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Purpose: To establish an effective prognostic model for patients with clear cell

renal cell carcinoma (ccRCC).

Methods: We identified four hub differentially expressed genes (DEGs) in Gene

ExpressionOmnibus (GEO) database and verified them in the Cancer Gene Atlas

(TCGA), STRING, UALCAN, TIMER, and Gene Expression Profiling Interactive

Analysis (GEPIA) databases. We then used TCGA and International Cancer

Genome Consortium (ICGC) to identify tumor pathway molecules highly

correlated with hub DEGs. And by further LASSO and Cox regression

analysis, we successfully identified five genes as prognostic factors.

Results: We successfully identified a risk prediction model consisting of five

genes: IGF2BP3, CDKN1A, GSDMB, FABP5, RBMX. We next distributed patients

into low-risk and high-risk groups using the median as a cutoff. The low-risk

group obviously had better survival than those in the predicted high-risk

group. The results showed discrepancies in tumor-associated immune cell

infiltration between risk groups. We also combined the risk model with clinical

variables to create a nomogram.

Conclusion: Our model has a satisfactory predictive effect on the prognosis of

ccRCC patients and may provide new ideas for future immune therapy.
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Introduction

According to the latest international epidemiological studies, renal carcinoma causes

approximately more than 180,000 deaths each year globally (Sung et al., 2021). The most

common subtype of kidney cancer is clear cell renal cell carcinoma (ccRCC), accounting for

about three-quarters of all kidney cancer cases (Moch et al., 2016). Although localized ccRCC

can be treated with surgical or ablation interventions, some patients may still experience

disease recurrence after treatment. Even among patients with early-stage ccRCC, 30% of them

will develop tumor progression and metastasis after surgical resection (Lam et al., 2006;
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Jonasch et al., 2014). Postoperative progression of ccRCCwill induce

patients into the late phase of tumorigenesis, which is associatedwith

shorter survival (Bedke et al., 2017).

In addition to traditional surgery, radiotherapy and

chemotherapy, molecular targeting has also been widely used in

the treatment of ccRCC (Brugarolas, 2014). In 2016, Food and Drug

Administration (FDA) approved the clinical application of

cabozantinib, which is a kind of small molecule tyrosine kinase

inhibitor (TKI) (Choueiri et al., 2016). For patients with advanced

metastatic ccRCC, the programmed death 1 (PD-1) checkpoint

inhibitor nivolumab has been reported to improve overall survival

to some extent (Motzer et al., 2015). Humanized programmed death-

ligand 1 (PD-L1) related drug atezolizumab can also play a certain

anti-tumor role according to recent reports (McDermott et al., 2016).

However, the effectiveness of molecular-guided targeted therapy for

ccRCC varies greatly from person to person. Not all patients can

benefit from treatment. Thus, there is an urgent requirement for us to

determine new therapeutic and predictive markers.

Many researchers have used bioinformatics techniques to

assess the correlation between gene expression and the

progression of cancer (Huang et al., 2021; Zhang et al.,

2021). For ccRCC, not many genes have been shown to

have prognostic significance. Prognostic models based on

coding genes are also lacking. New disease risk prediction

models are urgently needed.

In this study, we performed an in-depth bioinformatics

analysis of hub differentially expressed genes (DEGs) and

multiple related molecular pathways for ccRCC using public

databases. Finally, we constructed a prognostic model and

nomogram. The flow chart of our study was shown in

Figure 1.

Materials and methods

Primitive data collection

The Gene expression original data along with relevant

clinical information can be obtained from Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and the

Cancer Gene Atlas (TCGA) database (https://portal website.gdc.

cancer.gov/). We downloaded four microarray expression

profiling datasets from the GEO database: GSE12606,

GSE15641, GSE72304, and GSE105261. The latest RNA-Seq

data and clinical follow-up information were from the TCGA-

KIRC cohort, and gene expression levels were Log2 (TPM + 1).

Related differentially expressed genes
screening

Gene sequencing information extracted from the GEO

database was used for comparing differential gene expression

between ccRCC and normal kidney tissue through the DESeq

method. We concluded that genes with a false discovery rate

(FDR) adjusted p-value < 0.05 and an absolute value of log2 (fold

change) > 1 were considered statistically significant. Volcano

plots were generated using the ggplot2 package in R.We analyzed

survival data using COX regression and log-rank methods.

Kaplan-Meier curves and forest plot figures were drawn using

the survminer R package.

STRING database

We retrieved protein–protein interaction data from the

STRING database (https://string-db.org/). Experimentally-

determined interaction and text-mining data were considered.

