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Background: Liver disease (LD) is an important cause of morbidity andmortality

for people with HIV (PWH). The molecular factors linked with LD in PWH are

varied and incompletely characterized. We performed an epigenome-wide

association study (EWAS) to identify associations between DNA methylation

(DNAm) and biomarkers of liver function—aspartate transaminase, alanine

transaminase, albumin, total bilirubin, platelet count, FIB-4 score, and APRI

score—in male United States veterans with HIV.

Methods: Blood samples and clinical data were obtained from 960 HIV-

infected male PWH from the Veterans Aging Cohort Study. DNAm was

assessed using the Illumina 450K or the EPIC 850K array in two mutually

exclusive subsets. We performed a meta-analysis for each DNAm site
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measured by either platform. We also examined the associations between four

measures of DNAm age acceleration (AA) and liver biomarkers.

Results: Nine DNAm sites were positively associated with serum albumin in the

meta-analysis of the EPIC and 450K EWAS after correcting for multiple testing.

Four DNAm sites (cg16936953, cg18942579, cg01409343, and cg12054453),

annotated within the TMEM49 and four of the remaining five sites (cg18181703,

cg03546163, cg20995564, and cg23966214) annotated to SOCS3, FKBP5,

ZEB2, and SAMD14 genes, respectively. The DNAm site, cg12992827, was

not annotated to any known coding sequence. No significant associations

were detected for the other six liver biomarkers. Higher PhenoAA was

significantly associated with lower level of serum albumin (β = -0.007,

p-value = 8.6 × 10–4, CI: -0.011116, -0.002884).

Conclusion: We identified epigenetic associations of both individual DNAm

sites and DNAm AA with liver function through serum albumin in men with HIV.

Further replication analyses in independent cohorts are warranted to confirm

the epigenetic mechanisms underlying liver function and LD in PWH.
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Introduction

The widespread availability and use of effective combination

antiretroviral therapy to treat HIV has transformed the outlook

for people with HIV (PWH), many of whom now live longer and

are facing the challenges of aging with HIV. The burden of non-

AIDS related chronic disease (NACD) is increasingly recognized

in this patient population as an urgent concern that needs to be

addressed to improve care for PWH.

Liver disease (LD) accounts for an estimated 13%–18% all-

cause mortality in PWH, and PWH have a high prevalence of

traditional causes of LD (Palella et al., 2006; Smith et al., 2010;

Smith et al., 2014; Kaspar and Sterling, 2017). Co-infection

with hepatitis B and C viruses is estimated between 5%–30%

based on cohort studies (Konopnicki et al., 2005; Shepard

et al., 2005), and up to 30%–40% of PWH have signs of non-

alcoholic fatty liver disease (NAFLD) (Lemoine et al., 2012).

Poorly controlled HIV-infection itself is an independent risk

factor for liver fibrosis (Kim et al., 2016a), which is the most

common outcome of chronic liver injury. Even in individuals

with well-controlled HIV (undetectable HIV RNA) and

immunologic recovery (CD4+ cell counts > 500 cells/mm3),

oxidative stress, mitochondrial injury, toxic metabolite

accumulation, gut microbial translocation, systemic

inflammation, senescence, and nodular regenerative

hyperplasia [reviewed in (Kim et al., 2016a)] contribute to

liver injury and fibrosis. Given all of the factors contributing

to LD among PWH, there is a need to improve prevention, risk

prediction, and treatment of LD in PWH.

Progress in elucidating the biological mechanisms

underlying LD has been challenging due to the complexity

of the multiple roles played by the liver in homeostasis and

metabolic functions. Epigenome-wide association study

(EWAS) have the potential to identify novel mechanisms of

LD and generate new hypotheses that may provide insights

into prevention and treatment of LD. Previous studies on the

role of DNA methylation (DNAm) in LD have focused on

non-alcoholic fatty LD (NAFLD), since determinants of

NAFLD are not as easily identifiable as LD resulting from

e.g., alcoholism or viral hepatitis [reviewed in (Zhang et al.,

2021)]. Studies on the association between alcoholic liver

disease and DNAm have identified genes which may be

associated with the incidence and progression of

hepatocellular carcinoma (HCC) (French, 2013; Varela-Rey

et al., 2013; Zakhari, 2013; Rosen et al., 2018). Other EWAS

have uncovered DNAm sites and genes associated with the

development of HCC in patients with chronic hepatitis B

infections (Su et al., 2007; Nishida et al., 2008; Zhao et al.,

2014). PWH are significantly underrepresented in these

studies. Moreover, most studies have focused on LD as an

overall clinical diagnosis and have not assessed potential

associations between DNAm and specific metabolic

functions of the liver. Biomarkers are useful surrogates of

the liver’s metabolic functions and may reflect its capacity to

perform specific functions. The absence of data on the

relationship between DNAm and specific markers of liver

function, particularly among PWH, represents an

important gap in the literature which we hope the present

study will begin to fill.

