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Background: Breast cancer is the mostly diagnosed cancer worldwide, and

triple negative breast cancer (TNBC) has the worst prognosis. Cuproptosis is a

newly identified form of cell death, whose mechanism has not been fully

explored in TNBC. This study thought to unveil the potential association

between cuproptosis and TNBC.

Materials and Methods: Gene expression files with clinical data of TNBC

downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO) databases were included in this study. Consensus clustering

was utilized to perform molecular subtyping based on cuproptosis-associated

genes. Limma packagewas applied to distinguish differentially expressed genes.

Univariate Cox regression was used to identify prognostic genes. Least absolute

shrinkage and selection operator and stepwise Akaike information criterion

optimized and established a risk model.

Results: We constructed three molecular subtypes based on cuproptosis-

associated genes, and the cuproptosis-based subtyping showed a

robustness in different datasets. Clust2 showed the worst prognosis and

immune-related pathways such as chemokine signaling pathway were

significantly activated in clust2. Clust2 also exhibited a high possibility of

immune escape to immune checkpoint blockade. In addition, a six-gene risk

model was establishedmanifesting a high AUC score over 0.85 in TCGA dataset.

High- and low-risk groups had distinct prognosis and immune infiltration.

Finally, a nomogram was constructed with strong performance in predicting

TNBC prognosis than the staging system.

Conclusion: The molecular subtyping system related to cuproptosis had a

potential in guiding immunotherapy for TNBC patients. Importantly, the six-

gene risk model was effective and reliable to predict TNBC prognosis.
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Introduction

Breast cancer is one of the leading cause of cancer death in

women, which is the top one diagnosed cancer type with

2,261,419 new cases (11.7% of total cases) in 2020 according

to the global cancer statistics (Sung et al., 2021). The overall

survival of breast cancer is markedly different in developed and

developing countries, with an estimated 5-year survival of 80%

and below 40%, respectively (Coleman et al., 2008). The

incidence of breast cancer elevates with age but seldomly

found before the age of 20 years and breast cancer most

commonly occurs in 40–50 aged women (Akram et al., 2017).

Although many versions of guidelines for the diagnosis and

treatment of breast cancer have been established, such as

European Breast Guidelines (Schünemann et al., 2020) and

the American Joint Committee on Cancer’s (AJCC) guideline

(Plichta et al., 2020), the treatment for triple negative breast

cancer (TNBC) still remains a challenge. TNBC is a clinically

aggressive type of breast cancer with poor survival, compared

with other breast cancer types, including HER2-positive,

oestrogen receptor (ER)-positive and progesterone receptor

(PR)-positive. Chemotherapy resistance and immune escape

common occur in TNBC, which makes an obstacle in TNBC

treatment (Wein and Loi, 2017). Therefore, accurate molecular

biomarkers or subtypes are strongly needed to guide personalized

therapy for TNBC.

Programmed cell death is recognized as a promising

therapeutic target in cancer therapy, where necroptosis,

pyroptosis, and apoptosis are the most studied types

(Bertheloot et al., 2021). Cuproptosis is considered as a new

form of programmed cell death involved in the proliferation of

lung cancer cells (Tang et al., 2022). Copper chelators such as

RPTDH/R848 nanoparticles are demonstrated to be able to

suppress cancer cell growth and metastasis in breast cancer

(Zhou et al., 2019), inspiring a possibility that cuproptosis is a

potential target for cancer treatment. Up to now, studies have

discovered a series of prognostic signatures related to cuproptosis

for different cancer types such as kidney renal clear cell

carcinoma (Ji et al., 2022), melanoma (Lv et al., 2022), and

hepatocellular carcinoma (Zhang et al., 2022). However, the

relation between cuproptosis and TNBC has not been revealed.

