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Sepsis is a highly heterogeneous disease and a major factor in increasing

mortality from infection. N7-Methylguanosine (m7G) is a widely RNA

modification in eukaryotes, which involved in regulation of different

biological processes. Researchers have found that m7G methylation

contributes to a variety of human diseases, but its research in sepsis is still

limited. Here, we aim to establish the molecular classification of m7G gene-

related sepsis, reveal its heterogeneity and explore the underlying mechanism.

We first identified eight m7G related prognostic genes, and identified two

different molecular subtypes of sepsis through Consensus Clustering.

Among them, the prognosis of C2 subtype is worse than that of C1 subtype.

The signal pathways enriched by the two subtypes were analyzed by ssGSEA,

and the results showed that the amino acid metabolism activity of C2 subtype

was more active than that of C1 subtype. In addition, the difference of immune

microenvironment among different subtypes was explored through

CIBERSORT algorithm, and the results showed that the contents of

macrophages M0 and NK cells activated were significantly increased in

C2 subtype, while the content of NK cells resting decreased significantly in

C2 subtype. We further explored the relationship between immune regulatory

genes and inflammation related genes between C2 subtype and C1 subtype,

and found that C2 subtype showed higher expression of immune regulatory

genes and inflammation related genes. Finally, we screened the key genes in

sepsis by WGCNA analysis, namely NUDT4 and PARN, and verified their

expression patterns in sepsis in the datasets GSE131761 and GSE65682. The

RT-PCR test further confirmed the increased expression of NUDTA4 in sepsis

patients. In conclusion, sepsis clustering based on eight m7G-related genes can

well distinguish the heterogeneity of sepsis patients and help guide the

personalized treatment of sepsis patients.
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Introduction

Sepsis is a highly heterogeneous disease characterized by life-

threatening organ dysfunction caused by dysregulation of host

response to infection, which is the main factor to increase

infection mortality (Singer et al., 2016). Globally, sepsis

remains a serious public health issue. Sepsis affects about

20 million cases per year, and the mortality rate is about 26%

(Fleischmann et al., 2016). The treatment of sepsis mainly

includes the combination of early antibiotics, fluid

resuscitation and symptomatic treatment of vasopressors,

which can significantly improve the symptoms of patients.

The risk of infection, however, increases with long-term

hospitalization and invasive operation. Conversely, frequent

drug treatment can easily lead to multiple drug-resistant

bacterial infections, leading to multiple organ failure and

other symptoms, which posessevere challenges to the

treatment and management of sepsis (Zhang and Ning, 2021).

In addition, due to the high heterogeneity of sepsis, there is no

proven standard or disease classification that can effectively guide

the treatment of patients (Purcarea and Sovaila, 2020). Therefore,

it is essentialto explore the molecular mechanism of disease

progression and the classification of related diseases for the

treatment of sepsis.

RNA methylation regulates gene expression at the post

transcriptional level and is an epigenetic regulatory mode. At

present, more than 150 RNA methylation modifications have

been found in eukaryotes. Among them, m7G methylation

modification is one of the most common base modifications

in post transcriptional regulation, which widely occurs in the 5’

cap region of tRNA, rRNA and eukaryotic mRNA (Liu et al.,

2017; Roundtree et al., 2017). m7G modification is involved in

the regulation of various processes, such as mRNA transcription,

splicing and translation. More and more studies have found that

the occurrence of many human diseases is related to the

methylation modification of m7G. Bing et al. found that there

were significant differences in m7GmRNAmodification in drug-

resistant AML cells, and the low methylated m7G modification

level was significantly enriched in ABC transporter related

mRNA, suggesting that the down-regulation of m7G

methylation can actively regulate ABC transporter related

genes in AML cells, leading to drug resistance in AML (Zhang

et al., 2022). Chen et al., 2022 confirmed that m7G

methyltransferase METTL1promotes the development of

HNSCC by regulating PI3K/Akt signaling pathway, and

changes the immune microenvironment and intercellular

communication between HNSCC tumors and stroma.

Epigenetic regulation plays a central role in the pathogenesis

of sepsis (Binnie et al., 2020), but the role andmechanism of m7G

in sepsis remain unclear.

In order to solve the above problems, this study intends to

explore the role and potential molecular mechanism of m7G

related genes in sepsis, classify sepsis patients into different

subtypes according to m7G-related genes. The pathway

enrichment and immune microenvironment were explored to

explain the potential mechanism of heterogeneity of different

subtypes, and the key regulatory genes NUDT4 and PARN were

identified, which are significantly correlated with the prognosis of

septic shock patients. This study provides the basis for the

treatment and management of septic patients.