DNAm age acceleration (AA) is a novel biomarker of

biological aging, and predicts age-related disease outcomes

and mortality (Bell et al., 2019). Several studies have also

shown that PWH exhibit elevated DNAm AA above the

average level exhibited by non-infected people of equivalent

chronological age. (Horvath and Levine, 2015; Rickabaugh

et al., 2015). These observations suggest that DNAm AA may

partially explain the early onset of chronic comorbid conditions

among PWH (Levine et al., 2015a). Relative acceleration of

DNAm age from blood-based assays is often measured by

four metrics: intrinsic epigenetic age acceleration (IEAA)

(Levine et al., 2015a; Horvath and Levine, 2015), extrinsic

epigenetic age acceleration (EEAA) (Hannum et al., 2013;

Levine et al., 2015b), phenotypic age acceleration (PhenoAA)

(Levine et al., 2018), and Grim age acceleration (GrimAA) (Lu

et al., 2019).

The present study included available markers of liver

function from the Veterans Aging Cohort Study (VACS):

aspartate transaminase (AST), alanine transaminase (ALT),

serum albumin, total bilirubin, platelet count, fibrosis-4 (FIB-

4) score, and the AST-to-platelet-ratio index (APRI) score. We

conducted epigenetic association analyses between individual

DNAm sites, measures of DNAm AA (IEAA, EEAA,

PhenoAA and GrimAA) and these seven biomarkers of liver

function in a cohort of male veterans with HIV infection in the

United States.

Methods

Study population

A total of 960 male veterans with HIV at the time of blood

collection were included from the VACS, having both

phenotypic and epigenetic data available from previous

studies (Justice et al., 2006; Chen et al., 2020). Participants

with cancer at the time of blood collection were excluded

because the cancer treatment and disease can influence liver

function and DNAm which is beyond the scope of the present

study. The VACS consists of electronic medical record data

from patients with HIV receiving care at Veterans Health

Administration (VA) medical facilities across the

United States Each PWH is matched on age, sex, race/

ethnicity, and site to two persons without HIV. Data

include hospital and outpatient diagnoses (recorded using

International Classification of Diseases, Ninth Revision

[ICD-9] and Tenth [ICD-10] codes), procedures (recorded
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using Current Procedural Terminology [CPT] codes),

laboratory results, and pharmacy data (Justice et al., 2006).

Information on age, race, smoking status, body mass index

(BMI), diabetes status (glucose level ≥ 200 mg/dl on 2 separate

occasions or glucose level ≥ 200 mg/dl on 1 occasion plus

treatment with an oral hypoglycemic or insulin for ≥ 30 days)

(Mathur et al., 2019), ever infection with HBV (defined as

HBV surface antigen positive, acute resolved HBV or ICD-9

code for HBV diagnosis), ever infection with HCV (defined as

HCV antibody positive regardless of HCV RNA, ICD-9 code

for HCV diagnosis, or HCV genotype), and antiretroviral

(ART) use at time of blood draw were obtained from VA’s

clinical data warehouse. Alcohol use status was obtained from

the VACS survey (Justice et al., 2006). At the visit of blood

draw, AST, ALT, serum albumin, total bilirubin, platelet

count, CD4+ T-cell count, and plasma HIV-1 RNA viral

load were measured for each patient using approved

clinical assays from certified clinical laboratories.

Participants were categorized as HIV suppressed if their

HIV RNA was < 200 copies/mm3 or as unsuppressed VL

otherwise. A fibrosis-4 (FIB-4) score and an AST-to-platelet

ratio index (APRI) score were calculated for each participant

following the standard equations (Wai et al., 2003; Sterling

et al., 2006). All participants provided written consent for the

use of their data.

DNAm data generation, processing, and
quality control

The genome-wide DNAm profiles were measured using

genome DNA samples extract from whole blood. Genomic

DNA extraction, epityping, data processing, and quality

control were performed as previously described. (Chen et al.,

2020). Genome-wide DNAm levels for 473 of the participants

were assessed using the Infinium HumanMethylation450 (450K)

array platform (Illumina), while those for the remaining

487 participants were assessed using the Infinium

HumanMethylationEPIC (EPIC) array platform (Illumina) at

the Yale Center for Genomic Analysis. Quality control

procedures were followed as previously described in published

studies (Zhang et al., 2017; Solomon et al., 2018; Chen et al.,

2020). We compared the characteristics between the 450K and

EPIC subsets using t-tests for continuous variables and chi-

square tests for categorical variables.

DNAm sites for 412,583 and 846,604 DNAm sites were

included in the analyses for the dataset acquired with the

450K and EPIC arrays, respectively. Differences in the

proportions of the six main leukocyte cell types present in

whole blood (CD4+ T cells, CD8+ T cells, monocytes, B cells,

granulocytes, and natural killer cells) across samples are well

described confounders of associations between DNAm in the

blood andmany phenotypes. To account for this, the proportions

of these six cell types for each participant were determined based

on the top cell-type-specific DNAm sites in a reference panel of

known proportions following the standard algorithm through

the minfi package in R (Houseman et al., 2012; Moran et al.,

2016). The estimated cell type proportions were then controlled

for in all EWAS analyses.