The detailed introduction to this database can be found in the

article by Szklarczyk et al. (2019).

UALCAN website

Quantitative analysis of protein was conducted using

online National Cancer Institute’s Clinical Proteomic

Tumor Analysis Consortium (CPTAC) proteomic results,

which were obtained from the UALCAN website.

Information about this website can be found in previous

literature (Uhlen et al., 2010; Uhlén et al., 2015;

Chandrashekar et al., 2017; Thul et al., 2017).

FIGURE 1
The flow chart of our study.
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TIMER database

The TIMER 2.0 database (https://cistrome.shinyapps.io/timer/)

was used for gene expression differential analysis. Boxplots were

used to show the distribution of gene expression levels and the

Wilcoxon test was performed to assess whether the expression

difference was statistically significant.

Gene expression profiling interactive
analysis

Gene-expression datasets were analyzed by using the GEPIA

tool (http://gepia.cancer-pku.cn/index.html). Center lines in

boxplots indicated the median, the boundaries of the box

represented 25%–75%, and the whiskers showed 5%–95%.

Scatter plots represented the correlation between our riskscore

and gene expression level based on the Spearman coefficient.

International cancer genome consortium

Part of the RNA-sequencing expression profiles were

downloaded from ICGC (https://dcc.icgc.org/releases/current/

Projects). Gene correlation plots were plotted by the R

software package ggstatsplot. p < 0.05 was considered

statistically significant.

Establishment of a prognostic model

When building the risk prediction model, LASSO regression

analysis was performed to single out genes highly relevant with

prognosis. Then, multivariate Cox regression analysis was done

to evaluate the initially screened genes. Finally, five genes were

successfully incorporated into the ccRCC prognostic model. The

risk score was calculated by the following formula: RiskScore �
∑n

i�1(coef i × Expi).

FIGURE 2
The DEGs in ccRCC. (A) Volcano plots showing the gene sequencing information extracted from four microarray expression profiling datasets:
GSE12606, GSE15641, GSE72304, and GSE105261. Red indicates upregulated genes and blue indicates down-regulated genes. (B) Venn diagram
showing the number of common DEGs in the four sequencing files. (C) Forest plot showing the relationship between common DEGs and overall
survival of ccRCC. (D) The PPI network analysis of common DEGs using the STRING tool. (E)Quantitative analysis of protein levels of four hub
DEGs using the online CPTAC proteomic data. DEGs, differentially expressed genes; ccRCC, clear cell renal cell carcinoma; PPI, protein-protein
interaction; CPTAC, National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium; HR, hazard ratio; CI, confidence interval; ***, p <
0.001.
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Quantification of immune infiltration

The gene set variation analysis (GSVA) was used to calculate

individual immune cell infiltration in the TCGA cohort,

involving 24 different immune cell types. Overall immune

infiltration was carried out by the single sample gene set

enrichment analysis (ssGSEA) and ESTIMATE algorithm

based on the Spearman coefficient.

Statistical analysis

In processing the data, we used SPSS 25.0 (IBM Corp,

Armonk, NY) and R version 4.1.2 software for statistical

analysis. All p-values were the results of two-sided tests, and

p < 0.05 was considered significantly different.

Results

Identification of hub DEGs in ccRCC

In our research, 52 localized ccRCC tissues and 40 adjust

normal tissues from GSE12606, GSE1564, GSE72304, and

GSE105261 were included in the analysis. The DEGs of these

four gene expression profiles were visualized using volcano plots

(Figure 2A). For details of raw gene expression analysis, please

see Supplementary Table S1. The sample normalized box,

principal component analysis (PCA), and uniform manifold

approximation and projection (UMAP) plots can be found in

Supplementary Figure S1. Venn diagram analysis identified

19 upregulated genes and 11 downregulated genes among

these four GSE datasets (Figure 2B). Subsequently, a

univariate Cox regression survival analysis of DEGs was

performed based on the TCGA database (Figure 2C). After

the above analysis, we concluded that the prognostic related

DEGs were: ALDOB, APOC1, EFHD1, EGLN3, ENO2, FABP5,

GSTM3, HSD11B2, MAL, NETO2, PLIN2, TMEM45A, ZNF395.

