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Nonalcoholic fatty liver disease (NAFLD) has become the most common

chronic liver disease. However, the early diagnosis of NAFLD is challenging.

Thus, the purpose of this study was to identify diagnostic biomarkers of NAFLD

using machine learning algorithms. Differentially expressed genes between

NAFLD and normal samples were identified separately from the GEO

database. The key DEGs were selected through a protein‒protein interaction

network, and their biological functions were analysed. Next, three machine

learning algorithms were selected to construct models of NAFLD separately,

and the model with the smallest sample residual was determined to be the best

model. Then, logistic regression analysis was used to judge the accuracy of the

five genes in predicting the risk of NAFLD. A single-sample gene set enrichment

analysis algorithm was used to evaluate the immune cell infiltration of NAFLD,

and the correlation between diagnostic biomarkers and immune cell infiltration

was analysed. Finally, 10 pairs of peripheral blood samples from NAFLD patients

and normal controls were collected for RNA isolation and quantitative real-time

polymerase chain reaction for validation. Taken together, CEBPD, H4C11,

CEBPB, GATA3, and KLF4 were identified as diagnostic biomarkers of NAFLD

by machine learning algorithms and were related to immune cell infiltration in

NAFLD. These key genes provide novel insights into the mechanisms and

treatment of patients with NAFLD.

KEYWORDS

NAFLD, machine learning, biomarkers, bioinformactics, immune infiltration

Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic disease of the

liver, and the global prevalence of NAFLD among adults is estimated to be 23%–25%

(Huang et al., 2021) (Estes et al., 2018). A recent meta-analysis showed an unexpected

rapid increase in the burden of NAFLD in China over the past 10 years, with a prevalence

of 29.2% (Zhou et al., 2020). NAFLD is a clinicopathological entity that encompasses a

wide range of liver disease spectra (Calzadilla Bertot and Adams, 2016). The majority of
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people living with NAFLD have isolated steatosis (nonalcoholic

fatty liver, NAFL), and a smaller proportion develop

nonalcoholic steatohepatitis (NASH), with increasing hepatic

fibrosis eventually leading to cirrhosis, liver cancer, end-stage

liver disease and death (Lazarus et al., 2022a). Moreover, NAFLD

increases the risk of other metabolic diseases, such as diabetes,

cardiovascular disease, and chronic kidney disease.

Liver biopsy is the gold standard for diagnosing NAFLD.

However, due to its invasiveness, potential bleeding risk, and

large sampling error caused by the uneven distribution of liver

parenchymal lesions, liver biopsy cannot be well applied in

clinical practice (Ratziu et al., 2005). For these reasons, the

diagnosis and treatment of NAFLD are usually delayed. Early

discovery of NAFLD and mainly of NASH brings a great

advantage because there are many drugs on the pipeline that

are good candidates to cure this very common disease, as evident

in various recent papers (Negi et al., 2022). Therefore, exploring

accurate, noninvasive biomarkers for diagnosing and staging

NAFLD is critical for reducing the need for an invasive liver

biopsy and to identify patients who are at high risk of hepatic and

cardio-metabolic complications as early as possible. Moreover,

biomarkers may assist us in investigating the mechanisms of

NAFLD pathogenesis.

Machine learning is a branch of artificial intelligence that

allows researchers to use complex data and develop self-

trained strategies to predict the characteristics of new

samples (Lynch and Liston, 2018). The algorithms have

been applied in many clinical fields, including disease

prediction, diagnosis, prognosis, and drug discovery (Qin

et al., 2022). For example, they have been applied for breast

cancer (Hanis et al., 2022), ovarian cancer (Lu et al., 2020),

colorectal cancer (Zhang et al., 2022), hepatocellular

carcinoma (Gupta et al., 2021), cholangiocarcinoma (Liu

et al., 2021), nonfunctioning pituitary adenoma (Fang

et al., 2021), and nasopharyngeal carcinoma (Zhang et al.,

2017). Therefore, in the context of machine learning

methods, we reviewed various research studies with novel

biomarkers for the diagnosis of NAFLD.