The association between each covariate included in the

EWAS model—race, smoking status, BMI, diabetes status,

hazardous alcohol use (Freiberg et al., 1999), ever HCV

infection, ever HBV infection, ART use, CD4 count, viral

suppression, and leukocyte cell-type proportions, top ten

principal components—and each liver marker was assessed

using a linear model controlling for chronological age as in

the following model.

Individual liver marker ~ covariate + age

Associations between each liver marker and chronological

age were also assessed using a univariate model.

Individual liver marker ~ age

Regardless of statistical significance, all covariates listed

above were included in the final EWAS model to account for

the reasonable possibility that they might confound the

relationship between DNAm and the liver markers as in the

following model.

Individual liver marker ~ DNAm + age + race +current

smoking + BMI + diabetes + hazardous alcohol use + ever

infection with HCV + ever infection with HBV + ART use +

CD4+ T-cell count + VL + leukocyte cell type proportions + top

ten principal components.

Correlations among liver biomarkers

To identify correlations among the biomarkers of liver

function included in this study, a Spearman correlation

coefficient and corresponding p-value were calculated for

every pair of selected biomarkers using the R statistical

software package. To normalize the distributions of strongly

right-skewed biomarkers for this and all subsequent analyses,

a natural log transformation was performed on the measured

ALT, AST, and calculated FIB-4 and APRI scores.

Associations of DNAm age acceleration
with liver biomarkers

DNAm AA for each participant was measured using the

IEAA, EEAA, PhenoAA, and GrimAA metrics as specified by
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original reporting articles (Chen et al., 2016; Levine et al., 2018;

Lu et al., 2019). IEAA is calculated as the residual of a person’s

DNAm level in blood cells across a set of DNAm sites proposed

by Horvath after regressing DNAm level on chronological age

and controlling for proportions of different leukocytes within the

sample (Levine et al., 2015a; Horvath and Levine, 2015). EEAA is

calculated similarly, except that a different set of DNAm sites

proposed by Hanum are used while controlling for proportions

of a different set of cell types (Hannum et al., 2013; Levine et al.,

2018). PhenoAA, in contrast, is calculated by first estimating

phenotypic age (in years) with a linear regression model that uses

clinical variables as inputs, then estimating DNAm age (in years)

based on methylation levels at a set of DNAm sites proposed by

Levine et al. (2018) and finally calculating the residual that results

from regressing calculated DNAm age on calculated phenotypic

age. GrimAA is calculated in a similar way as PhenoAA but

utilizes levels of plasma biomarkers indicative of physiological

stress to estimate phenotypic age and a different set of DNAm

sites to assess DNAm age (Lu et al., 2019). Each of these measures

of DNAm AA perform differently depending on the outcome

being evaluated and can complement each other to assess the

biological aging process.

The association between DNAm AA, as measured by each of

these four metrics, and each of the selected biomarkers of liver

function was then assessed by linear regression while controlling

for all covariates included in the final EWAS model.

Individual liver marker ~ DNAm AA + age + race +current

smoking + BMI + diabetes + hazardous alcohol use + ever

TABLE 1 Characteristics of participants grouped by platform used for genome-wide DNA methylation.

Characteristic 450K (N = 473) EPIC (N = 488) Overall (N = 961) p-value

ALT (units/L) 38.8 (24.9) 34.1 (21.2) 36.4 (23.2) 1.9 × 10–3

AST (units/L) 43.4 (28.1) 37.0 (20.1) 40.2 (24.6) 7.3 × 10–5

Serum Albumin (mg/dl) 3.84 (0.489) 3.95 (0.457) 3.90 (0.476) 2.9 × 10–4

Total Serum Bilirubin (mg/dl) 0.78 (0.485) 0.76 (0.513) 0.77 (0.500) 0.61

Platelet Count [x10 (Zhang et al., 2021)/L] 224 (71.3) 232 (69.4) 228 (70.4) 8.0 × 10–2

FIB-4 Score 1.81 (1.22) 1.57 (0.943) 1.69 (1.09) 8.5 × 10–4

APRI Score 0.58 (0.602) 0.47 (0.393) 0.52 (0.509) 8.4 × 10–4

Age (years) 51.8 (7.53) 50.7 (7.48) 51.2 (7.52) 3.1 × 10–2

Race 1.00

Black 402 (85.0%) 391 (80.1%) 793 (82.5%)

Non-Black 71 (15.0%) 97 (19.9%) 168 (17.5%)

Smoking Status 1.00

Not current 203 (42.9%) 210 (43.0%) 413 (43.0%)

Current 270 (57.1%) 278 (57.0%) 548 (57.0%)

Diabetes Status 1.00

No 390 (82.5%) 406 (83.2%) 796 (82.8%)

Yes 83 (17.5%) 82 (16.8%) 165 (17.2%)

BMI 25.4 (4.44) 25.9 (4.43) 25.6 (4.44) 0.14

Missing 8 (1.7%) 9 (1.8%) 17 (1.8%)

Alcohol Use 1.00

Non-Hazardous 195 (41.2%) 191 (39.1%) 386 (40.2%)

Hazardous 276 (58.4%) 297 (60.9%) 573 (59.6%)