Therefore, in this study, we aimed to analyze the role of

cuproptosis in TNBC, and construct molecular subtypes based

on cuproptosis-associated genes by using gene expression data of

TNBC obtained from The Cancer Genome Atlas (TCGA) and

Gene Expression Omnibus (GEO) databases. By comparing the

molecular features of different subtypes, we unveiled the relation

between cuproptosis and immune infiltration. Moreover, a risk

model related to cuproptosis was established for predicting

TNBC prognosis. The risk model was effective to distinguish

TNBC patients into different risk types. Notably, the model

outperformed the AJCC staging system, which had a potential

to be used as a prognostic signature in TNBC.

Materials and methods

Data collection and preprocessing

The RNA-seq data of TNBC was downloaded from Genomic

Data Commons (GDC) Data Portal by TCGA GDC API (https://

portal.gdc.cancer.gov/projects/TCGA-BRCA, named as TCGA

dataset). GSE103091 dataset was downloaded from GEO

database (https://www.ncbi.nlm.nih.gov/geo/). TNBC samples

without progression-free survival (PFS) or survival status were

eliminated. TNBC samples with PFS shorter than 30 days or

more than 10 years were excluded. In GSE103091 dataset,

Ensembl ID was converted to gene symbol and we used the

averaged expression level when a gene hadmultiple Ensembl IDs.

Finally, 105 TNBC samples and 113 paracancerous samples were

remained in TCGA dataset, and 91 TNBC samples were

remained in GSE103091 dataset.

The source of cuproptosis genes

Cuproptosis genes were obtained from a previous study

(Tsvetkov et al., 2022), and a total of 13 cuproptosis genes

were used in the study including FDX1, LIPT1, LIAS, DLD,

DBT, GCSH, DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A,

and ATP7B.

Identification of prognostic cuproptosis-
associated genes

Firstly, single sample gene set enrichment anlaysis (ssGSEA)

was used to calculate the enrichment score of 13 cuproptosis

genes for each sample in TCGA dataset. Limma R package

(Ritchie et al., 2015) was applied to screen differentially

expressed genes (DEGs) between paracancerous and tumor

samples (false discovery rate (FDR) < 0.05 and |log2FC| > 1).

Then Pearson correlation analysis was performed to evaluate the

correlation between the DEG expression and the ssGSEA score of

cuproptosis. DEGs with |correlation coefficient (R)| > 0.4 and p <
0.05 were selected. Next, univariate Cox regression analysis in the

survival R package was conducted on the DEGs and DEGs with

p < 0.05 as the input for unsupervised consensus clustering.

Constructing molecular subtypes based
on prognostic cuproptosis-associated
genes

ConsensusClusterPlus R package (Wilkerson and Hayes, 2010)

was used for conducting unsupervised consensus clustering to

identify molecular subtypes. The expression of prognostic

cuproptosis-associated genes were used as a basis for clustering
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samples. KM algorithm and Euclidean distance were set to carry out

500 bootstraps with each bootstrap consisting of 80% of samples in

TCGA dataset. Cluster number k was chosen from 2 to 10. The

optimal cluster number was determined according to cumulative

distribution function (CDF) and area under CDF curve.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) (Subramanian et al.,

2005) was utilized to calculate the enrichment score of functional

pathways for molecular subtypes. Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways were obtained from KEGG

database (https://www.genome.jp/kegg/).

Establishing a risk model

Firstly, DEGs between different molecular subtypes were

identified with limma R package (FDR <0.05 and |log2FC| >
1.5). Least absolute shrinkage and selection operator (LASSO)

regression analysis (Friedman et al., 2010) decreased the number

ofDEGs in glmnet R package. StepwiseAkaike information criterion

(stepAIC) was applied for further optimizing the riskmodel through

MASS R package (Zhang, 2016). We determined the risk model

according to the formula: risk score � Σβi × Expi, where β
indicates the coefficient of prognostic genes and Expi indicates

the expression level of prognostic genes. Each sample obtained a

risk score, which was subsequently transferred to z-score. Samples

were stratified into high-risk and low-risk groups according to the

z-score = 0. Kaplan-Meier survival analysis was conducted to

evaluate the prognosis of the two risk groups.