In our study, NAFLD and normal sample datasets were

systematically retrieved and obtained from the Gene

Expression Omnibus (GEO) database, and differentially

expressed genes (DEGs) were screened out through the robust

rank aggregation (RRA) method. To explore the DEG function

and main metabolic and signal transduction pathways, we used

functional enrichment and protein‒protein interaction (PPI)

analysis. We modelled three machine learning models to

obtain the diagnostic biomarkers (Han et al., 2015). The

predictive ability of the diagnostic biomarkers for NAFLD was

further evaluated by a nomogram. Inflammation is closely

associated with immune cells of the liver infiltration (Nati

et al., 2022), so we further analysed biomarkers for screening

differences in the infiltration of immune cells. Meanwhile, we

searched diagnostic biomarkers from the Drug Gene Interaction

Database (DGIdb) to obtain potential drugs that could treat

NAFLD.

Materials and methods

Data collection

The messenger RNA (mRNA) expression matrix and the

related clinical information of NAFLD and normal samples in

the GSE135251 and GSE126848 datasets were obtained from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE135251 dataset contains 206 NAFLD samples and

10 normal samples (Govaere et al., 2020). The

GSE126848 dataset included 15 NAFLD samples and

14 normal samples (Suppli et al., 2019). The sequencing

platform of both datasets was a GPL18573 Illumina NextSeq

500 (Homo sapiens).

Identification of differentially expressed
genes

The DEGs between NAFLD and normal samples in the

GSE126848 and GSE135251 datasets were selected by the

“limma” R package (version 3.46.0). The screening conditions

were as follows: log2|FC| > 1, p < 0.05. The robust rank

aggregation (RRA) method can minimize the deviation and

error between two datasets and combine them into

independent datasets (Kolde et al., 2012). Therefore, the

upregulated and downregulated genes in the two datasets were

ranked by RRA analysis using the “robustrankaggre” (version

1.1) R package, and Bonferroni correction was performed to

finally obtain the optimal DEGs.

Functional enrichment analysis and
interaction of key differentially expressed
genes

The protein interaction among key DEGs was explored by the

search tool for the retrieval of interacting genes/proteins database

(STRING, https://www.string-db.org/), and then the PPI network

was constructed by Cyto-scape (version 3.8.2), with a confidence

interval of 0.4. At the same time, them-code plug-in was used to find

the keymodules andDEGs in the PPI network by setting degree cut-

off = 2, node score cut-off = 0.2, k-core = 2, max, depth = 100.

To further explore the targeted pathways and functions of

key DEGs, the “cluster-Profiler” R package (Version 3.18.0) was

used to conduct Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses. p < 0.05 and

a count >2 were considered significant enrichment. In addition,

the “enrich-Plot” R package (Version 1.10.2) and “ggplot2” R
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package (Version 3.3.3) were used to visualize the enrichment

results.

Machine learning screening for diagnostic
biomarkers

Based on the expression levels of key DEGs and the grouping

information of the samples, in which the sample grouping was

used as the response variable and key DEGs were used as the

explanatory variable, the “caret” R package (version 6.0-86) was

used to build three models: RF, SVM, and GLM. Then, the

explain function of the “dalex” R package (version 2.3.0) was used

to interpret and analyse the three models, the plot function was

used to visualize the performance distribution of the models, and

a cumulative residual distribution map and box plot distribution

map were drawn to obtain the optimal model. Moreover, the

relative importance of different variables in different models for

model prediction was analysed. The key DEGs that had a great

influence on the predicted value of the response variable were

selected as diagnostic markers.

Nomogram of diagnostic biomarkers and
their validation

We further constructed a nomogram through the “rms” R

package based on the diagnostic biomarkers to facilitate the

clinical judgement of the risk of NAFLD. Then, a calibration

curve was drawn to verify the nomogram. In addition, to more

intuitively evaluate the clinical effect of the nomogram model,

this study used the “rmda” R package to draw a decision curve

analysis (DCA) curve and a clinical impact curve on the basis of

the DCA curve.

Immune infiltration analysis

To study the difference in immune infiltration between

patients with NAFLD and normal samples, the proportion of

22 immune cells in all samples in the GSE126848 dataset was

calculated by the single-sample gene set enrichment analysis

(ssGSEA) algorithm using the “GSVA” R package (version

1.38.2). Then, the difference in immune cells between normal

and NAFLD samples was compared by the rank-sum test.

Finally, the Pearson correlation between diagnostic genes and

differential immune cells was analysed.

Potential drug prediction

Finally, we searched diagnostic biomarkers from the DGIdb

(https://dgidb.genome.wustl.edu/) to obtain potential drugs or

molecular compounds that can treat NAFLD. Cytoscape (version

3.8.2) software was used to construct the relationship pair

network between diagnostic markers and molecular compounds.