Ever Hepatitis C Infection 1.00

No 241 (51.0%) 312 (63.9%) 553 (57.5%)

Yes 232 (49.0%) 176 (36.1%) 408 (42.5%)

Ever Hepatitis B Infection 1.00

No 399 (84.4%) 430 (88.1%) 829 (86.3%)

Yes 52 (11.0%) 40 (8.2%) 92 (9.6%)

CD4+ Cell Count 411 (252) 442 (263) 427 (258) 6.4 × 10–2

HIV viral Load 1.00

Suppressed 196 (41.4%) 204 (41.8%) 400 (41.6%)

Unsuppressed 274 (57.9%) 284 (58.2%) 558 (58.1%)

Statistics for numeric variables are presented as mean (SD), while those for categorical variables are presented as count (%). Counts across levels of some categorical variables may not sum to

the corresponding total due to missing values. N= number; P-value, level of statistical significance.
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infection with HCV + ever infection with HBV + ART use +

CD4+ T-cell count + VL + leukocyte cell type proportions + top

ten principal components.

Meta-analysis of EWAS for liver
biomarkers

To investigate the association between each biomarker of

liver function and individual DNAm sites across the autosomal

chromosomes, data from the 450K dataset were analyzed in

parallel with data from the EPIC dataset using the same model,

and a fixed effect model meta-analysis was conducted using

inverse variance weighted effect size method. The final model

was adjusted for age, race, current smoking, BMI, diabetes,

hazardous alcohol use, ever infection with HCV, ever

infection with HBV, ART use, CD4+ T-cell count, VL,

leukocyte cell type proportions, and the top ten principal

components within the group being analyzed. Where

necessary for any given combination of DNAm site and

biomarker, participants missing values required for the model

were excluded from the analysis for that combination.

A total of 385,062 DNAm sites measured by both the 450K,

and EPIC arrays were included in the EWAS meta-analysis. For

DNAm sites not covered by both platforms, results were obtained

only from the cohort profiled by the covering platform and no

meta-analysis was conducted. Separate false-discovery rate

adjustments (q < 0.05) were conducted for each liver

biomarker. All analyses were performed in R (v4.0.3).

Results

Participant characteristics

After data processing and quality control, the analysis

dataset for those profiled using the 450K and EPIC platforms

included observations from 473 to 487 individuals,

respectively. Characteristics of the two EWAS subsets are

summarized in Table 1. All participants were male veterans

with HIV who were never diagnosed with cancer and had an

average age of 51.2 ± 7.5 years. The chronological age between

the 450K and EPIC sub-cohorts was moderately different (Δ =

1.1 years, p-value = 0.031). The distribution of two sub-

cohorts did not differ significantly (p-value > 0.05) in race

(Black vs. non-Black) or in prevalence of current smoking,

diabetes, hazardous alcohol use, ever infection with HBV, ever

infection with HCV, or viral load suppression. They also did

not differ significantly in their average BMI or CD4+ T-cell

count. Average biomarker values from the 450K cohort

differed significantly from those from the EPIC cohort for

ALT (Δ = 4.7 units/L, p-value = 1.93 × 10–3), AST (Δ =

6.4 units/L, p-value = 7.34 × 10–5), serum albumin (Δ =

-0.11 mg/dl, p-value = 2.89 × 10–4), FIB-4 score (Δ = 0.24,

p-value = 8.49 × 10–4), and APRI score (Δ = 0.112, p-value =

8.35 × 10–4). Total bilirubin and platelet count did not differ

significantly between the two sub-cohorts.

Correlations among liver biomarkers

To illustrate the overall correlation between seven liver

function markers, we summarized the pair-wise correlation in

Figure 1. Observed values for ALT, AST, FIB-4 score, and APRI

score all correlated positively and strongly with each other

(Spearman correlation coefficient ρ > 0.6), except for ALT

and FIB-4 score with moderate correlation (ρ = 0.36)

(Figure 1). Platelet count correlated negatively with AST,

ALT, FIB-4 score, and APRI score to varying degrees and

weakly with albumin (ρ = 0.13), but not with total bilirubin

(ρ = -0.06). Serum albumin correlated negatively with AST, APRI

score, and FIB-4 score (−0.25 ≤ ρ ≤ −0.18) but not with ALT

(ρ = −0.01). Total bilirubin did not correlate significantly with

serum albumin, platelet count, FIB-4 score, or APRI score (p >
0.05) and correlated only weakly with AST and ALT (ρ < 0.14).

Distributions of the biomarkers before and after transformation,

are presented in Supplementary Figure S1.

FIGURE 1
Correlation matrix based on Spearman coefficients for
selected liver markers among all study participants. The strength
and direction of each correlation is indicated by the size and color
of its representative circle in the matrix. A legend for the
colors is included beneath the matrix. Values of the Spearman
correlation coefficients are also presented within the circles.
Cross-off circles indicate that the observed correlation coefficient
is not statistically significant after Bonferroni correction to an
overall a = 0.05.
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Covariate associations with liver
biomarkers

Associations between covariates included in the final EWAS

model and the selected liver biomarkers are presented in Table 2.