We then performed protein-protein interaction (PPI) network

analysis using the STRING tool in these genes. Proteins with an

interaction score >0.150 and p < 0.05 were displayed in

Figure 2D. We screened out four hub DEGs: ENO2, FABP5,

ALDOB, GSTM3. The specific correlation coefficient of these

four genes can be found in Supplementary Table S2. Quantitative

analysis of relative protein expression level showed that two

genes (ENO2, FABP5) were upregulated and two genes (ALDOB,

GSTM3) were down-regulated in ccRCC compared to normal

samples (Figure 2E). Gene level expression analysis results in

FIGURE 3
Validation of hub DEGs. (A) Exploring the expression of hub DEGs in multiple types of tumors using the TIMER database. (B) Exploring the
expression of hub DEGs between KIRC (T) and adjust normal tissues (N) using GEPIA database. (C) Correlation between hub DEGs and tumor status
(clinical stage, pathologic stage, and histologic grade). (D) ROC curve of the hub DEGs. DEGs, differentially expressed genes; KIRC, Kidney renal clear
cell carcinoma; ROC, Receiver operating characteristic; ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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TIMER (Figure 3A) and GEPIA (Figure 3B) were consistent with

protein level analysis. We also examined the association of hub

DEGs with clinical tumor grades in the TCGA database

(Figure 3C). Combined with the Receiver operating

characteristic (ROC) curve (Figure 3D), we demonstrated that

hub DEGs were associated with the tumor stage.

Construction of a predictive model based
on RNA methylation (m6A), ferroptosis,
pyroptosis, cuproptosis, and immune
check-point patheway genes

To analyze the relationship between hub DEGs and tumor

signaling pathways in ccRCC, we performed a series of

correlation sensitivity analyses. We used heatmaps to

reveal the association between hub DEGs and key genes

(Supplementary Table S3) in m6A (Li et al., 2019; Zhang

et al., 2020a; Yi et al., 2020), ferroptosis (Liu et al., 2020; Chen

et al., 2021), pyroptosis (Tang et al., 2020; Hou et al., 2021;

Tan et al., 2021; Wang et al., 2021), cuproptosis (Tsvetkov

et al., 2022), and immune checkpoint (Braun et al., 2021)

pathways by exploring TCGA (Figure 4A) and ICGC

database (Figure 4B). Spearman correlation coefficient (r)

and p-values were displayed in Supplementary Table S4.

p-value smaller than 0.05 was considered significant. As a

result, we found that AIM2, CASP3, CDKN1A, DLD,

GSDMB, IGF2BP3, RBMX, RPL8, VSIR, and

YTHDF1 were correlated with hub DEGs.

Risk model building

By using LASSO (Figures 5A,B) together with multivariate

Cox regression (Figure 5C) to analyze hub DEGs (ENO2,

FABP5, ALDOB, GSTM3) and related pathway genes (AIM2,

CASP3, CDKN1A, DLD, GSDMB, IGF2BP3, RBMX, RPL8,

VSIR, and YTHDF1), we finally selected five signature genes

(CDKN1A, FABP5, GSDMB, IGF2BP3, RBMX) in total to

construct the prognostic model (Figure 5D). This model was

established to evaluate the survival risk for each TCGA sample

as follows: RiskScore = 2.953 + IGF2BP3 × 0.317 +

CDKN1A × −0.221 + GSDMB×0.398 + FABP5 × 0.260 +

RBMX × −0.501. The risk value, survival time, and gene

FIGURE 4
Heatmap showing tumor pathway (RNAmethylation, ferroptosis, pyroptosis, cuproptosis, and immune checkpoint) genes associated with hub
DEGs in TCGA (A) and ICGC (B) database. DEGs, differentially expressed genes; TCGA, the Cancer Gene Atlas; ICGC, International Cancer Genome
Consortium; *, p < 0.05; **, p < 0.01.
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expression parameter for each TCGA sample can be found in

Supplementary Table S5. We used the median as our

population segmentation value and then divided the TCGA

ccRCC patient cohort into low-risk and high-risk groups. The

tumor stage in high-risk group was significantly higher than

that in low-risk group (Figure 5E). The high-risk group had

FIGURE 5
Building a predictive model. (A,B) Determination of the number of factors by the LASSO analysis. (C) Forest plot showing multivariate COX
analysis results of the genes screened in Figures 5A,B. (D) Risk factor map for survival. (E) Correlation between riskScore and tumor stage (T, N, M,
pathologic stage, and histologic grade).

FIGURE 6
(A) KM survival curve for OS and DSS of our model in TCGA cohort. (B) ROC curve of prognosis model for OS and DSS. KM, Kaplan-Meier; OS,
overall survival; DSS, disease-specific survival; TCGA, the Cancer Gene Atlas; ROC, Receiver operating characteristic.
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obviously worse overall survival (OS) and disease-specific

survival (DSS) than the low-risk group (Figure 6A). The

area under the curve (AUC) values of risk score for 1-, 3-,

and 5-year OS were 0.726, 0.710, and 0.764, respectively. And

for 1-, 3-, and 5-year DSS, AUC values of risk score were 0.743,

0.732, and 0.799 (Figure 6B).