Statistical methods

All statistical analyses were performed with R software 4.0.3.

Statistical significance was set at probability values of p < 0.05.

RNA isolation and quantitative real-time
polymerase chain reaction

Ten pairs of peripheral blood samples from people with and

without fatty liver were collected from The Affiliated Hospital of

GuiZhou Medical University. Peripheral blood mononuclear

cells were extracted within 4 h after blood collection, and the

treated samples were immediately stored at −80°C. All subjects

signed informed consent forms. The collection of all samples was

approved by the ethics committee of The Affiliated Hospital of

Guizhou Medical University (approval No. 2022065K). Total

RNA was extracted from the peripheral blood of all samples with

TRIzol reagent (cat. 356281) provided by the Ambion company.

Then, a Nanodrop 2000fc-3100 (Thermo Fisher Scientific,

Waltham, MA, United States) was used to quantify the

concentration and purity of the RNA solution. A sweScript

RT I First-Strand cDNA Synthesis All-in-One™ First-Strand

cDNA Synthesis Kit (CAT-G33330-50) provided by the

Service-bio company was used for the reverse transcription

reaction. PCR was performed using the 2x Universal Blue

SYBR Green qPCR Master Mix (CAT.-G3326-05) kit provided

by Service-bio. The PCR conditions were as follows: 95°C

predenaturation for 1 min and then 40 cycles. Each cycle

included denaturation at 95°C for 20 s, annealing at 55°C for

20 s, and extension at 72°C for 30 s. GAPDH was used as an

internal reference for gene detection. The forward primer for

GAPDH was “CCCATCACCATCTTCCAGG”. The reverse

primer for GAPDH was “CATCACGCCACAGTTTCCC”. The

forward primer for CEBPD was “GCCCCCGCCATGTAC”. The

reverse primer for CEBPD was “GCCCGCCTTGTGATT”. The

forward primer for H4C11 was “GCGGGGTGCTGAAGGTGT

T”. The reverse primer for H4C11 was “GCTTGGCGTGCTCTG

TATA”. The forward primer for CEBPB was “TGGGACCCA

GCATGTCTC”. The reverse primer for CEBPB was “CAGTTC

TTGCCCCCGTAG”. The forward primer for GATA3 was “CAC

CTCTTCACCTTCCCG”. The reverse primer for GATA3 was

“TTGCCCCACAGTTCACAC”. The forward primer for KLF4

was “GAGGAGCCCAAGCCAAAG”. The reverse primer for

KLF4 was “CAGCCGTCCCAGTCACAG”. A t-test was used

to compare the expression of five biomarkers between patients

with NAFLD and the control group. p < 0.05 was considered

significant.
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Results

Identification of differentially expressed
genes

A total of 9,005 DEGs between NAFLD and normal samples,

among which 47 genes were upregulated and 8,958 genes were

downregulated in NAFLD samples, were screened in the

GSE126848 dataset. In the GSE135251 dataset,

1,489 upregulated and 300 downregulated genes in NAFLD

samples compared with normal samples were identified.

The volcano plots of the DEGs are shown in Figures 1A,B.

The DEGs of the two datasets were integrated and corrected by

the RRA method, and a total of 147 key DEGs were obtained

(see Supplementary Table S1). A heatmap of the top

15 upregulated and downregulated genes is shown in

Figure 1C.

Functional enrichment analysis and
interaction of key differentially expressed
genes

To explore the interactions among the 147 key DEGs, a PPI

network of 147 genes was constructed. After removing the discrete

proteins, 87 nodes and 360 edges were obtained. Cytoscape was used

to visualize the interactive relationship network, as shown in

Figure 2A. Moreover, a total of 3 key modules were obtained, and

module 1 included CEBPB, H4C11, JUND, SOCS3, FOS, CEBPD,

KLF4, GATA3, and NR4A1. Module 2 included GADD45B, JUNB,

FIGURE 1
Identification of DEGs. (A) Volcano plot of DEGs in the GSE126848 dataset. (B) Volcano plot of DEGs in the GSE135251 dataset. The abscissa of
log2FC is the fold change (NAFLD/normal), and the ordinate is the credibility-log10 (p-value). Each dot in the volcano plot indicates a gene, and the
red and green dots indicate significant DEGs. Red dots indicate that gene expression is upregulated in NAFLD samples, and green dots indicate that
gene expression is downregulated in NAFLD samples. Dashed lines of abscissa and ordinate indicate the absolute log FC threshold of 1 and the
p-value threshold of 0.05, respectively. (C) Heatmap of upregulated and downregulated DEGs. Yellow indicates upregulated DEGs, purple indicates
downregulated DEGs. The darker the colour is, the more significant the upregulation and downregulation.
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EGR1, NR4A2, CXCL2, EDN1, CNN2, and MMP9. Module