Only “ever infection with HCV” was associated with all seven

selected liver biomarkers when controlling for age, while diabetes

status was not associated with any of the selected markers. All liver

markers associated with at least four of the covariates included in the

model excluding cell type proportions. Regardless of the p-value for

the observed association between each covariate and each liver

biomarker, all covariates were consistently included in the final

epigenetic analysis model for each liver biomarker. Participants with

complete data of all covariates were analyzed.

Associations of DNAm age acceleration
with liver biomarkers

Serum albumin was significantly associated with PhenoAA

(beta = −0.014, p-value = 1.6 × 10–13) in an unadjusted model

(Figure 2). That association remained significant after adjusting

for all covariates in the final regression model (beta = −0.007,

p-value = 8.6 × 10–4) (Table 3). No other metric of DNAm AA

(i.e., IEAA, EEAA, and GrimAA) was associated with any other

TABLE 2 Associations between DNA methylation age acceleration and selected biomarkers of liver function.

Model

Liver Marker PhenoAA GrimAA IEAA EEAA

ln (AST) Beta (SE) 2.5×10–3 (2.1 × 10–3) 7.9×10–3 (4.0 × 10–3) 2.6 × 10–3 (2.8 × 10–3) 1.9×10–3 (2.8 × 10–3)

p 0.23 0.05 0.36 0.51

ln (ALT) Beta (SE) 1.9 × 10–4 (2.5 × 10–3) 3.4 × 10–3 (4.7 × 10–3) 1.3 × 10–3 (3.3 × 10–3) 5.5 × 10–4 (3.3 × 10–3)

p 0.94 0.47 0.69 0.87

ALB Beta (SE) -7.0 × 10–3 (2.1 × 10–3) -7.2 × 10–3 (4.0 × 10–3) -4.1 × 10–3 (2.8 × 10–3) -4.3 × 10–3 (2.8 × 10–3)

p 8.6 × 10–4 0.07 0.15 0.12

TBILI Beta (SE) -4.9 × 10–3 (2.3 × 10–3) -1.8 × 10–3 (4.4 × 10–3) 2.1 × 10–3 (3.2 × 10–3) 2.0 × 10–3 (3.1 × 10–3)

p 0.04 0.69 0.50 0.52

PLT Beta (SE) -0.48 (0.32) -0.12 (0.61) -0.2 (0.44) -0.72 (0.43)

p 0.14 0.84 0.64 0.09

ln (FIB-4) Beta (SE) 1.4 × 10–3 (2.2 × 10–3) -5.5 × 10–4 (4.1 × 10–3) -1.4 × 10–3 (2.9 × 10–3) 1.8 × 10–3 (2.9 × 10–3)

p 0.53 0.89 0.63 0.54

ln (APRI) Beta (SE) 1.3 × 10–3 (2.9 × 10–3) 3.2 × 10–3 (5.5 × 10–3) 2.6 × 10–4 (3.9 × 10–3) 3.7 × 10–3 (3.9 × 10–3)

p 0.64 0.56 0.95 0.34

Biomarker values were ln-transformed when needed to achieve a more normal distribution as indicated on the left and then regressed on each DNAmethylation age acceleration metric in

linear models that control for the covariates included in the EWASmodel. Associations that remained significant after FDR adjustment at Q < 0.05 are highlighted in yellow. Abbreviations:

AST, aspartate aminotransferase (units/L); ALT, alanine aminotransferase (units/L); ALB, serum albumin (mg/dl); TBILI, total bilirubin level (mg/dl); PLT, platelet count (cells/µL); FIB-4,

FIB-4 score; APRI, APRI score; PhenoAA, phenotype age acceleration; GrimaAA, Grim age acceleration; IEAA, intrinsic epigenetic age acceleration; EEAA, extrinsic epigenetic age

acceleration.

FIGURE 2
Scatter plot of serum albumin values across values for
phenotypic age acceleration (PhenoAA) among the entire
cohort. Red dots indicate participants from 450K and green
dots indicate participants from EPIC. An unadjusted best-
fit line is included (b = -0.01, p-value = 1.6 × 10–13).
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selected biomarker of liver function in the adjusted model

(Table 3).

EWAS and meta-analysis of liver
biomarkers

Meta-analysis of the EWAS results from the EPIC and 450K

datasets for each selected liver biomarker and each DNAm site

included in both platforms identified that hypermethylation at nine

DNAm sites were significantly associated with increased serum

albumin among male veterans with HIV after adjusting for all

covariates (Table 3; Figure 3A). A regional plot for the section of

chromosome 17 that contains five significant DNAm sites is

presented in Figure 3B. Quantile-quantile analysis of the expected

and observed p-values from the meta-analysis for serum albumin

showed very moderate global inflation (inflation factor of 1.02) of

the nominal p-values (Figure 3C), so no further corrections were

applied. Notably, among the top one hundred DNAm sites most

strongly associated with (i.e., with the lowest p-values) serum

albumin in the meta-analysis, the beta coefficients obtained from

the two EWAS sub-cohorts (the EPIC and 450K) show a strong,

positive correlation (beta = 0.89, p-value < 0.001) (Figure 3D).

