetic gain (Watson et al., 2019). Recent

advancements in high-throughput phenotyping further

reduced the obstacles in the progress of plant breeding

and genetics. Hence, speed breeding coupled with high-

throughput phenotyping can help in discovery of novel

and desirable traits in a more sustainable way (Al-Tamimi

et al., 2016). For instance, selection of some root and seedling

traits through speed breeding helped in rapid selection of

mature plants with improved root architecture (Richard

et al., 2015).

High throughput phenotyping

High throughput phenotyping assays have been used to

monitor and measure several traits in a large number of

plants, simultaneously. These techniques take advantage of the

latest automated sensors and imaging tools. Through HTP

approaches, non-destructive data can be collected more

accurately from trials. The unmanned aerial vehicle

(UAV)-based RGB imagery HTP approach was used to

estimate wheat plant height (Volpato et al., 2021). The UAV

was used to select wheat genotypes for grain yield in early

selection cycles (Hu et al., 2020). In addition, complex traits

such as lodging were also assessed using a UAV system which

proved that HTP can be used to study complex traits (Singh et al.,

2019).

Development of genetically modified
wheat

In 1992, the first transgenic wheat conferring tolerance to

herbicide was developed (Vasil et al., 1992). The complex

nature of the wheat genome together with its acceptability by

the public remained a major challenge in extending research

on the development of transgenic wheat (Shewry Jones,

2005). Initially, transgenic wheat was developed using the

biolistic method. Later on, Agrobacterium-mediated

transformation approach was used. In 2004, the first

genetically modified wheat round-up ready (MON- 71800)

was developed by Monsanto through the introduction of the

CP4 Esps gene—conferring resistance to glyphosate

(herbicide). Several transgenic lines were developed

containing avidin gene conferring resistance to insect

pests (Abouseadaa et al., 2015). Moreover, transgenic

wheat lines containing DREB1A, HDG11, WRKY2,

TaSHN1, NAC, and bZIP2 were produced which had a

high tolerance to drought and increased yield potential

(Pellegrineschi et al., 2004; Xue et al., 2011; Li et al., 2016;

Bi et al., 2018; Gao et al., 2018; Luang et al., 2018) Similarly,

heat resistant transgenic wheat was produced which were

overexpressing TaHsfA6f, TaFER-5B, TaHsfC2a genes (Xue

et al., 2015; Zang et al., 2017; Hu et al., 2018). Some other

researchers produced wheat lines conferring resistance to

viruses, showing high nutritional quality and improved yield

(Sivamani et al., 2000; Xue et al., 2004; Tamás et al., 2009). In

2020, Argentina was the first country to approve drought-

resistant GM wheat Bioceres HB4 (Sheridan, 2021).

Recently, Brazil also approved HB4 developed by

Argentina for consumption as flour.

Contribution of wheat towards global
food security in changing climates

Wheat is consumed by 2.5 billion people as a staple crop

and it contributes to global food security by providing 20%

calories and proteins. Escalating temperature can severely

affect the average wheat yield across the globe. It was

projected that a 1°C rise in temperature can suppress yield

by 10%. In the coming years, the impact of changing

environmental conditions and wheat production to feed

extra 3 billion people will be the major challenges for wheat
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breeders (Curtis and Halford, 2014). The annual yield should

be increased to 1.6% to meet the increasing demand of the

human population under the scenario of changing

environments (Ray et al., 2013; Wheeler and Von Braun,

2013; FAO, 2017). Another major menace is the limited or

non-availability of irrigation water which is required for

maintaining normal wheat growth. It has been reported

that drought alone can reduce yield by up to 86%, and the

condition can be worsened under the changing environmental

conditions (Shafeeq and Zafar, 2006; Joshi et al., 2007; Prasad

et al., 2011). Development of resilient wheat varieties that can

demonstrate high yield potential is required for sustaining

wheat production worldwide. Also, the changing climate can

foster the evolution of new strains of pathogens and diseases.