3 included MT1G, MT1E, and MT1X (Figure 2B). Module 1 was

regarded as the best module based on themaximum score. Therefore,

genes in module 1 were selected for subsequent analysis.

Next, we further explored the targeted pathways and functions of

the 147 key DEGs. As shown in Figure 2C, key DEGs were

significantly related to the response to abiotic stimuli, ureter

development, adipocyte differentiation, etc. For molecular

functions, key DEGs were significantly related to receptor binding

and protein kinase inhibitor activity. Notably, the genes of module

1 were significantly related to osteoblast differentiation and positive

regulation of ossification. The genes of module 2 were significantly

associated with kidney development, response to oxygen level and

response to metal ions. The genes of module 3 were significantly

involved in the reaction to metal ions and the interpretation of

inorganic compounds. KEGG functional enrichment analysis

revealed that key DEGs were mainly involved in auxin synthesis,

parathyroid hormone synthesis, osteoclast differentiation and insulin

signal transduction (Figure 2D). The genes of module 1 and module

2weremainly associatedwith the IL-17 andTNF signalling pathways.

The genes in module 3 were associated with mineral absorption.

Machine learning screening for diagnostic
biomarkers

To further screen diagnostic markers from the genes in module

1, three machine algorithms were used to construct three models

FIGURE 2
Functional enrichment analysis and interaction of key DEGs. (A) PPI network of key DEGs. (B) Keymodules in the PPI network. The lines indicate
the interaction between the DEGs. (C) GO enrichment bars for key DEGs. The ordinate indicates the enriched GO term, the length of the bars
indicates the number of DEGs, and the colour from blue to red indicates the confidence from low to high. (D) Bubble chart of KEGG functional
enrichment for key DEGs. The ordinate indicates the enrichment KEGG pathway, the bubble size indicates the number of DEGs, and the colour
from blue to red indicates the confidence from low to high.
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separately. The RFmodel was themost suitablemodel because it had

the smallest sample residual (Figures 3A,B). Moreover, as shown in

Figure 3C, the five variables CEBPD, H4C11, CEBPB, GATA3, and

KLF4 in the RF model had a strong influence on the predicted value

of the response variable, so these five genes were used as diagnostic

biomarkers for further analysis.

Construction and validation of a
nomogram

To better predict the risk of NAFLD by using CEBPD, H4C11,

CEBPB, GATA3, and KLF4, a nomogram was constructed

(Figure 4A). The nomogram was scored each biomarker. Then, the

risk of NAFLD was predicted according to the total score. Moreover,

calibration curves were drawn to verify the nomogram. Interestingly,

calibration curves showed that the error between the actual and

predicted risk of NAFLD was small, indicating that the nomogram

model had a high prediction accuracy for NAFLD (Figure 4B).

Furthermore, the DCA curve showed that the nomogram curve

was higher than the grey line, “GATA3” curve, “H4C11” curve,

“KLF4” curve, “CEBPB” curve and “CEBPD” curve (Figure 4C).

The results showed that the nomogram model could benefit from a

risk threshold range of 0–1, and the clinical benefit of the nomogram

modelwas higher than that of theGATA3,H4C11, KLF4, CEBPB, and

CEBPD curves. In the clinical impact curve (Figure 4D), from 0 to 1,

the “Number High Risk” curve under the high-risk threshold was very

close to the “Number High Risk with Event” curve, indicating that the

nomogram model had a relatively accurate prediction ability.