Four of the nine DNAm sites was positively associated with

serum albumin—cg16936953, cg18942579, cg01409343, and

cg12054453—annotated to be located within the TMEM49 gene.

A 10% increase in methylation at each of those sites corresponded to

average increases in serum albumin of 0.12 g/dl (95%CI: 0.08, 0.16 g/

dl), 0.14 g/dl (95%CI: 0.09, 0.19 g/dl), 0.17 g/dl (95%CI: 0.11, 0.23 g/

dl), and 0.10 g/dl (95% CI: 0.06, 0.14 g/dl), respectively. Four of the

remaining five DNAm sites—cg18181703, cg03546163, cg20995564,

and cg23966214—annotated to correspond to the SOCS3, FKBP5,

ZEB2, and SAMD14 genes, respectively. A 10% increase in

methylation at each of those DNAm sites corresponded to

average increases in serum albumin of 0.19 g/dl (95% CI: 0.12,

0.26 g/dl), 0.11 g/dl (95% CI: 0.07, 0.15 g/dl), 0.12 g/dl (95% CI:

0.07, 0.17 g/dl), and 0.35 g/dl (95% CI: 0.21, 0.49 g/dl). The

remaining DNAm site, cg12992827, was not annotated to

correspond to any known coding sequence. A 10% increase in

methylation at that site corresponded to an average increase in

serum albumin of 0.19 g/dl (95% CI: 0.11, 0.26 g/dl). A quantile-

quantile plot and Manhattan plot of the nominal p-values obtained

frommeta-analysis of the EPIC and 450K sub-cohorts are presented

in Supplementary Figures S2, S3 for the other six liver biomarkers.

Additionally, statistics and annotations for the ten DNAm sites with

the lowest p-values after meta-analysis are presented in

Supplementary Table S1 for each tested liver marker. Among the

DNAm sites that were included in only one of the two methylation

assay platforms used for this study, and that were not included in the

meta-analysis, none was significantly associated with any of the liver

biomarkers after correcting for multiple testing. Statistics and

annotations for the ten DNAm sites with the lowest p-values

among those that could not be meta-analyzed are presented for

each liver biomarker in Supplementary Table S2.

Discussion

In this study we evaluated the epigenetic associations with seven

clinically relevant biomarkers of liver function—aspartate

TABLE 3 DNAm sites are significantly associated with selected liver markers after meta-analysis and FDR correction.

Serum albumin

DNAm Chr Pos Gene Meta-analysis EPIC 450K

Beta (SE) p FDR Beta (SE) p Beta (SE) p

cg16936953 17 57915665 TMEM49 1.2 (0.21) 4.2 × 10–9 0.001 1.0 (0.29) 6.6 × 10–4 1.4 (0.29) 1.7 × 10–6

cg18181703 17 76354621 SOCS3 1.9 (0.35) 9.5 × 10–8 0.009 2.3 (0.45) 9.9 × 10–7 1.3 (0.55) 2.1 × 10–2

cg03546163 6 35654363 FKBP5 1.1 (0.20) 1.1 × 10–7 0.009 1.2 (0.26) 9.2 × 10–6 0.94 (0.33) 4.5 × 10–3

cg18942579 17 57915773 TMEM49 1.4 (0.26) 1.1 × 10–7 0.009 1.2 (0.34) 7.3 × 10–4 1.7 (0.41) 3.2 × 10–5

cg01409343 17 57915740 TMEM49 1.7 (0.32) 1.2 × 10–7 0.009 1.7 (0.43) 1.4 × 10–4 1.8 (0.48) 3.1 × 10–4

cg20995564 2 145172035 ZEB2 1.2 (0.23) 1.9 × 10–7 0.012 1.5 (0.29) 3.0 × 10–7 0.66 (0.39) 9.1 × 10–2

cg23966214 17 48203188 SAMD14 3.5 (0.70) 4.7 × 10–7 0.024 3.2 (0.81) 8.7 × 10–5 4.4 (1.4) 1.6 × 10–3

cg12054453 17 57915717 TMEM49 1.0 (0.20) 5.0 × 10–7 0.024 0.7 (0.29) 1.1 × 10–2 1.3 (0.28) 8.4 × 10–6

cg12992827 3 101901234 None Mapped 1.9 (0.38) 8.0 × 10–7 0.034 2.2 (0.47) 4.0 × 10–6 1.3 (0.66) 5.5 × 10–2

Chr: chromosome number; Pos: basepair position (human genome build hg19); beta: beta coefficient; SE: standard error; p: p-value, i.e. level of statistical significance. Results for DNAm

sites where DNA methylation remained significantly associated with serum albumin after meta-analysis and FDR correction to Q < 0.05 are presented, including statistics from the meta-

analysis and from the separate EWAS of the two cohorts. No significant associations were identified after meta-analysis and FDR correction for AST, ALT, total serum albumin, platelet

count, FIB-4 score, or APRI score, so those markers are excluded from the table. coefficients represent the average change in serum albumin (mg/dl) expected for an increase in DNA

methylation from 0% to 100%.
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transaminase, alanine transaminase, serum albumin, total bilirubin,

platelet count, FIB-4 score, and APRI score—among male

United States veterans with HIV. We identified that nine DNAm

sites mapped to the genes TMEM49, SOCS3, FKBP5, ZEB2, and

SAMD14 were significantly associated with serum albumin levels.