Materials and methods

Data acquired

GEO database (Barrett et al., 2013) (https://www.ncbi.nlm.

nih.gov/) is a gene expression database maintained by NCBI,

which stores gene expression data uploaded by research

institutions around the world. In this study, GSE65682 dataset

was downloaded from GEO database, including 42 healthy

control samples and 760 sepsis samples. We extracted

479 samples with complete survival data for classification in

sepsis patients. We downloaded GSE131761 dataset from GEO

database, including 15 healthy control samples and 81 septic

shock samples, to further explore the expression of m7G related

regulatory genes. m7G gene was obtained through previous

literature.

Prognostic genes screening and
consensus clustering

In order to further classify the prognosis of sepsis patients, we

selected m7G-related genes for consensus clustering (Swift et al.,

2004). The selection of prognostic genes was based on Kaplan

Meier (KM) survival analysis (Goel et al., 2010) (p < 0.05). After

screening the prognostic m7G-related genes, the consensus

clustering was used for subtype clustering. About 80% of the

samples were analyzed in each iteration, and a total of

50 iterations were performed. The optimal cluster number is

determined by the cumulative distribution function (CDF) curve

of the consistency score, the clear difference between groups in

the consistency matrix heatmap, and the characteristics of the

consistency cumulative distribution function map. KM curve will

be used to evaluate the prognosis of different m7G sepsis

subtypes with a cutoff value of p < 0.05.

WGCNA network construction

WGCNA (Langfelder and Horvath, 2008) is a method to

summarize gene expression data into different coexpression

modules, which can be used to explore the relationship

between different modules and the correlation between

modules and clinical symptoms. We taked the genes with
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the highest variance of 5,000 within the gene expression data

to construct the coexpression network. β is a soft threshold,

which is related to the independence and average connectivity

of modules. The soft threshold of this study is setting as 12.

The topological overlap degree matrix (TOM) represents the

overlap of network neighbors. The hierarchical clustering

method is used to construct the cluster tree structure of

TOMmatrix, and the dynamic tree cutting method of

pheatmap package is used to cluster graphs. Based on the

subtype information of different m7G-related sepsis, the

correlation between different modules and clinical

phenotype was evaluated. The relationship between the

module and the clinical phenotype was calculated by

Pearson correlation test. p < 0.05 was defined as significant

correlation. The module with the largest correlation was

selected for subsequent analysis.

Go and KEGG functional enrichment

ssGSEA (Barbie et al., 2009) is an extension of the GSEA

method, which allows the definition of an enrichment score

that represents the absolute enrichment of gene sets in each

sample within a given dataset. In this study, the ssGSEA

algorithm of GSVA package was used to evaluate the

pathway levels of GO and KEGG in different subtypes. The

GO items included three categories: biological process (BP),

molecular function (MF) and cellular component (CC). The

background gene set used for the analysis was from the GSVA

database (Liberzon et al., 2015) (C2 and C5).

Immune gene correlation analysis

CIBERSORT (Chen et al., 2018) deconvolution algorithm

can estimate the composition and relative abundance of

immune cells in mixed cells based on gene transcriptome

data. In this study, CIBERSORT LM22 was used to estimate

the expression matrix of immune cell characteristics, and then

the CIBERSORT algorithm was used to quantify the relative

proportion of immune cell infiltration in different sepsis

subtypes, and to compare the differences of immune cells

between these two groups. The correlation analysis between

the key genes and the content of immune cells is carried out to

evaluate the relationship between the key genes and immune

cells. It is considered statistically significant if p is less

than 0.05.

RT-PCR validation of hub genes

A total of 10 participants were recruited from the

Department of Pulmonary and Critical Care Medicine of

the Guangdong Second Provincial General Hospital,

including 5 sepsis cases and 5 non-septic patients. The

study was carried out in accordance with the Helsinki

Declaration and was approved by the Ethics Committee of

the Second People’s Hospital of Guangdong Province. The

whole blood samples of each case were collected into tubes

with EDTA. Total RNA was isolated using the TRIzol reagent

(TIANGEN, CHINA) in line with the manufacturer’s

instructions. The real-time PCR was conducted using

AOPR-1200 detection kit (Genecopies, China). The

sequences of primers for the indicated genes were as

follows: GAPDH forward (F), CAAGAGCACAAGAGG

AAGAGAG and reverse (R), CTACATGGCAACTGTGAG

GAG; NUDT4 F, CCTCCTAAAGTGCTGGGATTAC and

R, CAAAGTCCTGGGAGAGAAGAAA; PARN F, CAAAGT

GTACCAGGCCATAGAG, and R, CTGAAGGTCCATCAC

TGATTCC.