Assessment of immune infiltration

Estimation of STromal and Immune cells in MAlignant

Tumours using Expression data (ESTIMATE) tool was

implemented to evaluate stromal and immune infiltration

(Yoshihara et al., 2013). Microenvironment Cell Populations

(MCP)-counter methodology was applied to assess the

enrichment of 10 immune cells (Becht et al., 2016). SsGSEA

algorithm in GSVA R package was performed to predict

estimated proportion of 28 immune cells (Hänzelmann et al., 2013).

Statistical analysis

The bioinformatics analysis in this study was supported by

Sangerbox platform (http://vip.sangerbox.com/) (Shen et al.,

2022). R software (v4.1) was used as a platform to conduct all

statistical analysis. Log-rank test was performed in Kaplan-Meier

survival analysis, univariate and multivariate Cox regression

analysis. Student t test was performed to examine the

difference between two groups. ANOVA was conducted to

test the difference among three groups. p < 0.05 was

considered as statistically significant.

Results

Identification of prognostic genes
associated with cuproptosis

Firstly, we calculated the ssGSEA score of cuproptosis pathway

based on 13 cuproptosis genes for each TNBC sample in TCGA

dataset (Supplementary Table S1). Paracancerous samples had

obviously higher cuproptosis score than tumor samples

(Figure 1A). Then differential analysis was performed to identify

DEGs between TNBC and paracancerous samples. A total of

3125 DEGs were screened under FDR <0.05 and |log2FC| > 1

(Figure 1B). Next, we analyzed the relation between the expression

of DEGs and ssGSEA of cuproptosis by Pearson correlation analysis.

1,275 DEGs with |R| > 0.4 and p < 0.05 were selected for further

univariate Cox regression analysis (Supplementary Table S2).

39 prognostic DEGs were found to be significantly associated

with TNBC prognosis in TCGA dataset (p < 0.05,

Supplementary Table S3), whose expression levels were

significantly different between paracancerous and tumor samples

(p < 0.0001, Figure 1C).

Construction ofmolecular subtypes based
on cuproptosis-associated genes

Based on the expression profiles of the 39 cuproptosis-associated

genes, we then constructed molecular subtypes through consensus

clustering. According to the CDF curve, cluster number k = 3 was

determined as the optimal (Figures 2A–C). Three molecular

subtypes (clust1, clust2, and clust3) were distinguished based on

the 39 cuproptosis-associated genes, and they showed distinct PFS in

both TCGA and GSE103091 datasets (Figures 2D,E; Supplementary

Figure S1, log-rank p = 0.0038 and 0.036, respectively). Clust2 had

the shortest PFS and the most number of dead samples, while

clust1 had the favorable prognosis (Figure 2F), indicating that

cuproptosis-associated genes may be involved in the TNBC

progression.

Differential pathways and immune
infiltration of three molecular subtypes

Next we analyzed the enriched pathways of the three subtypes

by GSEA. By comparing clust2 to non-clust2 (clust1 and clust3), we

observed that immune-related pathways and tumor-related

pathways were obviously activated in clust2, such as cytokine-
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cytokine receptor interaction, chemokine signaling pathway, MAPK

signaling pathway, toll-like receptor signaling pathway, TGF-β
signaling pathway, and pathways in cancer (Figure 3A). In

clust1 vs non-clust1, the above pathways were significantly

suppressed (Supplementary Figure S2), suggesting that

cuproptosis-associated genes were involved in the immune

regulation. Pathways related to cell proliferation and cell death

were evaluated in the three subtypes. Among the six pathways,

P53 signaling pathway was the most enriched in clust2 and

clust1 had the lowest enrichment of cell death-related pathways

including necroptosis, ferroptosis, and apoptosis (Figure 3B,

ANOVA p < 0.05). This indicated an interaction of cuproptosis

with other cell death pathways.

Given that immune-related pathways were differentially

enriched in three subtypes, we then assessed the immune

infiltration. Not surprisingly, clust1 had the lowest stromal

score and immune score, compared with other two subtypes

(Figure 2C, ANOVA p < 0.0001). Estimation of 10 immune

cell types by MCP-counter also showed a lowest enrichment of

them in clust1 such as T cells, monocytic lineage, and myeloid

dendritic cells (p< 0.05, Figure 3D). Notably, clust2 had the highest

enrichment of fibroblasts (p < 0.01, Figure 3D). Similar results

were outputted through ssGSEA thatmajority of immune cells had

a low estimated proportion in clust1 (Supplementary Figure S2B).