Correlation between diagnostic
biomarkers and immune cell infiltration

To further explore the correlation between diagnostic

biomarkers and immune cell infiltration, we compared the

FIGURE 3
Machine learning screening for diagnostic biomarkers. (A) Distribution graphs of sample cumulative residuals. The area under the curve
indicates the cumulative residual value of all samples. (B) Boxplot of sample residuals. Red dots indicate the root mean square. (C) Importance of
gene variables in the RF, GLM, and SVM models.
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immune infiltration between patients with NAFLD and

normal samples. The score of each immune cell in each

sample was calculated by the ssGSEA algorithm. As shown

in Figures 5A,B, the top five immune cells in the normal group

were macrophages, TEM cells, CD8 T-cells, T helper cells, and

DCs. In the NAFLD group, the top five immune cells were

TCM, TEM, CD8 T-cells, T helper cells, and macrophages. In

addition, a total of 13 types of immune cells, including DCs,

NK cells, TFH cells, Tems, neutrophils, NK CD56dim cells,

macrophages, Th2 cells, Tcm cells, B cells, Tgd cells, NK

CD56bright cells, and iDCs, showed significant differences

between NAFLD and normal samples (p < 0.05) (Figure 5C).

Furthermore, Pearson correlation analysis between

biomarkers and different immune cells showed that

Th2 cells had a strong negative correlation with GATA3

(cor = −0.439), KLF4 (cor = −0.482), H4C11

(cor = −0.473), CEBPD (cor = −0.654), and CEBPB

(cor = −0.634), while other immune cells showed a

significant positive correlation with these biomarkers

(Figure 5D).

Potential drug prediction

To explore potentially targeted therapeutic drugs that may be

the most suitable for targeting diagnostic biomarkers, we

retrieved 5 markers from the DGIdb database. Finally, we

found two genes with related drugs. No drugs were found for

the CEBPD, H4C11 and CEBPB genes. The potential therapeutic

drugs predicted by GATA3 were pegaspargase, asparaginase,

thioguanine, leucovorin, prednisone, mercaptopurine,

cytarabine, vincrisine, daunorubicin, cyclophosphamide,

dexamethasone, and methotrexate. The potential therapeutic

drug predicted by KLF4 was APTO-253. The top three drugs

FIGURE 4
Construction and validation of a nomogram. (A) Nomogram of diagnostic biomarkers. (B) Calibration curves of the predictive nomogram
model. (C) DCA curve to evaluate the clinical application value of the nomogram model. (D) Clinical impact curves of the nomogram model. The
nomogram model predicts a risk stratification of 1,000 people. At each high-risk threshold, the number of high-risk curves indicates the number of
models classified as positive (high risk), and the number of high-risk curves indicates the number of true positive people.
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were APTO-253, pegaspargase and asparaginase (Table 1;

Figure 6).

Validation of the expression of biomarkers

To further verify the expression of biomarkers, we used

qRT‒PCR to compare the gene expression levels of CEBPD,

H4C11, CEBPB, KLF4, and GATA3 in the peripheral blood of

normal controls and NAFLD patients. The qRT‒PCR results

showed significant downregulation of the expression of

CEBPD, H4C11, CEBPB, KLF4, and GATA3 in NAFLD

patients (Figure 7).

Discussion

NAFLD is a liver disease associated with obesity, insulin

resistance, type 2 diabetes mellitus (T2DM), hypertension,

hyperlipidaemia, and metabolic syndrome (Younossi, 2019;

Lazarus et al., 2022b; Adams et al., 2017; Anstee et al., 2013).

The pathogenesis of NAFLD is still unclear, and the “two-hit”

FIGURE 5
Correlation between diagnostic biomarkers and immune cell infiltration. (A)Nightingale rose diagram of immune cell proportions in the normal
group samples. (B) Nightingale rose diagram of immune cell proportions in the NAFLD group samples. Each colour indicates an immune cell; the
larger the area per colour, the larger the proportion of cells. (C) Boxplot of the immune cell proportion. “*”p < 0.05, “**”p < 0.01, “***”p < 0.001, and
“****” p < 0.0001. (D) Lollipop chart of the correlation between diagnostic biomarkers and immune cells. The circle size indicates the correlation
magnitude; the colour from green to yellow indicates an increased p-value.
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hypothesis has been proposed. The first hit is elevated hepatic

lipid accumulation caused by insulin resistance. Due to the first

hit, the liver becomes more sensitive to a second hit, such as

oxidative stress, lipid peroxidation and inflammation. Although

it is primarily a disease of disturbed metabolism, NAFLD

involves several immune cell-mediated inflammatory

processes, particularly when reaching the stage of NASH, at

which point inflammation becomes integral to the progression of

the disease (Huby and Gautier, 2021). Sentinel cells in the liver

sense excess metabolites, damaged hepatocytes and bacterial

products and translate those signals into immune responses,

resulting in steatohepatitis (Nati et al., 2022). Inflammation in

the context of fatty liver is not a one-way route towards

progression but rather a tug of war between

necroinflammation and phases of resolution. Excess nutrients

lead to the accumulation of fat and hypertrophy of adipose tissue.