Statistic method

R program (4.1.2) was used to analyze data and dram

diagrams. The differences between subgroups were tested by

Wilcox test, and all correlations were calculated by pearson

method. Survival curves were generated by Kaplan-Meier

method and compared by log rank. p < 0.05 with statistical

significance.

Result

Prognosis of m7G related genes in sepsis

To explore whether the molecular classification of the

m7G related genes in sepsis can explain the heterogeneity

of sepsis patients, we acquired the expression data of

GSE65682 from the GEO database, with a total of

802 samples, including 42 healthy control samples and

760 sepsis samples. We extracted 479 samples with

complete survival status for follow-up analysis. 42 m7G

related genes were obtained from the previous literature,

and then the list was limited to the genes with available

RNA expression data in GSE65682, leaving 33 m7G

regulated genes. They are EIF4E2, NUDT4, PARN, LSM1,

SNUPN, EIF1, CDK1, PHAX, CYFIP1, CCNB1, NCBP1,

EIF4E3, DCPS, NSUN2, EIF4A1, JUND, LARP1, NUDT3,

APAF1, EIF3D, XPO1, WDR4, NCBP2, GEMIN5, EIF4E,

IFIT5, NUDT16, IPO8, METTL1, DCP2, TGS1, EIF4G1,

and EIF4G3. We performed survival analysis on these

33 genes and screened the prognosis-related m7G genes.

The results showed that a total of 8 prognosis related genes

were screened (p < 0.05) (Figures 1A–G). In addition, we

analyzed the expression of these 8 m7G genes in normal
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samples and sepsis samples, and the results showed that

7 genes showed different expression in two groups of

samples (Figure 1I).

Molecular classification of prognosis-
related m7G genes in sepsis

We further conducted the consensus clustering and

performed molecular classfication of GSE65682 based on

the expression of the m7G related prognostic genes. The

results showed that the boundary between the two subtypes

of the sample was clear when k = 2, so the sepsis was divided

into two clusters (Figures 2A–C). In addition, KM survival

analysis showed that the survival of these two clusters was

significantly different (Figure 2D), suggesting that there were

different survival outcomes between the two subgroups.

Therefore, it is particularly important to further explore

the molecular characteristics of the two subgroups. We

also analyzed the expression differences of 8 genes in the

two subtypes, and the results are shown in the figure

(Figure 2E).

FIGURE 1
Screening of m7G-related prognosis genes. (A–H) Survival analysis of m7G gene related to sepsis prognosis. The pink indicates high expression
and blue indicates low expression. (I) Expression profile of 8 prognostic genes in sepsis, and themajority of genes are dysregulated in sepsis. The blue
indicates control samples and pink indicates sepsis samples.
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Functional enrichment among subtypes

In view of the different survival outcomes between

C1 subtype and C2 subtype, this study will use ssGSEA to

explore the molecular mechanism of different subtypes and

clarify the reasons for the different survival outcomes of these

patients. We selected the 20 most representative pathways for

cluster 1 and cluster 2 to make the visualization, which

revealed different pathways enriched in each subtype

(Figures 3A,B). The results of GO analysis showed that

cluster 2 was significantly related to the pathway of

porphyrin containing combined metabolic process,

tetrapyrole biological process extra cellular matrix

structural construct, tetrapyrole metabolic process. KEGG

analysis showed that cluster 2 was significantly correlated

with ECM receptor interaction, porphyrin and chlorophyll

metabolism, and arginine and proline metabolism pathways.

The above results suggest that the subtype differences may be

closely related to the metabolic activities. We further

quantified four different metabolic activities, and the

results suggest that the amino acid metabolic activities in

patients with C2 subtype are more active than those of

C1 subtype (Figure 3C).

Heterogeneity of immune status among
m7G subtypes

Sepsis is an acute organ dysfunction syndrome caused by

physiological and pathophysiological responses to infection.

Immune dysfunction is related to abnormal coagulation,

endothelial and epithelial barrier destruction, and leads to

changes in vascular activity of multiple organ dysfunction.