Furthermore, we also determined the expression of immune

checkpoint genes in the three subtypes. The result showed that

22 of 47 immune checkpoints were differentially expressed in the

three subtypes (Supplementary Figure S2C). We suspected that

cuproptosis-associated genes had an influence in tumor

microenvironment and therefore affected the efficiency of

FIGURE 1
Identification of cuproptosis-associated genes related to TNBC prognosis in TCGA dataset. (A) The ssGSEA score of cuproptosis in
paracancerous (NT) and tumor samples (TP). (B) Volcano plot of DEGs between NT and TP samples. (C) The expression of seven prognostic
cuproptosis-associated genes in NT and TP samples. Student t test was performed. ****p < 0.0001.
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immunotherapy in TNBC. TIDE analysis revealed the predicted

sensitivity of three subtypes to immune checkpoint blockade

therapy (Figure 3E). Clust2 had the highest TIDE score,

suggesting a high possibility of immune escape to

immunotherapy, which may be resulted from a high

enrichment of myeloid-derived suppressor cells (MDSCs),

T cell exclusion and T cell dysfunction (Figure 3E). The

proportion of responders in clust2 was also the lowest

compared with other two subtypes (Figure 3F).

Construction of a cuproptosis-related risk
model for predicting TNBC prognosis

As three subtypes performed different molecular signatures, we

then identified the DEGs between clust1 vs non-clust1, clust2 vs

non-clust2, clust3 vs non-clust3. As a result, 2,723 DEGs were

screened (FDR <0.05 and |log2FC| > 1.5). Then univariate Cox

regressionwas used to further filter 1,213DEGs, and finally 89DEGs

(prognostic genes) with 77 risk genes and 12 protective genes

remained (Supplementary Figure S3A). Moreover, LASSO

regression was performed on 89 genes to generate an optimal

risk model. The model reached the optimal when lambda =

0.057, where 14 prognostic genes remained (Supplementary

Figure S3B, C). StepAIC was further performed to optimize the

prognostic model, and finally six prognostic genes were remained

including PTPRN2, SCARB1, SLC37A2, YES1, LY6D, andNOTCH3

(Supplementary Figure S3D). The risk model was determined

according to the following formula:

risk score � 0.384*PTPRN2 + (−0.754*SCARB1)
+ 0.703*SLC37A2 + (−0.586*YES1) + 0.264*LY6D

+ 0.622*NOTCH3

For each sample, a risk score was calculated according to

the formula. The risk model showed a favorable performance

FIGURE 2
Construction ofmolecular subtypes based on cuproptosis-associated genes. (A,B)Consensus CDF curve and delta area under CDF curve when
cluster number k = 2 to 10. (C) Consensus matrix when k = 3. (D,E) Kaplan-Meier survival curve of three molecular subtypes in TCGA (D) and
GSE103091 (E) datasets. Log-rank test was performed. (F) The distribution of alive and dead samples in three subtypes. ANOVA was conducted.
*p < 0.05.
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FIGURE 3
Functional analysis and immune analysis of three molecular subtypes in TCGA dataset. (A) GSEA result of clust2 vs non-clust2. (B) The ssGSEA
score of six pathways related to cell death. (C) Stromal score and immune score calculated by ESTIMATE. (D) The estimated enrichment score of
10 immune cells. (E) TIDE analysis for predicting the sensitivity to immunotherapy. (F) The proportion of responders and non-responders in three
subtypes. ANOVA was conducted. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in predicting one- to 5-year PFS with AUC all over than

0.85 in TCGA dataset (Figure 4A). Determined by the optimal

cut-off value of risk score, the samples were classified to

different risk types (high-risk and low-risk). Kaplan-Meier

survival plot showed that high- and low-risk groups had

markedly different PFS (Figure 4B, p < 0.0001). In

GSE103091 dataset, a favorable AUC of the risk model and

differential prognosis between two risk groups was also

observed (Figures 4C,D).