FIGURE 7
The tumor microenvironment and immune infiltration of ccRCC. (A,B) The infiltrating levels of 24 immune cell types between high-risk and
low-risk groups. (C) The Stromal score, Immune score, and ESTIMATE score between high-risk and low-risk groups. (D) Relationship between
Immune checkpoint molecules (PDCD1, CTLA4, CD274) and risk score. ccRCC, clear cell renal cell carcinoma; ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01;
***, p < 0.001.

FIGURE 8
Correlation analysis between markers of Treg (FOXP3, CXCR3, LAG3, B3GAT1, ITGAE, TIGIT) and the risk score using TCGA (A) and GEPIA (B)
database. TCGA, the cancer gene atlas; gepia, gene expression profiling interactive analysis.
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Relationship between our risk model and
immune invasion in ccRCC tumor
microenvironment

We used the ESTIMATE and ssGSEA tools to evaluate

disparities in tumor immune infiltration and immune cells

between the high-risk and low-risk groups. Immune cell invasion

was investigated using ssGSEA. Our results demonstrated large

differences in the distribution of immunocytes between risk

groups (Figures 7A,B). The immune infiltration of 24 kinds of

immune cells for each TCGA sample can be found in

Supplementary Table S6. Among numerous immunocytes,

regulatory T cells (TRegs) were clearly increased in the high-risk

group compared to the low-risk group. ImmuneScore and

ESTIMATE Score in the high-risk group were also higher than

those in the low-risk group (Figure 7C). Please see Supplementary

Table S7 for more detailed information. Immune checkpoint

molecules such as PDCD1, CTLA4, and CD274 were positively

associated with the risk score (Figure 7D). Correlation analysis

between markers of Treg (FOXP3, CXCR3, LAG3, B3GAT1,

ITGAE, TIGIT) and the risk score using TCGA (Figure 8A) and

GEPIA (Figure 8B) database further proved that Treg infiltration

was positively related with the risk score.

Establishment of normograms

We combined the risk score with clinical TNM stage of

ccRCC to establish a Nomogram prognostic model for OS

(Figure 9A). Calibration plots displayed good consistency

between the predicted survival and the actual survival at 1, 3,

and 5 years (Figure 9B). Decision curve also showed that the

predictive power of our nomogram was satisfactory (Figure 9C).

Also, we established a nomogram for DSS (Figure 10A).

Calibration plots (Figure 10B) and decision curve (Figure 10C)

showed that the predictive ability of our nomogram was very good.

Discussion

Radical or partial nephrectomy remains the mainstay of

treatment for patients with primary ccRCC (Ljungberg et al.,

2019). However, about 30% of patients will develop recurrence

and metastasis after surgical treatment (Leibovich et al., 2018).

Clinical salvage therapy approaches usually focus on the stage

after tumor recurrence (Motzer et al., 2022). Therefore, there is

an urgent need to establish an effective postoperative survival

prediction model.

FIGURE 9
Construction and validation of nomogram for OS. (A)Nomogram to predict the 1-, 3-, and 5-year OS. (B) Calibration curves for the nomogram
model. (C) Decision curve for the nomogram model. OS, overall survival.

Frontiers in Genetics frontiersin.org08

Gan et al. 10.3389/fgene.2022.1021163

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1021163


Previous studies showed that the pathogenesis of ccRCC was

involved in multiple molecular pathways (Dizman et al., 2020;

Zhang and Li, 2022; Yang, Ding, Sun, Rupprecht, Lin, Hsu, et al.).

However, there are not many ccRCC predictionmodels involving

multiple hotspot molecular pathways. We explored methylation,

ferroptosis, pyroptosis, cuproptosis, and immune checkpoint

genes associated with hub DEGs in ccRCC. Finally, the

following five genes were included in the risk model:

IGF2BP3, CDKN1A, GSDMB, FABP5, RBMX.

Among these five genes, IGF2BP3 and RBMX belong to the

m6A signaling pathway. In previous studies of ccRCC,

IGF2BP3 has been shown to be associated with poor tumor

prognosis and metastasis (Jiang et al., 2008; Lederer et al., 2014).

IGF2BP3 can interact with cell cycle kinases and extracellular

matrix components to regulate the cell cycle (Gu et al., 2021).