Therefore, this study intends to further explore the

difference of immune microenvironment among different

subtypes through CIBERSORT algorithm. The results

showed that compared with cluster 1, the contents of

macrophages M0 and NK cells activated in cluster 2 were

FIGURE 2
Molecular classification of sepsis based on m7G-related prognosis genes. (A) Consensus clustering heatmap: when k = 2, the clustering of
samples is relatively stable. (B) The cumulative distribution function (CDF) curve. (C) The delta area score displays the survival curves of these two
subtypes (k = 2) with the relative increase of cluster stability (D). Kaplan-Meier curve showed the statistical difference between these two subtypes
(p < 0.0001), and the prognosis of patients within Cluster 2 was poor. (E) Expression profile of m7G gene in the two subtypes.
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FIGURE 3
Pathway analysis of sepsis pathogenesis. (A,B) 20 pathways with significant enrichment of GO/KEGG in the two subtypes. (C) Heatmaps of
specific metabolic-related pathways.

FIGURE 4
Immunemicroenvironment analysis of sepsis. (A) The percentage of each immune cell content within the sample (B) The difference of immune
cell content between subtypes, p < 0.05 was considered statistically significant. (C,D) Expression patterns of immune and inflammatory factors in
sepsis.

Frontiers in Genetics frontiersin.org06

Gong et al. 10.3389/fgene.2022.1021770

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1021770


significantly increased, while the content of NK cells resting

was significantly decreased in cluster 2 (Figures 4A,B). In

addition, some immune related genes and inflammation

related genes were obtained from TISIDB database and

GSEA database to verify the expression of immune genes

and inflammation genes in the two subtypes, respectively.

The results showed that the genes were up-regulated in

cluster 2 (Figures 4C,D).

FIGURE 5
Construction of weighted co-expression network and identification of key genes. (A) The heatmap of the correlation between the module
characteristic genes and the clinical of sepsis subtypes. The blue module with the highest correlation was selected for subsequent analysis. (B)
Identification of key genes in sepsis. (C) Correlation between NUDT4 and immune cells. (D) Correlation between PARN and immune cells. (E)
Verification of the expression of key genes in external validation dataset. (F) The RT-PCR validation of key genes expression.
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Construction of WGCNA network based
on molecular classification and RT-PCR
validation of hub genes

We took the classification status of two different sepsis

subpopulations as clinical symptoms, further constructed

WGCNA network according to the expression profile data

of GSE65682, screened the key genes affecting sepsis

progression, and explored the sepsis related gene

regulatory network. The soft threshold of WGCNA

network was set to 12, and 12 gene modules were co

classified. It was found that the blue module had the

highest correlation with sepsis subtypes [cor = 0.69, p=

(5e − 69)] (Figure 5A). We intersected 650 genes of the

blue module with 8 prognosis related m7G genes to obtain

2 intersection genes, which are NUDT4 and PARN

respectively (Figure 5B). The two genes are strongly

correlated with the content of immune cells, among which

NUDT4 is positively correlated with Macrophages M0, NK

cells activated, T cells regulatory (Tregs), Dendritic cells

resting, Plasma cells, and negatively correlated with

Neutrophils, NK cells resting, and B cells naive

(Figure 5C). PARN is positively correlated with Mast cells

resting, NK cells resting, T cells CD4 naive, and negatively

correlated with macrophages M0, Mast cells activated, etc.

(Figure 5D). We also explored the expression of two key genes

through the GSE131761 and GSE65682 datasets, and the

results showed that the expression trends of NUDT4 and

PARN were consistent in the two datasets (Figure 5E).

Additionally, we collected samples from sepsis patients

and control cases to explore the expression pattern of hub

genes. The results showed that the expression of NUDT4 was

significantly increased in sepsis patients (Figure 5F).

Correlation between key genes and
disease regulating genes

We obtained the disease regulatory genes of sepsis according

to GENECARD database, and selected the top 20 genes of

relevance for difference analysis (Figure 6A). In order to

explore the relationship between key genes and sepsis disease

regulation, we performed correlation analysis on key genes and

20 disease regulation genes. The regulatory network of m7G

regulatory genes and sepsis related genes is shown in Figure 6B.

Discussion

Sepsis is a disease of multiple organ dysfunction caused by

the rapid response of the host to infection (Huang et al., 2019).