This initiates an immune response with the recruitment of

proinflammatory cells (Peiseler and Tacke, 2021). Gut-derived

LPS induces inflammatory pathways in adipose tissue through

TLR4 signalling, enhancing the recruitment of proinflammatory

monocytes (Caesar et al., 2015). Therefore, exploration of the role

of immune cells in all stages of NAFLD can provide new

strategies for the prevention and treatment of NAFLD.

In our study, the diagnostic biomarkers identified by

transcriptomic analysis were differentially expressed in

13 types of immune cells. CEBPB, CEBPD, GATA3, KLF4,

and H4C11 were the genes identified by our transcriptomics

analysis of the NAFLD samples, which were primarily involved

TABLE 1 Potential therapeutic drugs corresponding to the diagnostic biomarkers.

Gene Drug Sources PMIDs Query score Interaction score

GATA3 Pegaspargase PharmGKB 24141364 2.19 2.45

GATA3 Asparaginase PharmGKB 24141364 0.58 0.65

GATA3 Thioguanine PharmGKB 24141364 0.34 0.38

GATA3 Leucovorin PharmGKB 24141364 0.31 0.35

GATA3 Prednisone PharmGKB 24141364 0.27 0.31

GATA3 Mercaptopurine PharmGKB 24141364 0.24 0.27

GATA3 Cytarabine PharmGKB 24141364 0.2 0.23

GATA3 Vincristine PharmGKB 24141364 0.15 0.17

GATA3 Daunorubicin PharmGKB 24141364 0.13 0.15

GATA3 Cyclophosphamide PharmGKB 24141364 0.11 0.12

GATA3 Dexamethasone PharmGKB 24141364 0.1 0.12

GATA3 Doxorubicin PharmGKB 24141364 0.09 0.1

GATA3 Methotrexate PharmGKB 24141364 0.08 0.09

KLF4 APTO-253 TTD None found 2.19 31.9

FIGURE 6
Network diagram of diagnostic biomarkers and potential therapeutic drugs. The hexagon indicates the biomarker, and the square indicates the
potential therapeutic drug; the darker the potential therapeutic drug is, the higher the interaction score.
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in immune cells and had been identified as a target by several

disease studies.

CEBPB and CEBPD are CCAAT/enhancer-binding

protein beta and delta, important transcription factors

regulating the expression of genes involved in immune and

inflammatory responses. CEBPB and CEBPD have been

confirmed to have transcriptional activity in the

inflammatory response, and the current work showed that

their downregulation was associated with the loss of immune-

related signals (Liu et al., 2019). CEBPB and CEBPD are

activated by inflammatory factors in inflammatory

environments (Cantwell et al., 1998) (Tengku-Muhammad

et al., 2000). Meanwhile, CEBPB and CEBPD regulate

preadipocyte differentiation and participate in lipid

metabolism by activating PPARγ. Moreover, CEBPB and

CEBPD might promote NAFLD through inflammatory

activation of the liver and lipid metabolism, but the specific

mechanisms still need to be explored further.

GATA3 belongs to a family of transcription factors and is

generally thought to play important roles in haematopoiesis,

nervous system development (Lowry and Atchley, 2000) (Patient

and McGhee, 2002), and inflammatory and humoral immune

responses (Ray and Cohn, 1999; Wan, 2014). Regarding

immunoregulation, GATA3 was originally identified as a

master regulator of Th2 cell differentiation of CD4+ T-cells. It

is also critical for the development, differentiation, and function

of other CD4+ T-cell subsets, as well as CD8+ cells.