The association of risk score with clinical
stages and immune infiltration

In the relation between risk score and clinical features, we

found that a difference of risk score was shown between stage

Ⅰ+Ⅱ and stage Ⅲ+Ⅳ (Figure 5A). In addition, alive samples

had a lower risk score than the deceased samples. Kaplan-

Meier survival analysis revealed that the risk model could

effectively divide samples into high- and low-risk groups

FIGURE 4
Verification of the risk model. (A) ROC analysis of the risk model in TCGA dataset. (B) Kaplan-Meier survival curve of two risk groups in TCGA
dataset. (C) ROC analysis of the risk model in GSE103091 dataset. (D) Kaplan-Meier survival curve of two risk groups in GSE103091 dataset. Log-rank
test was performed.
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grouping by different clinical features (Figure 5B;

Supplementary Figure S4A).

To understand whether a difference on tumor

microenvironment was shown between two risk groups, we

applied different tools, including ESTIMATE, MCP-counter,

and ssGSEA, to evaluate the immune infiltration. The three

tools showed consistent result that high immune infiltration

was displayed in samples with high risk (Figures 5C,D,

Supplementary Figure S4B). The above findings further

demonstrated that cuproptosis-associated genes were possibly

involved in the modulation of tumor microenvironment.

Establishing a nomogram for clinical
application based on risk score and clinical
characteristics

Univariate and multivariate Cox regression analysis

revealed that stage and risk score were independent risk

factors (Figures 6A,B). Consequently, we established a

nomogram based on stage and risk score, of which risk

score contributed the most to the nomogram (Figure 6C).

Calibration curve showed that the predicted PFS was similar

to the observed PFS (Figure 6D). Decision curve analysis

(DCA) demonstrated the reliability of the nomogram and

risk model (Figure 6E). Compared with other clinical

characteristics, the nomogram and risk model exhibited a

better performance in predicting PFS, especially long-term

PFS (Figure 6F).

Discussion

An increased level of copper can result in cell death and

the disruption of cupper homeostasis can lead to life-

threatening diseases such as Wilson’s disease and

neurodegenerative disorders (Gaggelli et al., 2006;

Bandmann et al., 2015). Tsvetkov et al. have revealed that

FIGURE 5
The relation of risk score to clinical features and immune infiltration in TCGA dataset. (A) The risk score in different stages and survival status.
Student t test was conducted. (B) Kaplan-Meier survival analysis of high- and low-risk groups with different stages. Log-rank test was conducted. (C)
ESTIMATE analysis for calculating stromal score and immune score of two groups. (D)MCP-counter analysis for calculating the enrichment score of
10 immune cells. Student t test was performed. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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copper-induced cell death, which defined as cuproptosis, is

mediated by protein lipoylation involved in tricarboxylic acid

(TCA) cycle (Tsvetkov et al., 2022). Unlike other cell death

forms including apoptosis, ferroptosis, necroptosis, and

pyroptosis, cuproptosis functions in a new mechanism

through which mitochondrial ferredoxin 1-mediated

protein lipoylation leads to proteotoxic stress and

ultimately cell death (Tsvetkov et al., 2022). Cupper

ionophores and cupper chelators have been explored as

potential anti-cancer molecules (O’Day et al., 2013; Cui

et al., 2021), which inspires the research on the potential of

cuproptosis in cancer treatment.