For example, new races/strains of rust disease can overcome

the available resistance in cultivated wheat varieties. Rust

diseases can cause 15%–20% wheat yield losses worldwide

(Figueroa et al., 2018). The incorporation of rust-resistant

genes against evolving pathogens into high-yielding wheat

varieties is very important for sustainable wheat

production. Thus, new resilient wheat varieties under the

changing environmental conditions can ensure global food

security.

Increasing grain yield to ensure food
security

Grain yield (Y)-a complex quantitative trait-is affected

significantly by biotic and abiotic stresses. Grain yield is

dependent on biomass (B) and grain harvest index (HI)

(Yield = B ×HI). During the green revolution, HI was

improved by about 60% by the incorporation of height-

related genes in old wheat varieties. Yield can be improved

by increasing photosynthetic area or capacity (Parry et al.,

2011). Canopy architecture, large-spike, and spike fertility

can also contribute to high yield (Gaju et al., 2009; Murchie

et al., 2009; Reynolds et al., 2009). For pyramiding all these

traits in one cultivar, DNA markers can be used for

monitoring the introgression of these traits. Likewise,

wheat hybrid breeding can also enhance wheat production

in the future.

Eradication of malnutrition by quality
improvement

Micronutrient deficiency is also a major challenge,

almost three billion people are affected by these

deficiencies globally (Welch and Graham, 2004).

Children and females in developing countries are more

prone to Zinc (17%) and Iron (33%) deficiencies

worldwide (Wessells and Brown, 2012; Kassebaum et al.,

2014). To address micronutrient deficiencies, wheat is the

best candidate crop as it is consumed by a large population

globally. It has been reported that Zn and Fe concentration

is relatively high in closely related wild wheat species

(Çakmak et al., 2004). Provitamin content has been

increased by expressing bacterial CrtB and CrtI gene

through transgenic methods. Similarly, protein content

has been enhanced by expressing Amaranthus albumin

gene and Fe content by the soybean ferritin gene in

wheat (Cong et al., 2009; Wang C. et al., 2014).

However, varieties expressing high-quality traits have

relatively low yield potential. For wider acceptability,

support price (premium) for such varieties should be

announced by the regulators for encouraging their

cultivation. Alternatively, some transgenic wheat lines

expressing high Zn and Fe contents should be allowed

for cultivation in restricted parts of wheat-growing

countries that can be mixed in flour of non-transgenic

wheat varieties.

Enhancing resilience to stresses

Development of varieties having high yield potential and

resilience to stresses is the need of the hour (Juliana et al., 2019).

Wild relative of wheat such as Aegilops tauschii (DD) is a good

source for climate resilience because it can easily be crossed with

durum (AABB) or bread wheat (AABBDD) to generate synthetic

wheat (Elbashir et al., 2017). Hybrid wheat is another promising

approach as it has higher yield stability and tolerance to stresses.

Hybrids in wheat have been produced with resistance to

Fusarium head blight, frost resistant, leaf rust resistance and,

Septoria tritici blotch resistance showing hybrid wheat potential

with context to climate change (Longin et al., 2013; Miedaner

et al., 2017).

Conclusion

Wheat is one of the ancient crops and it is the crop of the

future. Since its domestication, breeders and farmers have

modified wheat continuously through selections and by

incorporating different genes for short plant height, and

biotic and abiotic stresses. Despite the extensive research,

still there is a gap between the total wheat production and

consumption, particularly in developing countries. The current

rate of genetic gain is alarming which would not help in meeting

the food demand of the growing human population in 2050.

Changes in climatic conditions may further worsen the

situation by inviting new pests and diseases, reducing yield

due to terminal heat, and altered rainfall patterns may reduce
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the cultivated area of wheat in several countries. Under such

circumstances, genes conferring resilience to rust diseases,

terminal heat, drought, and salinity are required to be

introduced into wheat cultivars. For increasing yield

potential by 30%, it is extremely important to find new

genetic solutions for tackling the issue of male sterility and

restoration in hybrid wheat. For example, the adoption of new

technologies including high throughput phenotyping, gene

editing, speed breeding, molecular breeding, and selection

strategies can accelerate the magnitude of genetic gains of

the newly developed varieties. Thus, wheat production can

be sustained beyond 2050.
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