Worldwide, sepsis affects about 30 million people every year and

is one of the main causes of death of critically ill patients. In

hospitalized patients, any infection may lead to sepsis, and its

incidence rate is about 1%–2% (Huang et al., 2019). Therefore, its

treatment cost is also the highest (Rocheteau et al., 2015). In

recent years, sepsis related research has been developing, but its

incidence rate and mortality are still increasing. Sepsis patients

are also facing many adverse effects such as physical and

psychological (Iwashyna et al., 2012; Gaieski et al., 2013). In

addition, due to the different clinical manifestations of sepsis and

the obvious heterogeneity among patients (Huang et al., 2019),

there are still many challenges in the diagnosis, treatment and

management of sepsis.

Epigenetic regulation plays a key role in the occurrence and

development of sepsis. Epigenetic changes mainly refer to the

changes in gene expression caused by the body in response to

external stimuli, which are the payment of environmental factors

FIGURE 6
Correlation analysis ofm7G-related genes and sepsis gene. (A) The expression difference of sepsis-related genes between the two subtypes. (B)
Regulatory network of key genes and sepsis-related genes.
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and genetic factors. After the patients with sepsis are stimulated

by external infectious factors, the body will have an inflammatory

storm. The host pathogen interaction will lead to the epigenetic

changes of the host key inflammatory regulatory genes (Binnie

et al., 2020). In some animal models, treatment with epigenetic

modifiers can alleviate sepsis related organ damage and improve

its survival (Cao et al., 2014; Shih et al., 2016). m7G is one of

epigenetic regulation. It is known that m7G regulation plays an

important role in a variety of human diseases (Malbec et al., 2019;

Luo et al., 2022), but its role in septic shock is still unclear. We

previously analyzed the potential role of m7G in septic shock

through the GEO dataset and found that 8 m7G related genes

were closely related to the prognosis of septic shock patients.

Based on these 8 m7G related genes, two different subtypes

(C1 and C2) were identified by consensus clustering, and it was

found that patients with C2 subtype had poor prognosis. In

addition, the results of pathway analysis showed that the amino

acid metabolism of C2 subtype was more active than that of

C1 subtype. The results of immune infiltration analysis showed

that the contents of macrophages M0 and NK cells activated in

C2 subtype were significantly increased, while the content of NK

cells resting decreased significantly in C2 subtype. Additionally,

C2 patients had higher expression levels of immune related genes

and inflammation related genes. Finally, we screened out two

genes that were significantly associated with sepsis prognosis,

NUDT4 and PARN.

Systemic inflammatory response syndrome sepsis syndrome

is associated with hypermetabolism, increased oxygen

consumption and energy consumption, activation of

peripheral protein catabolism, especially enhanced metabolic

activity in the liver and viscera (Dahn et al., 1987; Barton and

Cerra, 1989). Under physiological conditions, the liver mainly

synthesizes constituent proteins, such as albumin and transferrin,

while in sepsis, the synthesis changes from constituent proteins

to acute phase proteins, including procalcitonin, C-reactive

protein, complement factor, binding globin α 2-macroglobulin

and α 1-acid glycoprotein (Lang et al., 2007; Remick, 2007). In

addition, in sepsis, citrulline synthesis is reduced, but the

decomposition is increased, and the progressive decrease of

citrulline content in the body is one of the reasons for the

suppression of macrophage function. Citrulline

supplementation can improve the synthesis of endogenous

arginine and NO, thus improving the prognosis of sepsis

(Xiao et al., 2015). Studies have shown that the level of

branched chain amino acids is related to the severity of sepsis,

and can predict the risk of death of sepsis patients in ICU

(Reisinger et al., 2021). Our study also suggests that the

amino acid metabolism level of C2 subtype patients is

significantly higher than that of C1 subtype. The poor

prognosis of C2 subtype patients may be related to the amino

acid metabolism level in vivo. On the other hand, changes in lipid

metabolism during sepsis are protective reactions against

infection, and changes in lipid mass spectrometry are directly

related to inflammation (Bermudes et al., 2018). Lipoproteins

have the ability to bind and neutralize toxic bacterial substances

that regulate cytokine production during inflammation, thereby

weakening host response (Murch et al., 2007). Our results also

revealed changes in lipid metabolism pathways between different

subtypes.

Sepsis is an acute organ dysfunction syndrome caused by

physiological and pathophysiological responses to infection.

Immune dysfunction may trigger coagulation abnormalities,

endothelial and epithelial barrier disruption, and ultimately

vascular activity changes leading to multiple organ

dysfunction (Kotas and Matthay, 2018). However, the specific

cellular and molecular pathways responsible are not fully

understood. Our study showed that the M0 level of

C2 subtype macrophages was significantly higher than that of

C1 subtypes. Macrophages, as the first line of defense against

pathogens, are rapidly activated by alveolar macrophages in the

early stage to fight against infection and promote the regression

of inflammation in the later stage (Hussell and Bell, 2014).