We also demonstrate an association between higher PhenoAA (an

aging marker for DNAm AA) and low serum levels of albumin.

Serum albumin is a highly abundant protein primarily

synthesized by the liver. Synthesis of albumin occurs in

polysomes of hepatocytes at a rate of 10 g/day–15 g/day and

accounts of 10% of liver protein synthesis (Garcovich et al.,

2009). Albumin is not stored in the liver and therefore is not

released on demand. Instead in situations of increased need in

healthy adults, hepatocytes can increase albumin synthesis by up

to 300% (Garcovich et al., 2009). Impaired albumin synthesis and

function have been reported in many liver diseases (Carvalho and

Machado, 2018), and low serum levels of albuminmay be a useful

indicator of LD. Several studies have shown that serum albumin

is an important prognostic factor and a significant predictor of

death in patients with cirrhosis (Carvalho and Machado, 2018)

and also a predictor of serious non-AIDS events in PWH (Ronit

et al., 2018a; Ronit et al., 2018b).

Four of the nine serum albumin associated DNAm sites are

located near the TMEM49 gene (also known as VMP1). DNAm

site TMEM49-cg16936953 was also associated with HIV

infection, C-reactive protein and inflammatory bowel disease

(Gross et al., 2016; Ligthart et al., 2016; Ventham et al., 2016).

TMEM49 encodes a transmembrane protein that drives cellular

FIGURE 3
(A)Manhattan plot of unadjusted p-values frommeta-analysis of EWAS results for serum albumin. The red line indicates the unadjusted p-value
that corresponds to a threshold for FDR significance at Q < 0.05. DNAmethylation was not significantly associated with serum albumin at any DNAm
site after a more restrictive Bonferroni correction to an overall a = 0.05. (B) Regional Manhattan plot of unadjusted p-values from meta-analysis of
EWAS results for CpG sites in chromosome 17 and serum albumin. The red line indicates the unadjusted p-value that corresponds to a threshold
for FDR significance (among all CpG sites from across entire genome) at Q < 0.05. DNA methylation was not significantly associated with serum for
any CpG site after a more restrictive Bonferroni correction to an overall a = 0.05. (C) Quantile-quantile plot of unadjusted p-values from meta-
analysis of EWAS results for serum albumin. The global inflation factor was 1.02. Red lines represent a distribution of null associations with a 95%
confidence interval. (D) Correlation of beta coefficients obtained from separate EWAS of serum albumin among the EPIC and 450K cohorts for the
100 DNAm sites with the smallest unadjusted p-values after meta-analysis. Beta coefficients from the separate analyses are positively correlated (r =
0.89, p-value < 0.001), indicating that the signs of observed beta coefficient are consistent between the two datasets. Circles representing p-value
pairs that were significant after meta-analysis and FDR correction to Q < 0.05 are highlighted in red.
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autophagy (Molejon et al., 2013) and is overexpressed in

pancreatitis-affected acinar cells (Vaccaro et al., 2003).

Cellular autophagy, therefore, may be linked to regulation of

serum albumin. Previous studies have shown that serum albumin

suppresses autophagy via mTOR activation and that depriving

cultured cells of serum albumin induces autophagy which is

protective against the accumulation of harmful reactive oxygen

species (ROS).

SOCS3 encodes a protein that inhibits cytokine signaling in the

STAT pathway in response to elevated cytokine levels (Jo et al.,

2005; Carow and Rottenberg, 2014). Suppression of SOCS3

contributes to liver fibrosis by increasing fibrogenic signaling

via STAT3-mediated upregulation of tissue growth factor

(TGF)-β (Ogata et al., 2006; Jadid et al., 2018; Dees et al.,

2020). In addition, obesity has been associated with

downregulation of SOCS3, which raises the possibility that an

association between DNAm near SOCS3 and liver dysfunction

could result from the well described relationship between obesity

and liver dysfunction. DNAm site SOCS3-cg18181703 was

associated with BMI in several recent EWAS (Ali et al., 2016;

Mendelson et al., 2017; Wahl et al., 2017; Xu et al., 2018; Sun et al.,

2019). In this cohort of PWH, SOCS3-cg18181703 was associated

with BMI (p-value:0.044) further supporting this hypothesis.

Epigenetic associations between SOCS3-cg18181703 and

C-reactive protein, inflammatory bowel disease, type-2 diabetes

and cognitive abilities (Chambers et al., 2015; Ligthart et al., 2016;

Marioni et al., 2018; Juvinao-Quintero et al., 2021) also suggest

potential pleiotropic effects of SOCS3 gene.