We observed a significant difference of cuproptosis score

between normal and TNBC samples, suggesting the instability

of cuproptosis homeostasis in cancer cells. Normal samples

have a higher cuproptosis score than TNBC samples,

indicating a higher activity of cupper dwindling. Therefore,

we further explored the association of cuproptosis with TNBC

prognosis, functional pathways, and tumor immune

microenvironment through constructing molecular subtypes

based on cuproptosis-associated genes. The current study

have shown that the three molecular subtypes had distinct

prognosis and enrichment of activated pathways. Clust2 had

the worst prognosis and the highest proportion of dead

samples. Notably, immune related pathways were

significantly activated in clust2, such as cytokine-cytokine

signaling pathway, chemokine signaling pathway, and Toll-

like receptor signaling pathway, which drove a possibility that

cuproptosis may participate in the modulation of immune

microenvironment. Not surprisingly, three molecular

subtypes demonstrated different immune infiltration and

response to immune checkpoint blockade. Clust2 was

predicted to have a great possibility of immune escape in

immunotherapy, compared to other two subtypes, which may

FIGURE 6
Establishing a nomogram based on the risk score. (A,B) Univariate (A) and multivariate (B) Cox regression analysis on age, stage, and risk score.
(C) A nomogram for predicting death rate based on risk score and stage. (D)Calibration curve of 1-, 3-, and 5-year OS. (E)Decision curve of stage, risk
score, and nomogram. (F) AUC of age, stage, risk score, and nomogram.
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be resulted from T cell exclusion and T cell dysfunction.

Differential analysis on three molecular subtypes illustrated

that cuproptosis was involved in cancer progression and

immune microenvironment.

Furthermore, we established a risk model based on

cuproptosis-related genes, where six prognostic biomarkers

were included (PTPRN2, SCARB1, SLC37A2, YES1, LY6D,

and NOTCH3). Most of these biomarkers have been reported

to promote cancer progression. PTPRN2 is a protein tyrosine

phosphatase receptor, which was found to be upregulated in

metastatic breast cancer and could promote cancer metastasis

through PI(4,5)P2-dependent actin remodeling (Sengelaub

et al., 2016). Immature isoform of PTPRN2 (proPTPRN2)

expression was closely associated with lymph node-positive

breast cancer and poor clinical outcome (Sorokin et al., 2015).

Scavenger receptor class B member 1 (SCARB1) is a cell-

surface glycoprotein mediating low density lipoprotein-

cholesteryl ester (LDL-CE), which is involved in lipid

internalization (Swarnakar et al., 1999). David de Gonzalo-

Calvo et al. suggested that SCARB1 potentially promote CE

accumulation and aggressive feature in breast cancer (de

Gonzalo-Calvo et al., 2015). Proto-oncogene tyrosine-

protein kinase (YES1) has been widely reported to

stimulate cancer cell growth and migration in various

cancer types such as lung cancer (Garmendia et al., 2019),

gastric cancer (Mao et al., 2021), and breast cancer (Takeda

et al., 2017), which is therefore considered as a novel

therapeutic target for cancer therapy (Garmendia et al.,

2022). Targeting YES1 was effective to restore the

sensitivity to chemotherapeutic drugs (trastuzumab and

lapatinib) in drug-resistance breast cancer cell lines

(Takeda et al., 2017). Moreover, downregulation of

YES1 via miR-133 was demonstrated to inhibit cancer cell

proliferation triple-negative breast cancer cell lines (Zhang

et al., 2020). Lymphocyte antigen six superfamily member D

(LY6D) has been identified as a biomarker for bladder cancer

and a chemoresistance marker laryngeal squamous cell

carcinoma (Andersson et al., 2020; Wang et al., 2020).

NOTCH3 signaling is a well-known pathway contributing

to cancer development (Aburjania et al., 2018).

SLC37A2 has not been reported to be involved in

cancerigenesis or cancer progression.

The risk model manifested a favorable performance in

predicting TNBC prognosis in the two independent datasets.

Two risk groups also showed different immune infiltration,

which was consistent with the result on molecular subtypes.

To increase the accuracy of the risk model in predicting TNBC

prognosis, we further established a nomogram that exhibited a

better performance than the staging system.

Conclusion

In conclusion, this study revealed the important role of

cuproptosis in TNBC development and its crosstalk with

tumor immune microenvironment. We distinguished three

molecular subtypes related to cuproprotiss, which had a

potential to guide the personalized immunotherapy. In

addition, we established a six-gene risk model with robust

performance to predict TNBC prognosis.
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