Among them, IFN-r can enhance the release of IL-1, IL-6, IL-

8, and tumor necrosis factor (TNF), IL-4, IL-13, and IL-10 from

monocytes/macrophages exposed to LPS, and inhibit the

production of pro-inflammatory factors. And a large number

of pro-inflammatory and anti-inflammatory production are

related to the occurrence of sepsis (Cavaillon and Adib-

Conquy, 2005). In addition, the balance between lung tissue

cells and peripheral blood mononuclear cell-derived

macrophages may be an important marker of inflammatory

balance during lung infection. In patients with severe

coronavirus infection, peripheral monocytes/macrophages

increased significantly while alveolar macrophages decreased

significantly, suggesting that the abnormal number of

peripheral monocytes/macrophages and alveolar macrophages

may also be an important cause of immune imbalance (Liao et al.,

2020). Therefore, in addition to focusing on the production of

cytokines by macrophages to participate in the pathogenesis of

sepsis, macrophages in different positions also need to be

focused. Interestingly, recent studies have shown that

M0 macrophages do not conform to standard M1 or

M2 models, and they are more similar to M2 macrophages,

which may represent another type of TAM. M0 macrophages are

one of the cell subsets closely related to the poor prognosis of

breast cancer (Ali et al., 2016), prostate cancer (Jairath et al.,

2020) and lung adenocarcinoma (Liu et al., 2017). Our results

also suggest that M0 macrophages are significantly increased in

C2 subtypes with poor prognosis in sepsis. On the other hand,

NK cell resting was also significantly different between C1 and

C2 subtypes. NK cells are abundant in tissues such as lung, liver,

spleen and blood (Grégoire et al., 2007). IFN-γ, GM-CSF and

TNF-α are major cytokines produced by activated NK cells

(Huntington et al., 2007), and have a protective effect during

infection but a deleterious effect during aseptic or infectious

systemic inflammatory response syndrome. In addition, studies
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have also shown that NK cell function can be affected by IL-10

and TGF- β-1 (Scott et al., 2006; Ralainirina et al., 2007).

Our study also identified the key genes that significantly affect

the prognosis in sepsis, namely NUDT and PRAN. NUDTS

catalyze the hydrolysis of various nucleoside pyrophosphates

associated with other amino acid moieties (Bessman, 2019). In

the process of eliminating hydrolytic substrates, NUDT plays a

signaling and regulatory role in metabolism (Mildvan et al., 2005).

Studies have shown that NUDT4 can be used as a prognostic target

related to m7G methylation in gastric cancer, and the prognosis

model based on this can better predict the prognosis of gastric

cancer patients (Li et al., 2022). However, there is a lack of relevant

research on NUDT4 in infectious diseases and even sepsis. PARN,

a major mammalian deadenylase, is the only known enzyme

that binds both the 5′cap structure and the 3′ poly A, thereby
increasing the degradation rate and enhancing its sustained

synthesis ability. PARN is important in oocyte maturation,

embryogenesis, early development, DNA damage and cell

cycle progression. This enzyme is also involved in the

regulation of nonsense mediated mRNA decay and

cytoplasmic polyadenylation (Balatsos et al., 2012).

Through whole exome and sequencing of patients with

congenital dyskeratosis (DC), the study found that there

were compound heterozygous mutations (c.204 g > T and

c.178-245del) in PARN. At the same time, B cells and NK

blood cells were also detected to be reduced, the ratio of CD4:

CD8 was inverted, and naive CD4 and CD8 cells were reduced

(Zeng et al., 2020). However, in sepsis, lymphocytopenia and

T-cell depletion are often found to be immunopathological

characteristics (van der Poll et al., 2017). Therefore, the

mechanism of PARN in sepsis deserves further discussion,

especially whether PARN mediates immune cell apoptosis in

sepsis deserves further attention.

In conclusion, we successfully performed molecular

classification based on m7G-related genes in sepsis patients,

and there were significant differences in prognosis among

different subgroups. We also explored the key events such as

signal pathways and immune infiltration within these subtypes.

Our results can better explain the heterogeneity of sepsis patients

and provide a basis for early intervention of sepsis patients. In

addition, we identified two potential therapeutic targets for

sepsis, namely NUDT4 and PARN, both of which are closely

related to the prognosis of sepsis patients. Collectively, these

findings will contribute to a better understanding of the

occurrence and development of sepsis.
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