FKBP5 encodes an immunoregulatory protein that

contributes to basic protein folding and trafficking (Zannas

et al., 2016). FKBP5 has been demonstrated to positively

regulate the stress response and drive acquisition of

metabolic disorders including obesity, insulin resistance,

and diabetes (Sidibeh et al., 2018). Moreover, FKBP5 is

thought to contribute to liver dysfunction (Kusumanchi

et al., 2021) and in one study, deletion of FKBP5 protected

knock-out mice from fatty liver disease despite high fat diets

(Stechschulte et al., 2016). ZEB2 encodes a zinc-finger DNA-

binding protein expressed in hepatocytes (Cai et al., 2012).

Studies have demonstrated that repression of ZEB2 expression

by microRNAs induces apoptosis in hepatocytes (Zhao et al.,

2018), suggesting that ZEB2 might influence preservation of

liver integrity in the face of hepatocellular damage. The

remaining DNAm site associated positively with serum

albumin levels was located near the SMAD14 gene. The

function of the SMAD14 gene is unknown, but it has been

linked to gastric cancer and hypothesized to act as a tumor

suppressor gene (Xu et al., 2020). No studies have associated

SMAD14 or its tumor suppressor properties to either general

liver health and function or specifically to serum albumin

regulation.

Despite the association between PhenoAA and serum

albumin, no other significant associations were noted

between the four assessed metrics of DNAm

AA—PhenoAA, GrimAA, IEAA, and EEAA—and other

biomarkers. Compared to the other metrics of DNAm

aging, PhenoAA is unique in that it is highly predictive of

morbidity and mortality even after adjusting for chronological

age (Liu et al., 2019). This may explain its significant

association with albumin, which is also a prognostic

marker of survival in LD (Carvalho and Verdelho

Machado, 2018). It is plausible that specific DNAm sites

may regulate the expression of genes in a manner that

influences behavior of the selected biomarkers of liver

health, either by impacting the progression of conditions

that damage the liver and inhibit function—like fibrosis or

hepatocellular carcinoma—or by affecting pathways that are

specifically involved in regulation of a specific liver

biomarkers.

Low serum level of albumin, though an important prognostic

biomarker for LD (Carvalho and Verdelho Machado, 2018), is

not specific. Thus, the associations we have uncovered in this

studymay bemediated by other non-hepatic factors in PWH. For

example, hypoalbuminemia is associated with inflammation and

synthesis of albumin is suppressed by pro-inflammatory

cytokines TNF-α and Interleukin-1 (Dinarello, 1984;

Perlmutter et al., 1986), both of which are important

mediators of chronic inflammation in PWH (Deeks et al.,

2013; De Pablo-Bernal et al., 2014). It is thus presumptuous

to infer that the association between DNAm and albumin reflects

underlying LD alone and is not combination of multiple

interacting factors.

Strengths and limitations

This study combines data from two different microarray

platforms to assess consistent epigenetic associations of

overlapping DNAm sites. This enabled a robust meta-

analysis of epigenetic associations with a large sample size.

The significant associations are likely to be true positive

findings, and should be replicated in future studies.

Secondly, we examine multiple biomarkers which when

combined reflect overall liver function and individually

inform on the liver’s capacity to perform specific metabolic

functions. This allowed us to examine DNAm sites across a

wider range of genes that may link to specific aspects of liver

function. Thirdly, unlike other EWAS of liver function or LD,

our cohort included exclusively people with HIV, a group

which has a higher burden of liver dysfunction and related

morbidity. Our findings contribute to the identification of

genes that may be relevant to liver health and function in the

context of HIV infection.

One limitation of our study is that EWAS discovery was

sub-optimally powered for a subset of DNAm sites included in

only one of the platforms. Meta-analysis results from DNAm
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sites measured on both platforms were highly consistent,

suggesting that combining data from the two platforms

successfully augments the power to detect significant

associations. Future replication and meta-analysis with

extended epigenomic coverage would improve the discovery

of liver function-associated DNAm sites. Secondly, our study

population was restricted to male veterans with HIV, limiting

the generalizability of our findings to women with HIV.

Thirdly, we used DNAm levels measured in blood cells to

assess associations between DNAm and biomarkers of liver

function, which may not represent DNAm patterns in the liver

cells that are responsible for regulating these biomarkers. The

lack of significant associations between DNAm and AST, ALT,

total serum bilirubin, platelet count, FIB-4 score and, APRI

score might result from an absence of epigenetic associations

with liver functions of large effects, suggesting better powered

future studies are needed to identify epigenetic associations

with liver functions with smaller effects. Also, the potential for

misclassifying liver fibrosis with the use of clinical scores like

FIB-4 and APRI as has been shown in hepatitis B infection

(Kim et al., 2016b) and may have limited our ability to detect

an association with these markers.

Conclusion

We identified epigenetic associations of both individual

DNAm sites and DNAm AA with liver function through

serum albumin in men with HIV. EWAS may inform on

disease pathogenesis and generate new hypotheses for

predicting disease progression and treatment of LD in HIV.

Identifying specific genes linked with liver function among

PWH can inform disease progression to improve the health of

this patient population. Further replication analyses in

independent cohorts are warranted to confirm and improve

the discovery of the epigenetic markers of liver function and

LD in PWH.
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