GATA3 controls the function of both adaptive and innate

immune cells. Recent findings conclude that although

GATA3 allows Th17 cell differentiation, it acts as an inhibitor

of Th17-mediated pathology, through IL-4-dependent and IL-4-

independent pathways (van Hamburg et al., 2008). Meantime,

IL-17 secreted mainly by Th17 cells is a key cytokine involved in

NAFLD (Gomes et al., 2016) and atherosclerosis following

obesity-related NAFLD (Tarantino et al., 2014). Indeed,

GATA3 is also expressed in many cells in adipose tissues,

including preadipocytes, mature adipocytes, and various

inflammatory cells. GATA3 plays an important role in

adipogenesis (Al-Jaber et al., 2021). GATA3 suppresses

adipocyte differentiation partially through direct binding to

peroxisome proliferator-activated receptor γ. It also forms

protein complexes with CEBPB, and this interaction

subsequently suppresses adipocyte differentiation (Tong et al.,

2005) (Tong et al., 2000). Our study showed that GATA3 and

CEBPB were negatively correlated with Th2 cells in liver tissue,

which is consistent with previous studies. Therefore, we infer that

GATA3 may be involved in the progression of NAFLD by

regulating the natural immune signalling pathways of the liver

and producing a variety of inflammatory and lipid metabolism

effector molecules.

KLF4, an important transcription factor of the KLF family,

and it has been proven to be related to biological processes related

FIGURE 7
The expression of diagnostic biomarkers in the peripheral blood. Verification of CEBPD, H4C11, CEBPB, GATA3, and KLF4 in peripheral blood
mononuclear cells of normal controls and NAFLD patients via qRT‒PCR.
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to cellular proliferation, differentiation, and self-renewal (Alder

et al., 2008) (Liao et al., 2011b). Current studies have shown that

KLF4 has many roles, such as inhibiting and promoting tumour

progression, regulating the cell cycle, influencing macrophage

polarization, regulating the inflammatory response, and affecting

atherosclerosis. Studies have shown that KLF4 cooperates with

Stat6 to induce an M2 macrophage genetic program and inhibit

M1macrophage targets via sequestration of coactivators required

for NF-κB activation (Han et al., 2017). Moreover, patients with

simple steatosis had higher levels of M2 macrophages in the liver

than patients with severe steatohepatitis (Liao et al., 2011a). The

regulation of M1/M2 polarization in liver macrophages is

associated with the progression of NASH. The M2-promoting

effects of KLF4 in liver macrophages may provide better

therapeutic strategies against NASH.

H4C11 is one of the histones responsible for the nucleosome

structure of chromosomal fibres in eukaryotes (Rabdano et al.,

2021). Histone H4 participates in the initiation of DNA template

transcription and negatively regulates megakaryocyte

differentiation. Studies have shown that histone H4 could be

used as a molecular target for antiaging drug screening, research

and development (Lin et al., 2020). Histone modifications

consist of acetylation, methylation, phosphorylation, and

ubiquitylation. Among them, histone acetylation patterns are

the most studied pattern. They are known to be regulated by

histone acetyltransferases and histone deacetylases (Fu et al.,

2021). Accumulating evidence has shown that histone

deacetylation is involved in the metabolic mechanism and

pathogenesis of diseases, including NAFLD (Tian et al.,

2015). However, the role of histone modifications in NAFLD

has not yet been explored.

Finally, we retrieved five diagnostic biomarkers from the

DGIdb database and obtained potential drugs associated with

GATA3 and KLF4 for the treatment of NAFLD. Among them,

GATA3 predicted multiple-targeted drugs (as shown above),

which have been shown to increase the incidence of fatty liver

disease during or after treatment. Studies have shown that some

drugs activate PPARα, leading to lipolysis and fatty acid

oxidation in adipose tissue and increasing the circulating fatty

acid level and their transfer to the liver, resulting in disorders of

PPARγ and ApoB, further insulin resistance and hepatic steatosis
(Renu et al., 2019) (Ben-Yakov et al., 2019) (for the Drug-

Induced Liver Injury Network et al., 2019). It was predicted

by KLF-4 that APTO-253 could be a targeted therapeutic agent

for NAFLD. A previous study revealed that the KLF4-NOXA axis

was involved in the induction of p53-independent apoptosis in

response to DNA damage (Nakajima et al., 2021). In addition,

induction of KLF4 in macrophages could promote the

proinflammatory M1 to anti-inflammatory M2 phenotype by

a STAT6-dependent mechanism. Whether APTO-253, as a

KLF4 activator, can induce polarization in macrophages needs

to be confirmed by further research.

Conclusion

In conclusion, CEBPD, H4C11, CEBPB, GATA3, and

KLF4 were identified as diagnostic biomarkers of NAFLD by

machine learning algorithms and were related to immune cell

infiltration in NAFLD. These key genes can help us more deeply

understand the pathogenesis of NAFLD.
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