Moreover, Xie et al. (2021) concluded that IGF2BP3 was involved

in the metabolism of IGF2BP3/CDKN2B-AS1/NUF2 axis, this

genetic mechanism suggests that IGF2BP3 may be an ideal tumor

marker and therapeutic target for ccRCC in the future. RBMX is a

vital pathway molecule in the DNA damage repair mechanism

(Adamson et al., 2012). Similarly, RBMX has been proved to

inhibit the development of bladder cancer cells (Yan et al., 2021).

CDKN1A has been reported to be involved in ferroptosis.

CDKN1A has also been shown to be associated with cystine

metabolism in ccRCC (Yan et al., 2021). Knockdown of

CDKN1A could promote melanoma proliferation in the

G1 cell cycle (Jalili et al., 2012; Tarangelo et al., 2018). Also,

Kramer et al. claimed that the LRH-1 gene suppressed the

expression of CDKN1A, thereby driving colon cancer cell

growth (Kramer et al., 2016).

GSDMB is associated with the pyroptosis pathway. Studies

have shown that high expression of GSDMB can lead to the

activation of the pyroptotic pathway in human monocyte cell

lines, triggering non-apoptotic cell death (Chen et al., 2019).

When the expression level of GSDMB is abnormally upregulated,

the growth and invasive ability of bladder cancer can be

significantly enhanced. GSDMB could bind to intracellular

STAT3 and activate the STAT3 signaling pathway in bladder

cancer (He et al., 2021). GSDMB has also been regarded as an

effective biomarker of poor prognosis in ccRCC and a potential

target for immunotherapy (Cui et al., 2021).

FABP5 is highly expressed in ccRCC compared to normal

tissue and has prognostic significance based on multiple GEO

gene chip analysis. Previous studies have shown that FABP5 may

FIGURE 10
Construction and validation of nomogram for DSS. (A) Nomogram to predict the 1-, 3-, and 5-year DSS. (B) Calibration curves for the
nomogram model. (C) Decision curve for the nomogram model. DSS, disease-specific survival.
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play an indispensable role in the angiogenesis of various tumors.

FABP5 is highly upregulated in breast cancer and enhances

proliferation, migration, and invasion. Artificial knockdown of

FABP5 can significantly affect the activation of EGFR

downstream genes (Levi et al., 2013). Also, FABP5 is critical

in metastatic transformation and stromal cell interactions for

triple-negative breast cancer (Apaya et al., 2020). FABP5 can

promote epithelial-mesenchymal transition, lymphangiogenesis,

and lymph node metastasis in cervical cancer cells by regulating

fatty acid metabolism (Zhang et al., 2020b).

In summary, IGF2BP3, CDKN1A, GSDMB, FABP5, and

RBMX genes are obviously correlated with the prognosis of

ccRCC and could be used to establish a prognosis model.

Patients in the low-risk group have significantly better

survival compared with those in the high-risk group. Also, we

found that risk score was strongly associated with survival status,

tumor grade, and metastasis. We figured out that tissues with a

high risk score tended to be prone to Treg infiltration, which

predicted the onset of immune dysfunction (Díaz-Montero et al.,

2020). The targeted drug sorafenib has been proved to reduce the

number of immunosuppressive Tregs in ccRCC patients’

peripheral blood, thereby promoting the rebalancing of the

immune environment in renal cancer (Desar et al., 2011). PD-

1, CTLA4, and CD274 molecules are important immunotherapy

targets in ccRCC, and their corresponding immune checkpoint

inhibitors have been widely used in clinical treatment (Naranbhai

et al., 2022; Navani and Heng, 2022). We demonstrated that our

risk score was significantly correlated with the expression of

immune checkpoint-related molecules. It can be seen that our

model has a certain guiding effect on the immunotherapy of

ccRCC.

After integrating our genetic prognostic risk model and

clinical variables, we further developed a nomogram. The

corresponding calibration and decision curve analysis showed

that the performance of the nomogram was great.

However, several limitations should be noted in this study.

The limitations of our study are the following: First, the outcome

data were derived from public databases. Second, our study was a

retrospective study, and patient sample volumes were limited.

More real clinical data are needed to validate our findings. In the

future, the expression condition of relevant key genes and their

correlation with clinical stage could be verified in renal cancer cell

lines and pathological tissues. Investigators can validate our

derived prognostic model against the actual prognosis of the

patients.

Conclusion

We constructed a stratified model for ccRCC in this study. In

terms of prognosis, high-risk patients have shorter OS than

lower-risk patients. Early identification of such patients and

effective intervention might help improve their long-term

survival. The stratified model we constructed will help

clinicians predict the prognosis of ccRCC and provide a good

reference for clinical individualized treatment and

immunotherapy options.
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